JPH06204971A - Spread spectrum modulation and/or demodulation device - Google Patents

Spread spectrum modulation and/or demodulation device

Info

Publication number
JPH06204971A
JPH06204971A JP36098092A JP36098092A JPH06204971A JP H06204971 A JPH06204971 A JP H06204971A JP 36098092 A JP36098092 A JP 36098092A JP 36098092 A JP36098092 A JP 36098092A JP H06204971 A JPH06204971 A JP H06204971A
Authority
JP
Japan
Prior art keywords
frequency
signal
demodulation
generating
spread spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36098092A
Other languages
Japanese (ja)
Other versions
JP2682363B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP36098092A priority Critical patent/JP2682363B2/en
Publication of JPH06204971A publication Critical patent/JPH06204971A/en
Application granted granted Critical
Publication of JP2682363B2 publication Critical patent/JP2682363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify constitution and to stabilize operations by providing an angle modulation means, a frequency multiplying means, a frequency divider means and a spreading code generation means, spread-modulating a multiplication angle modulated wave by an obtained spreading code and outputting it. CONSTITUTION:Information signals are supplied from an input terminal In 1 to an angle modulation circuit 52 and frequency modulation being primary modulation is performed. Frequency modulated signals are supplied to a frequency multiplier 53 and a carrier frequency f0 and frequency shift are multiplied by N1 to be supplied to a multiplier 6 for spread modulation. In the meantime, the frequency modulated signals are also supplied to a frequency divider 28, a basic carrier frequency becomes f0/N2 and the frequency shift becomes DELTAf/N2. Frequency divided output signals are supplied to the spreading code generator PNG 48 as clock signals with the frequency Fc and the spreading codes are generated based on the clock signals. The spreading codes are supplied through an LPF 31 to the multiplier 6, spectrum spreading by multiplication with frequency modulated waves is performed and output is performed from a transmission antenna A1 through an amplifier 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトル拡散(以下
“SS”と記載する)通信に使用される送信機における
SS変調装置,受信機におけるSS復調装置,又は送受
信機におけるSS変調復調装置に係り、特に、遅延ロッ
クループ(DLL)等の同期保持機能やAGC回路等を
不要にし、簡易な無線装置に応用可能な、同期型(搬送
波周波数と拡散符号とが同期関係に有る)のSS変調及
び/又は復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SS modulator in a transmitter, an SS demodulator in a receiver, or an SS modulator / demodulator in a transceiver used for spread spectrum (hereinafter referred to as "SS") communication. In particular, a synchronization type SS modulation (where the carrier frequency and the spreading code are in a synchronous relationship) that can be applied to a simple wireless device without requiring a synchronization holding function such as a delay lock loop (DLL) or an AGC circuit, and And / or a demodulator.

【0002】[0002]

【技術的背景】近年のSS通信において、SS技術によ
る多元接続法を用いた移動体通信が実用域に達して来て
いる。周知の如く電波資源は有限なので、周波数を有効
に利用する必要がある。その点、SS信号は広い周波数
帯域に拡散されてそのパワースペクトル密度は非常に小
さくなり、これにより他の通信に与える影響は小さく、
既存の通信周波数帯での混用も可能になるため、その面
での効用も大きく、原理的に周波数利用効率の向上に寄
与できるものである。また最近、わが国の郵政省におい
て、SS通信専用の周波数帯域も認可されようとしてお
り、今後は家庭用のワイヤレス通信にまで応用が拡大さ
れると予想され、その将来性や発展性が大きく期待され
ている。
[Technical background] In SS communication in recent years, mobile communication using a multiple access method by SS technology has reached a practical range. As is well known, since radio resources are limited, it is necessary to effectively use frequencies. In that respect, the SS signal is spread over a wide frequency band and its power spectral density becomes very small, which has a small effect on other communications,
Since it can be used in the existing communication frequency band, it has a great effect in that respect, and in principle, it can contribute to the improvement of frequency use efficiency. Recently, the Ministry of Posts and Telecommunications in Japan is also approving the frequency band dedicated to SS communication, and it is expected that the application will be expanded to wireless communication for homes in the future, and its future potential and development are greatly expected. ing.

【0003】[0003]

【従来の技術】SS通信用の受信機(復調装置)におい
て、復調動作時の同期捕捉と同期保持は基本的に重要な
ものであり、今までに種々の同期捕捉方法や保持方法が
提案され、且つ、実用化されている。その中で、変調時
に1次変調である角度変調用のキャリヤ(搬送波)と、
2次変調であるSS変調に用いられる拡散符号用クロッ
ク信号とに同期関係を持たせてSS変調を行なう所謂同
期型SS変調,復調方式も、受信機(復調装置)におい
て回路構成を多少なりとも簡素化できる方式として知ら
れつつある。なお、角度変調としては、FM(周波数変
調)やPM(位相変調)等があり、特に被変調信号がデ
ィジタル信号の場合にはShift Keying(シフトキーイン
グ;SK)と呼ばれ、これにはF(Frequency)SK,P
(Phase)SK,M(Minimum)SK及びGM(Gausian Min
imum)SK等の変調方式がある。
2. Description of the Related Art In a receiver (demodulation device) for SS communication, synchronization acquisition and synchronization holding during demodulation operation are basically important, and various synchronization acquisition methods and holding methods have been proposed so far. And, it has been put to practical use. Among them, the carrier for the angle modulation which is the primary modulation at the time of modulation,
In the so-called synchronous SS modulation and demodulation method that performs SS modulation in synchronization with the spread code clock signal used for SS modulation which is the secondary modulation, the circuit configuration of the receiver (demodulation device) is somewhat different. It is becoming known as a method that can be simplified. Note that there are FM (frequency modulation), PM (phase modulation), and the like as the angle modulation, and when the modulated signal is a digital signal in particular, it is called Shift Keying (SK), and F ( Frequency) SK, P
(Phase) SK, M (Minimum) SK and GM (Gausian Min)
imum) SK and other modulation methods.

【0004】かかるSS変調装置及び/又は復調装置の
従来例について、図面を参照し乍ら説明する。図1及び
図2は夫々従来のSS変調装置及びSS復調装置のブロ
ック構成図、図3はSS復調装置にて行なわれるDLL
(遅延ロックループ)型同期保持動作の主要部となる信
号処理回路36の具体的ブロック構成図、図4はDLL
型同期保持動作における同期保持特性図、図5はスライ
ディング相関型の同期捕捉動作説明用の相関特性図であ
る。なお、SS変調復調装置は図1及び図2の両方の構
成を夫々変調部及び復調部として備えていることは言う
までもない。
A conventional example of the SS modulator and / or demodulator will be described with reference to the drawings. 1 and 2 are block configuration diagrams of a conventional SS modulator and SS demodulator, respectively, and FIG. 3 is a DLL implemented in the SS demodulator.
A concrete block diagram of the signal processing circuit 36, which is the main part of the (delay lock loop) type synchronization holding operation, is shown in FIG.
FIG. 5 is a correlation characteristic diagram for explaining the synchronization acquisition operation of the sliding correlation type in the type synchronization holding operation. It goes without saying that the SS modulation / demodulation device is provided with both the configurations of FIG. 1 and FIG. 2 as the modulation section and the demodulation section, respectively.

【0005】まず、送信器におけるSS変調装置(又は
送受信機におけるSS変調復調装置の変調部)の構成及
び動作について、図1と共に説明する。入力端子In1 よ
り音声や情報等の信号S(t)が、発振器59より1次変調
用のキャリヤ(cosωtで表わされる余弦波)が、共に変
調用の乗算器5に供給され、ここで情報等の信号S(t)の
1次変調が行なわれて、変調波 S(t)cosωtが得られ
る。
First, the configuration and operation of the SS modulator in the transmitter (or the modulator of the SS modulator / demodulator in the transceiver) will be described with reference to FIG. The signal S (t) such as voice and information is supplied from the input terminal In1 and the carrier for primary modulation (cosine wave represented by cos ωt) is supplied from the oscillator 59 to the multiplier 5 for modulation. The signal S (t) is subjected to primary modulation to obtain a modulated wave S (t) cosωt.

【0006】更に、発振器59の出力を周波数分周器
(以下「分周器」と略記する)25に供給し、ここで 1
/N1 (N1 は例えば9等の自然数)に分周して繰返し
周波数用のクロック信号を作り、このクロック信号を基
に拡散符号発生器(PNG)48にて拡散符号P(t) を
生成する。従って、この拡散符号P(t) と上記1次変調
用のキャリヤとは同期関係が成立しているわけである。
拡散符号P(t) は一般に擬似ランダム雑音であり、その
クロック周波数をfr,キャリア周波数をfc とすると、
SS信号のスペクトル分布の主ローブの中心周波数はf
c 、周波数帯域は(fc −fr )〜(fc +fr )とな
ることは周知の通りである。
Further, the output of the oscillator 59 is supplied to a frequency divider (hereinafter abbreviated as "divider") 25, where 1
/ N 1 (N 1 is a natural number such as 9) is divided to generate a clock signal for a repetition frequency, and a spread code generator (PNG) 48 generates a spread code P (t) based on this clock signal. To generate. Therefore, the spread code P (t) and the carrier for the primary modulation have a synchronous relationship.
The spread code P (t) is generally pseudo-random noise, and its clock frequency is f r and its carrier frequency is f c .
The central frequency of the main lobe of the SS signal spectral distribution is f
c, the frequency band is as well known is that the (f c -f r) ~ ( f c + f r).

【0007】かかる拡散符号P(t) は拡散変調用の乗算
器6に供給され、ここでSS変調が行なわれてSS変調
波P(t)S(t)cosωtが生成され、BPF(帯域濾波器)
11及び出力端子Out1を介してアンテナ(図示せず)よ
り電波として出力される。従って、かかるSS変調波
は、空気等の伝送媒体を介して他のSS通信用の受信機
(送受信機)のアンテナでキャッチされ、その復調装置
(復調部)にて復調されて、元の信号S(t)が復元される
わけである。なお、BPF11及び後述のBPF12
は、周知の如く不要な周波数帯域成分を減衰乃至除去す
るものである。
The spread code P (t) is supplied to a multiplier 6 for spread modulation, where SS modulation is performed to generate an SS modulated wave P (t) S (t) cosωt, and a BPF (bandpass filtering) is performed. vessel)
An electric wave is output from an antenna (not shown) via 11 and the output terminal Out1. Therefore, the SS modulated wave is caught by the antenna of another receiver (transceiver) for SS communication via a transmission medium such as air, demodulated by the demodulation device (demodulation unit), and the original signal is obtained. S (t) is restored. The BPF 11 and the BPF 12 described later
As is well known, is for attenuating or removing unnecessary frequency band components.

【0008】次に、従来の受信機のSS復調装置(送受
信機の復調部)の構成及び動作について、図2を参照し
乍ら説明する。アンテナ(図示せず)にて受信されたS
S変調波は、入力端子In2 よりBPF12を介してAG
C(自動利得制御回路)60に供給され、ここで必要に
応じて増幅又は減衰されたのち、後述の乗算によるスラ
イディング相関及び逆拡散復調兼用の乗算器8と、DL
L型同期保持用信号処理回路(以下単に「信号処理回
路」と記載する)36に供給される。乗算器8にはPN
G(拡散符号発生器)49にて生成される拡散符号も供
給されており、この拡散符号用のクロック信号周波数
は、同期捕捉されるまでは同期保持時に比較してやゝ高
めの周波数に、VCO(電圧制御発振器)21により設
定されている。そして周波数を次第に低下させ乍ら相関
点を探すことによりスライディング相関が行なわれる。
なお、スライディング相関動作と逆拡散復調動作は時系
列的に行なわれる。
Next, the configuration and operation of the conventional SS demodulator of the receiver (the demodulator of the transceiver) will be described with reference to FIG. S received by an antenna (not shown)
The S modulated wave is transmitted from the input terminal In2 via the BPF12 to the AG
It is supplied to a C (automatic gain control circuit) 60, where it is amplified or attenuated as necessary, and then a multiplier 8 for both sliding correlation and despreading demodulation by multiplication, which will be described later, and DL
The signal is supplied to an L-type synchronization holding signal processing circuit (hereinafter simply referred to as “signal processing circuit”) 36. PN for multiplier 8
A spreading code generated by a G (spreading code generator) 49 is also supplied, and the clock signal frequency for this spreading code is VCO (higher than that at the time of holding the synchronization until the synchronization is acquired). Voltage controlled oscillator) 21. Sliding correlation is performed by gradually lowering the frequency and searching for a correlation point.
The sliding correlation operation and the despread demodulation operation are performed in time series.

【0009】ここで、同期捕捉に至る動作(同期確立動
作)について説明する。BPF12にて不要な周波数帯
域成分を減衰乃至除去されたSS変調波P(t)S(t)cosω
tは、乗算器8においてPNG49からの拡散符号P
(t) との乗算による相関が行われる。この拡散符号の周
期は前記SS変調装置のPNG48で生成される拡散符
号P(t)の周期に比べ、実際には時間τだけ異なるもの
であり、そこでこれをρ(t)で表わすことにすれば、乗
算器8からの出力はP(t)*ρ(t)S(t)cosωt(乗算演算
子* は表記上便宜的にのみ使用している)で表現され
る。
Now, the operation leading to synchronization acquisition (synchronization establishing operation) will be described. SS modulated wave P (t) S (t) cosω in which unnecessary frequency band components are attenuated or removed by the BPF 12.
t is the spread code P from the PNG 49 in the multiplier 8.
Correlation is performed by multiplication with (t). The cycle of this spreading code is actually different from the cycle of the spreading code P (t) generated by the PNG 48 of the SS modulator by the time τ, so that this can be represented by ρ (t). For example, the output from the multiplier 8 is represented by P (t) * ρ (t) S (t) cosωt (the multiplication operator * is used only for convenience of notation).

【0010】かかる乗算出力は乗算器3,10に供給さ
れ、乗算器10ではVCO24からの再生キャリヤcos
(ωt-φ)との乗算による同期検波が行われる。従っ
て、乗算器10からはP(t)*ρ(t)S(t)cosφ}/2とP
(t)*ρ(t)S(t)cos(2ωt-φ)/2の2つの信号が出力さ
れる。そこで、次段のLPF(低域濾波器)45で後者
の信号成分を除去して、P(t)*ρ(t)S(t)cosφなる信号
のみを出力端子Out2から出力すると共に、乗算器61に
供給する。
The multiplication output is supplied to the multipliers 3 and 10, where the reproduction carrier cos from the VCO 24 is supplied.
Synchronous detection is performed by multiplication with (ωt-φ). Therefore, from the multiplier 10, P (t) * ρ (t) S (t) cosφ} / 2 and P
Two signals of (t) * ρ (t) S (t) cos (2ωt-φ) / 2 are output. Therefore, the latter LPF (low-pass filter) 45 removes the latter signal component and outputs only the signal P (t) * ρ (t) S (t) cosφ from the output terminal Out2 and performs multiplication. Supply to the container 61.

【0011】一方、VCO24よりの再生キャリヤcos
(ωt-φ)は、π/2位相シフト回路62にて位相をπ/2
シフトされてsin(ωt-φ)となって、乗算器3に供給さ
れる。従って、乗算器3の出力信号は(-1/2)P(t)*ρ
(t)*S(t){sinφ+sin(2ωt-φ)}となり、LPF46から
は−{P(t)*ρ(t)S(t)sinφ}/2なる信号が出力され
るが、φの値が0に近ければ sinφはほぼ0になるの
で、実際のレベルは0に近くなっている。LPF45と
LPF46の出力は共に乗算器61に供給され、ここで
乗算が行なわれて、−{P2 (t)*ρ2 (t)S2 (t)*sin2
φ}/2なる誤差信号として出力される。
On the other hand, the reproduction carrier cos from the VCO 24
(ωt-φ) has a phase of π / 2 in the π / 2 phase shift circuit 62.
It is shifted to be sin (ωt-φ) and supplied to the multiplier 3. Therefore, the output signal of the multiplier 3 is (-1/2) P (t) * ρ
(t) * S (t) {sinφ + sin (2ωt-φ)}, and the LPF 46 outputs a signal − {P (t) * ρ (t) S (t) sinφ} / 2, If the value of φ is close to 0, sinφ is almost 0, so the actual level is close to 0. The outputs of the LPF 45 and the LPF 46 are both supplied to the multiplier 61, where multiplication is performed and − {P 2 (t) * ρ 2 (t) S 2 (t) * sin2
φ} / 2 is output as an error signal.

【0012】かかる誤差信号は、ループの応答時定数を
決めるループフィルタ(特性的にはLPF)23にて-K
sin2φなる信号に変換された後、VCO24に制御用信
号として供給される。従って、VCO24より出力され
る再生キャリヤcos(ωt-φ)の周波数は、この制御用信
号の電圧変化に応じて変化することとなり、かかる一巡
の位相同期ループからなるキャリヤ再生回路50では、
前記入力端子In2 からのSS変調波のキャリヤに同期
(同調)してPSK復調を同時に行なうことができるわ
けである。
This error signal is -K at the loop filter (characteristically LPF) 23 which determines the response time constant of the loop.
After being converted into a signal of sin2φ, it is supplied to the VCO 24 as a control signal. Therefore, the frequency of the reproduction carrier cos (ωt-φ) output from the VCO 24 changes in accordance with the voltage change of the control signal, and in the carrier reproduction circuit 50 including such a loop of phase-locked loop,
It is possible to perform PSK demodulation simultaneously in synchronization with the carrier of the SS modulated wave from the input terminal In2.

【0013】SS復調装置(SS変調復調装置)の入電
後、最初に働き出すのはこのキャリヤ再生回路50であ
り、キャリヤを再生した後、上記LPF45にて得られ
た相関出力P(t)*ρ(t) 即ち図5の三角出力特性に基づ
く時刻t0 点を中心とする出力は、スライディング相関
における同期捕捉用の同期判定回路34に供給され、こ
こでP(t)*ρ(t) の出力レベルがSHL を越えた時点、即
ち同期捕捉点SHL を検出した時点(同期捕捉時)以後
は、出力整形回路35にて包絡線検波することにより一
定の直流出力を得ている。この直流出力は加算回路41
に供給され、ここで信号処理回路36からの相関出力と
加算された後、VCO21に供給される。以上のように
して得られた加算出力によってVCO21の発振周波数
は制御されるので、VCO21の発振出力は、正規の同
期保持時の拡散符号を発生させるためのクロック信号と
なるわけである。
It is this carrier reproducing circuit 50 that first starts to work after the SS demodulator (SS modulator / demodulator) is turned on. After the carrier is reproduced, the correlation output P (t) * obtained by the LPF 45 is obtained. ρ (t) That is, the output centered on the time t 0 point based on the triangular output characteristic of FIG. 5 is supplied to the synchronization determination circuit 34 for synchronization acquisition in sliding correlation, where P (t) * ρ (t). After the output level exceeds the SHL, that is, after the synchronization acquisition point SHL is detected (at the time of synchronization acquisition), the output shaping circuit 35 performs envelope detection to obtain a constant DC output. This DC output is added by the adder circuit 41.
Is supplied to the VCO 21 after being added to the correlation output from the signal processing circuit 36. Since the oscillating frequency of the VCO 21 is controlled by the addition output obtained as described above, the oscillating output of the VCO 21 becomes a clock signal for generating the spread code at the time of normal synchronization holding.

【0014】次に、同期保持動作について、信号処理回
路36の具体的回路構成である図3を併せ参照して説明
する。入力SS変調波はBPF12及びAGC60を介
して信号処理回路36の入力端子In3 に供給され、信号
処理回路36を構成する乗算器7及び8において、PN
G49より入力端子In4,In5 を夫々介して供給される拡
散符号(イ){正規の拡散符号P(t) よりも位相がΔt早
いP(t−Δt)},及び拡散符号(ロ){同じくΔt遅いP(t
+Δt)}と、夫々乗算される。なお、ΔtはSS方式で
は拡散符号の1ビット分の時間,即ち1チップ時間なの
で、乗算器7の出力は正規動作時の逆拡散出力であるP
SK変調波となる。
Next, the synchronization holding operation will be described with reference to FIG. 3, which is a specific circuit configuration of the signal processing circuit 36. The input SS modulated wave is supplied to the input terminal In3 of the signal processing circuit 36 via the BPF 12 and the AGC 60, and in the multipliers 7 and 8 forming the signal processing circuit 36,
Spreading code (a) supplied from G49 via input terminals In4 and In5, respectively, {P (t−Δt)} whose phase is Δt earlier than the regular spreading code P (t), and the spreading code (b) {also Δt Slow P (t
+ Δt)}, respectively. Since Δt is the time for one bit of the spread code in the SS system, that is, one chip time, the output of the multiplier 7 is the despread output during normal operation P
It becomes an SK modulated wave.

【0015】このPSK変調波はこれを伝送し得る狭帯
域特性のBPF43を介して絶対値回路(又はエンベロ
ープ検出回路)38に供給されて直流的信号出力とな
る。また、乗算器8の出力はBPF44にて様な周波数
成分を除去した後、絶対値回路39にて直流的信号出力
とされる。従って、絶対値回路38からの出力は、近似
的にキャリヤ周波数の2倍の成分にP(t)*P(t−Δt)が
乗じられた信号となり、絶対値回路39の出力も同様に
キャリヤ周波数の2倍の成分にP(t)*P(t+Δt)が乗じ
られた信号として得られる。
This PSK modulated wave is supplied to an absolute value circuit (or envelope detection circuit) 38 via a BPF 43 having a narrow band characteristic capable of transmitting the PSK modulated wave and becomes a DC signal output. The output of the multiplier 8 is converted into a DC signal output by the absolute value circuit 39 after removing such frequency components by the BPF 44. Therefore, the output from the absolute value circuit 38 becomes a signal in which a component of approximately twice the carrier frequency is multiplied by P (t) * P (t−Δt), and the output of the absolute value circuit 39 is also the carrier. It is obtained as a signal in which the component of twice the frequency is multiplied by P (t) * P (t + Δt).

【0016】両絶対値回路38,39の出力を引算回路
40に供給して引算すると、その引算出力の特性は図4
に示す逆S字型の相関特性となる。なお、点(C) は同期
保持点である。このようにして得られた相関出力は、こ
れを制御信号に加工するためのループフィルタ37を介
して出力端子Out3より図2の加算回路41に出力され、
ここで前記出力整形回路35の出力と加算された信号が
VCO21に供給されることにより、同期の保持が行わ
れるものである。
When the outputs of both absolute value circuits 38 and 39 are supplied to the subtraction circuit 40 and subtracted, the characteristic of the subtraction calculation force is shown in FIG.
The inverse S-shaped correlation characteristic shown in FIG. The point (C) is a synchronization holding point. The correlation output thus obtained is output from the output terminal Out3 to the adder circuit 41 of FIG. 2 via the loop filter 37 for processing this into a control signal,
Here, the signal added to the output of the output shaping circuit 35 is supplied to the VCO 21 to maintain the synchronization.

【0017】[0017]

【発明が解決しようとする課題】上記従来のスペクトル
拡散変調及び/又は復調装置においては、信号処理回路
36を構成する乗算器8におけるPNG49からのP(t
+Δt)との乗算,即ちアップコンバージョンにより変換
されたSS変調波において、そのSS変調波のキャリヤ
周波数と拡散符号とを同期関係に保ち、復調の際に変調
時と対称性を持たせたダウンコンバージョンを乗算器
3,10で行なっているので、復調時のSS同期を確実
に得ることができ、復調時の信号対雑音比(CN比)を
確保する等の性能面は略満足できる水準までに至ってい
る。
In the above-described conventional spread spectrum modulation and / or demodulation device, P (t from the PNG 49 in the multiplier 8 forming the signal processing circuit 36 is used.
+ Δt) in the SS modulated wave converted by up-conversion, that is, the down conversion in which the carrier frequency of the SS modulated wave and the spread code are kept in a synchronous relationship to have symmetry with the modulation time during demodulation. Since it is performed by the multipliers 3 and 10, SS synchronization at the time of demodulation can be surely obtained, and the performance such as securing the signal-to-noise ratio (CN ratio) at the time of demodulation can be substantially satisfied. Has arrived.

【0018】しかし乍ら、SS復調装置の構成がまだ複
雑であり、例えば入力SS変調波のレベルを適切にする
ためのAGC60や、DLL等の同期保持用の回路等が
必要不可欠であり、また、高価なVCO(21,24)が、キ
ャリヤ再生用と同期保持用に夫々1つずつ用いられてい
る等、装置全体として回路構成が複雑であり、特に、移
動体間通信等の民生用の機器に応用する場合には更なる
低廉化が求められている。また、変調部と復調部の両方
を有するSS変調復調装置においては、その各構成回路
における回路部品を共用化することにより、部品コスト
の低減や充分な変調性能,復調性能を確保しつつ動作の
安定性を高めることが望まれている。
However, the configuration of the SS demodulator is still complicated, and for example, an AGC 60 for making the level of the input SS modulated wave appropriate, a circuit for maintaining synchronization such as DLL, etc. are indispensable, and , An expensive VCO (21, 24) is used one each for carrier regeneration and synchronization holding, and the circuit configuration is complicated as a whole, especially for consumer use such as mobile communication. When applied to equipment, further cost reduction is required. Further, in the SS modulation / demodulation device having both the modulation unit and the demodulation unit, by sharing the circuit components in the respective constituent circuits, it is possible to reduce the component cost and ensure sufficient modulation performance and demodulation performance. It is desired to improve stability.

【0019】[0019]

【課題を解決するための手段】本発明では、上記課題を
解決するために、以下のように構成したSS変調装置と
SS復調装置とを提供し、更に、両機能を併せ備えたS
S変調復調装置をも提案するものである。
In order to solve the above-mentioned problems, the present invention provides an SS modulator and an SS demodulator configured as follows, and further, an S having both functions is provided.
An S modulation / demodulation device is also proposed.

【0020】まず送信側であるSS変調装置は、音声等
の情報信号を角度変調する角度変調手段と、得られた角
度変調信号を2以上の自然数N1 なる逓倍数で周波数逓
倍して逓倍角度変調波を得る周波数逓倍手段と、上記角
度変調信号を2以上の自然数N2 なる分周数で分周して
クロック信号を得る分周手段と、得られたクロック信号
を基に拡散符号を発生する拡散符号発生手段と、得られ
た拡散符号で上記逓倍角度変調波を拡散変調してスペク
トル拡散変調波を出力する拡散変調手段とを備えて構成
している。
First, the SS modulator on the transmitting side has an angle modulating means for angle-modulating an information signal such as a voice, and the obtained angle-modulated signal is frequency-multiplied by a multiplication factor of 2 or more natural numbers N 1 to obtain a multiplication angle. Frequency multiplying means for obtaining a modulated wave, frequency dividing means for obtaining a clock signal by dividing the angle modulated signal by a dividing number of 2 or more natural numbers N 2, and a spread code is generated based on the obtained clock signal. And a spreading modulation means for spreading-modulating the multiplied angle modulation wave with the obtained spreading code and outputting a spread spectrum modulation wave.

【0021】また、受信側であるSS復調装置には、局
部発振信号を出力する局部発振器と、局部発振信号によ
り復調用拡散符号を中間周波に変換する周波数変換手段
と、中間周波に変換された復調用拡散符号を前記スペク
トル拡散変調波に乗算することにより逆拡散して角度変
調波を得る逆拡散復調手段と、得られた角度変調波を復
調して角度復調信号を得る位相同期ループと、位相同期
ループ内の電圧制御発振器より出力される電圧制御発振
信号と上記局部発振信号とを基にクロック信号を発生さ
せるクロック信号生成手段と、得られたクロック信号を
基に上記復調用拡散符号を生成する復調用拡散符号発生
手段と、上記角度復調信号より同期捕捉用の制御信号を
生成してスペクトル拡散復調時の同期捕捉を行なう同期
捕捉手段とを備えて構成した。
In the SS demodulation device on the receiving side, a local oscillator that outputs a local oscillation signal, frequency conversion means that converts the spreading code for demodulation to an intermediate frequency by the local oscillation signal, and an intermediate frequency are converted. Despreading demodulation means for despreading to obtain an angle modulated wave by multiplying the spread spectrum modulated wave by a spreading code for demodulation, a phase locked loop for demodulating the obtained angle modulated wave to obtain an angle demodulated signal, Clock signal generating means for generating a clock signal based on the voltage controlled oscillation signal output from the voltage controlled oscillator in the phase locked loop and the local oscillation signal, and the demodulation spread code based on the obtained clock signal. A demodulation spread code generating means for generating and a synchronization acquisition means for generating a control signal for synchronization acquisition from the angle demodulation signal and performing synchronization acquisition during spread spectrum demodulation are provided. Configuration was.

【0022】[0022]

【実施例】図6以降を参照し乍ら、本発明のスペクトル
拡散変調及び/又は復調装置の一実施例について説明す
る。図6(A),(B) は、夫々本発明のSS変調装置1の一
実施例のブロック構成図及びSS復調装置2aの第1実
施例のブロック構成図である。なお、変調部と復調部の
双方を有するSS変調復調装置は、当然図6(A),(B)の
両方の構成を備えているわけであるが、アンテナA1,
2 やPNG48,49等一部の構成要素は兼用できる。
なお、この図6において、図1,図2に夫々示した従来
装置と同一構成要素には同一符号を付して、その詳細な
動作説明を省略する。また、SS変調復調装置の説明
は、SS変調装置及びSS復調装置の説明で代用するこ
とにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the spread spectrum modulation and / or demodulation device of the present invention will be described with reference to FIG. FIGS. 6 (A) and 6 (B) are a block diagram of an embodiment of the SS modulator 1 of the present invention and a block diagram of a first embodiment of the SS demodulator 2a, respectively. Incidentally, the SS modulator demodulator having both of the demodulating unit and the modulating unit, naturally FIG. 6 (A), the but not provided with the configuration of both (B), the antenna A 1, A
Some components such as 2 and PNG 48, 49 can be used in common.
In FIG. 6, the same components as those of the conventional device shown in FIGS. 1 and 2 are designated by the same reference numerals, and detailed description of the operation thereof will be omitted. Further, the description of the SS modulation and demodulation device will be replaced with the description of the SS modulation device and the SS demodulation device.

【0023】図6(A) に示すように、送信機におけるS
S変調装置1は、1次変調用の角度変調回路52,周波
数逓倍器(逓倍数=N1 )53,分周器(分周数= 1/
2)28,PNG48,LPF31,拡散変調用の乗
算器6,及び増幅器16等を備え、これらを図示の如く
結線して構成されている。なお、変調用キャリヤ供給用
の発振器は角度変調回路52に内蔵されており、ここで
の角度変調としては一般的にFM変調やPM変調を指す
が、広義には前記FSKやMSK及びGMSKの各デー
タ変調も含まれる。本実施例では、FM変調に限定して
説明するが、角度変調であれば、FM変調以外の変調波
にも応用できるものである。
As shown in FIG. 6A, S in the transmitter is
The S modulator 1 includes an angle modulation circuit 52 for primary modulation, a frequency multiplier (multiplication number = N 1 ) 53, and a frequency divider (frequency division number = 1 /).
N 2 ) 28, PNG 48, LPF 31, multiplier 6 for spreading modulation, amplifier 16 and the like, and these are connected as shown in the figure. An oscillator for supplying a modulation carrier is built in the angle modulation circuit 52, and the angle modulation here generally refers to FM modulation or PM modulation. In a broad sense, each of the FSK, MSK, and GMSK is described. Data modulation is also included. In the present embodiment, the description will be limited to FM modulation, but any angle modulation can be applied to modulated waves other than FM modulation.

【0024】ところで、角度変調を用いた通信では、そ
の変調用キャリヤ周波数を高い周波数に選んで直接送信
する方法と、予め低い周波数を選んで角度変調を行って
からアップコンバージョンにより高い周波数に変換して
送信する方法がある。前者の直接送信する方法では回路
構成は簡単になるので、一般に周波数偏移に対するキャ
リヤ周波数が高くなるほど変調回路でのSN比は悪くな
る傾向にあるが、本発明装置では構成の簡素化の面か
ら、前者の方法を用いることにする。
By the way, in the communication using the angle modulation, a method of directly selecting the carrier frequency for modulation and transmitting it directly, or a method of selecting a low frequency in advance and performing the angle modulation and then converting to a higher frequency by up-conversion. There is a way to send. In the former method of direct transmission, the circuit configuration becomes simpler. Therefore, in general, the higher the carrier frequency with respect to the frequency deviation, the worse the SN ratio in the modulation circuit tends to be. However, in the device of the present invention, the configuration is simplified. , I will use the former method.

【0025】図6(A) 示の構成において、音声信号やデ
ータ等の情報信号S(t)=sinptが、入力端子In1 より角
度変調回路52に供給されて、ここで内蔵の発振器から
のキャリヤを情報信号S(t)で変調することにより、1次
変調であるFM変調が行なわれる。この角度変調回路5
2の出力をFM変調信号fM (t) で表わすことにする。
この場合のキャリヤ周波数をf0 ,周波数偏移を△F と
する。
In the configuration shown in FIG. 6 (A), an information signal S (t) = sinpt such as a voice signal or data is supplied from the input terminal In1 to the angle modulation circuit 52, where a carrier from an internal oscillator is supplied. Is modulated with the information signal S (t), FM modulation, which is the primary modulation, is performed. This angle modulation circuit 5
The output of 2 is represented by the FM modulation signal f M (t).
In this case, the carrier frequency is f 0 and the frequency deviation is ΔF.

【0026】FM変調信号fM (t) は周波数逓倍器53
に供給され、ここでキャリヤ周波数と周波数編移がN1
倍(N1 は9等の自然数)に逓倍される。従って、周波
数逓倍器53により、夫々N1 0 ,N1 △Fなる最終
のキャリヤ周波数及び周波数編移が得られ、周波数変調
波f(t) =Esin{ω0 t+(Δf/fm)sinpt}として出力
され、拡散変調用の乗算器6へ供給される。なお、fm
は情報周波数を示し、sin pt=S(t)である。
The FM modulation signal f M (t) is supplied to the frequency multiplier 53.
Where the carrier frequency and frequency transfer are N 1
(N 1 is a natural number such as 9). Therefore, the frequency multiplier 53 obtains final carrier frequencies and frequency shifts of N 1 f 0 and N 1 ΔF, respectively, and the frequency modulated wave f (t) = E sin {ω 0 t + (Δf / fm) The signal is output as sinpt} and is supplied to the multiplier 6 for spread modulation. Note that fm
Indicates the information frequency, and sin pt = S (t).

【0027】一方、FM変調信号fM (t) は分周器28
にも供給され、ここで分周されて、基本キャリヤ周波数
がf0 /N2 (N2 は5等の自然数)、周波数編移が△
f/N2 となる。この分周出力信号は周波数fcなるク
ロック信号C(t)としてPNG48に供給され、ここでこ
のクロック信号を基に拡散符号P(t)が生成される。この
拡散符号をLPF31を介して拡散変調用の乗算器6に
供給し、ここで上記周波数変調波f(t) との乗算による
スペクトル拡散が行われる。従って、乗算器6の出力と
してP(t)f(t) なるスペクトル拡散信号SS(t) が得ら
れ、増幅器16で適宜増幅されて、送信アンテナA1
り電波となって出力される。
On the other hand, the FM modulated signal f M (t) is divided by the frequency divider 28.
Is also supplied to the frequency division circuit, and the frequency is divided here so that the basic carrier frequency is f 0 / N 2 (N 2 is a natural number such as 5) and the frequency transfer is Δ.
f / N 2 . This frequency-divided output signal is supplied to the PNG 48 as the clock signal C (t) having the frequency fc, and the spread code P (t) is generated based on this clock signal. This spread code is supplied to the multiplier 6 for spread modulation via the LPF 31, and spread spectrum is performed by multiplication with the frequency modulated wave f (t). Therefore, the spread spectrum signal SS (t) of P (t) f (t) is obtained as the output of the multiplier 6, is appropriately amplified by the amplifier 16, and is output as a radio wave from the transmitting antenna A 1 .

【0028】次に、受信側である本発明のSS復調装置
の第1実施例について、図6(B) と共に説明する。SS
復調装置2aは図示の如く、乗算器(ミキサー,位相比
較器)8〜10,BPF12〜14,増幅器17〜2
0,PNG48,局部発振器57,58,同期補足制御
回路32,排他的論理和回路22,LF(ループフィル
タ)23,VCO24,及び分周器{分周数= 1/(N
1 *N2 );以下単に“1/N1 2 ”と記す}26,
27やLPF29,30等を備え、これらを図示の如く
結線して構成されている。なお、LF23,VCO2
4,位相比較器10,及び増幅器19によりPLL(位
相同期ループ)41が形成されており、このVCO24
の出力や局部発振器58からの局発信号がアナログ信号
の場合には、排他的論理和回路22の前段に、夫々A/
D変換器等の2値化手段が接続される。
Next, a first embodiment of the SS demodulation device of the present invention on the receiving side will be described with reference to FIG. 6 (B). SS
The demodulator 2a includes multipliers (mixers, phase comparators) 8 to 10, BPFs 12 to 14, amplifiers 17 to 2 as shown in the figure.
0, PNG 48, local oscillators 57, 58, synchronous supplementary control circuit 32, exclusive OR circuit 22, LF (loop filter) 23, VCO 24, and frequency divider {frequency division number = 1 / (N
1 * N 2 ); hereinafter simply referred to as “1 / N 1 N 2 ”} 26,
27, LPFs 29, 30 and the like, which are connected as shown in the drawing. In addition, LF23, VCO2
4, a phase comparator 10 and an amplifier 19 form a PLL (phase locked loop) 41.
In the case where the output of the above or the local oscillation signal from the local oscillator 58 is an analog signal, the A /
Binarization means such as a D converter is connected.

【0029】かかる構成のSS復調装置2aにおいて、
受信用アンテナN2 により受信されたスペクトル拡散信
号SS(t) は、BPF12にて不要な周波数帯域成分を除
去された後、高周波増幅器17にて適宜増幅されて、逆
拡散用の乗算器8に供給される。なお、ここでのスペク
トル拡散信号SS(t) は、前記送信アンテナA1 より出力
されるスペクトル拡散信号SS(t) とは実際には相違し、
干渉波等の雑音成分が含まれているが、便宜上同じ記号
SS(t) を用いることにする。
In the SS demodulator 2a having the above structure,
The spread spectrum signal SS (t) received by the receiving antenna N 2 has its unnecessary frequency band component removed by the BPF 12, and is then appropriately amplified by the high frequency amplifier 17 to be supplied to the despreading multiplier 8. Supplied. Note that the spread spectrum signal SS (t) here is actually different from the spread spectrum signal SS (t) output from the transmitting antenna A 1 ,
Noise components such as interference waves are included, but the same symbol is used for convenience.
We will use SS (t).

【0030】一方、局部発振器58からは、周波数変換
用の周波数の信号(以下これを「局発信号」と呼ぶ)を
乗算器(ミキサー)9に供給しており、ここでこの信号
を、LPF29を介してのPNG49からの拡散符号に
乗ずることにより、中間周波に変換(ビートダウン)さ
れた拡散符号が得られる。従って乗算器8では、乗算器
9からの周波数変換された拡散符号にてスペクトル拡散
信号SS(t) の乗算による逆拡散復調が行われるが、実際
には、乗算器8に供給される両信号の同期が取れないと
逆拡散復調はできないので、ここで同期を確立するため
の動作原理、即ちSS復調装置2aにおける同期捕捉動
作について説明する。
On the other hand, from the local oscillator 58, a frequency conversion frequency signal (hereinafter referred to as "local oscillation signal") is supplied to a multiplier (mixer) 9, where this signal is supplied to the LPF 29. The spread code converted to the intermediate frequency (beat down) is obtained by multiplying the spread code from the PNG 49 via the. Therefore, in the multiplier 8, despread demodulation is performed by multiplying the spread spectrum signal SS (t) by the spread code whose frequency has been converted from the multiplier 9, but in reality, both signals supplied to the multiplier 8 Since the despreading demodulation cannot be performed unless the synchronization is obtained, the operation principle for establishing the synchronization, that is, the synchronization acquisition operation in the SS demodulator 2a will be described.

【0031】同期捕捉用信号Cs(t)を出力しているのは
発振器57であり、その周波数fsは、SS復調のため
の正規のクロック信号C(t)の周波数fcより僅かにδf
だけ多い(又は少ない)周波数、即ちfs =fc±δf
なる周波数となっている。このfs なる周波数の同期捕
捉用信号Cs(t)を、スイッチ回路(以下「スイッチ」と
略記する)Swを介してPNG49にクロック信号として
供給し、これを基にここで拡散符号ρ(t) を発生させて
いる。この拡散符号ρ(t) は、LPF29を介して乗算
器9に供給される。
The oscillator 57 outputs the signal Cs (t) for synchronization acquisition, and its frequency fs is δf which is slightly smaller than the frequency fc of the regular clock signal C (t) for SS demodulation.
Frequency (more or less), that is, fs = fc ± δf
It has become a frequency. The synchronization acquisition signal Cs (t) having the frequency fs is supplied as a clock signal to the PNG 49 via a switch circuit (hereinafter abbreviated as “switch”) Sw, and based on this, the spread code ρ (t) is supplied. Is being generated. The spread code ρ (t) is supplied to the multiplier 9 via the LPF 29.

【0032】乗算器9には、前記の如く、局部発振器5
8より出力される周波数fL なる局発信号E0 *cosωt
が供給されており、従って乗算器出力はρ(t)*E0 *cos
ωtとなって、逆拡散用の乗算器8に供給される。乗算
器8の出力はP(t)ρ(t)*f(t) *E0 *cosωtとなる
が、BPF13により中間周波数帯域成分のみが抽出さ
れて、同期捕捉キャリヤ信号fSI(t) が得られる。この
信号fSI(t) は、fSI(t) =P(t)ρ(t)(E*E0 /2)si
n{ωi t+(Δf/fm)sinpt}で表わされ、この波形を時
間軸上で示すと図7(A) のようになる。
The multiplier 9 has a local oscillator 5 as described above.
8 is a local oscillation signal E 0 * cosωt having a frequency f L
Is supplied, so the multiplier output is ρ (t) * E 0 * cos
It becomes ωt and is supplied to the multiplier 8 for despreading. The output of the multiplier 8 is P (t) ρ (t) * f (t) * E 0 * cosωt, but only the intermediate frequency band component is extracted by the BPF 13 and the synchronous acquisition carrier signal f SI (t) is obtained. can get. This signal f SI (t) is, f SI (t) = P (t) ρ (t) (E * E 0/2) si
It is represented by n {ω i t + (Δf / fm) sinpt}, and this waveform is shown on the time axis as shown in FIG. 7 (A).

【0033】図7(A) において、a,a′は相関点、
b,b′は非相関部分であり、拡散符号ρ(t) の1周期
のチップをNPNとすると、a〜a′間はNPN/(fs−
fc)で表わされる時間となる。なお、図7(B) は、後
述の位相同期ループ41内の誤差増幅器19の出力信号
である角度復調出力中の、情報周波数より高域の周波数
帯に生じる雑音電圧である。この図7(B) から明白なよ
うに、雑音電圧は相関点a,a′で小さくなり(殆ど
0)、非相関部分b,b′で大きくなっている。
In FIG. 7A, a and a'are correlation points,
b, b 'is a non-correlation part, the one period of the chip of the spread code [rho (t) and N PN, a~a' between the N PN / (fs-
The time is represented by fc). Note that FIG. 7B shows a noise voltage generated in a frequency band higher than the information frequency during the angle demodulation output which is the output signal of the error amplifier 19 in the phase locked loop 41 described later. As is apparent from FIG. 7 (B), the noise voltage becomes small (almost 0) at the correlation points a and a ', and becomes large at the uncorrelated portions b and b'.

【0034】上記BPF13からの同期捕捉キャリヤ信
号fSI(t) は、振幅制限増幅器18を介して位相同期ル
ープ41を構成する位相比較器(乗算器)10に供給さ
れる。位相同期ループ41からは、位相比較器10に供
給される同期捕捉キャリヤ信号の周波数fiに同期した
出力がVCO24より得られ、分周器26と位相比較器
10に供給される。
The synchronous acquisition carrier signal f SI (t) from the BPF 13 is supplied to the phase comparator (multiplier) 10 which constitutes the phase locked loop 41 via the amplitude limiting amplifier 18. From the phase-locked loop 41, an output synchronized with the frequency fi of the synchronous acquisition carrier signal supplied to the phase comparator 10 is obtained from the VCO 24 and supplied to the frequency divider 26 and the phase comparator 10.

【0035】一方、分周器27には局部発振器58から
の局発信号 cosωtが供給され、その周波数fL はこの
分周器27で 1/N1 2 に分周され、基本分周周波数
であるfL /(N1 2 )となって排他的論理和回路
(以下“EX−OR回路”と記す)22の一方の端子に
供給される。同様に、上記VCO24の出力は分周器2
6により 1/N1 2 に分周され、その基本周波数はf
i/(N1 2 )となってEX−OR回路22の他方の
端子に供給される。従って、ここで乗算的演算が行なわ
れて、EX−OR回路22からは分周器26,27の両
出力同士が乗算された出力が得られる{従ってEX−O
R回路の代りに乗算器を使用しても良い}が、その出力
信号中より、BPF14によって(fi+fL )/(N
1 2 )なる周波数成分を選択して、増幅器20を介し
てスイッチSwに供給する。
On the other hand, a local oscillator signal cosωt from a local oscillator 58 is supplied to the frequency divider 27, and its frequency f L is divided by this frequency divider 27 into 1 / N 1 N 2 to obtain a basic frequency division frequency. F L / (N 1 N 2 ) and is supplied to one terminal of an exclusive OR circuit (hereinafter referred to as “EX-OR circuit”) 22. Similarly, the output of the VCO 24 is the frequency divider 2
It is divided into 1 / N 1 N 2 by 6 and its fundamental frequency is f
It becomes i / (N 1 N 2 ) and is supplied to the other terminal of the EX-OR circuit 22. Therefore, a multiplication operation is performed here, and an output obtained by multiplying both outputs of the frequency dividers 26 and 27 is obtained from the EX-OR circuit 22 (hence EX-O).
A multiplier may be used in place of the R circuit}, but from the output signal thereof, (fi + f L ) / (N
The frequency component 1 N 2 ) is selected and supplied to the switch Sw via the amplifier 20.

【0036】ここで、スペクトル拡散信号SS(t) の中心
キャリヤ周波数はN1 *f0 であるので、増幅器20の
出力周波数は(fi+fL )/N1 2 、即ちf0 /N
2 となる。このf0 /N2 は、前記SS変調装置1にお
ける分周器28の基本分周キャリヤ周波数と等しく、S
S同期が確立した場合に変調用の拡散符号を生成するP
NG48に供給されるクロック信号と等価であることを
意味する。
Since the center carrier frequency of the spread spectrum signal SS (t) is N 1 * f 0 , the output frequency of the amplifier 20 is (fi + f L ) / N 1 N 2 , that is, f 0 / N.
It becomes 2 . This f 0 / N 2 is equal to the basic frequency division carrier frequency of the frequency divider 28 in the SS modulator 1, and S 0
P that generates a spreading code for modulation when S synchronization is established
It is equivalent to the clock signal supplied to the NG 48.

【0037】ところで、BPF13の出力波形を図7
(A) に示したが、同図における相関点a及びa′を検出
するために、本発明では、角度復調を行う位相同期ルー
プ41内の誤差増幅器19の出力を利用している。この
角度復調出力から情報周波数より高域の周波数帯に生じ
る雑音をHPF(高域濾波器;図示せず)で抽出してレ
ベル検出すると、図7(B) に示したように、相関点a,
a′で雑音電圧が小さく、非相関部分b,b′で雑音電
圧が大きく生じることから、同期捕捉制御回路32では
雑音電圧の識別と2値化を行い、その出力の大小に応じ
て互いに異なるディジタル信号に変換された制御信号を
スイッチSwに供給することにより、相関点a又はa′で
スイッチSwを接点χから接点yに切換える動作が行われ
る。
By the way, the output waveform of the BPF 13 is shown in FIG.
As shown in (A), in order to detect the correlation points a and a'in the figure, the present invention utilizes the output of the error amplifier 19 in the phase locked loop 41 which performs angle demodulation. Noise generated in the frequency band higher than the information frequency from this angle demodulation output is extracted by an HPF (high-pass filter; not shown) to detect the level, and as shown in FIG. ,
Since the noise voltage is small at a ′ and the noise voltage is large at the non-correlated portions b and b ′, the synchronous acquisition control circuit 32 discriminates the noise voltage and binarizes it, and differs from each other according to the magnitude of the output. By supplying the control signal converted into the digital signal to the switch Sw, the switch Sw is switched from the contact χ to the contact y at the correlation point a or a ′.

【0038】かかる同期捕捉用の制御信号のレベルは、
受信電界強度によって変動することはないが、これは従
来のSS復調装置におけるAGC(Auto Gain Controlle
r)60の代りに、振幅制限増幅器18が利用できるよう
になったためである。これにより、制御信号は受信電界
強度の大小によらず安定的に検出される。この制御信号
により相関点a又はa′で切換えられてPNG49に供
給されるクロック信号は、変調時のクロック信号と等価
になるので、PNG49にて生成される拡散符号は、ス
イッチSwの接点yへの切換え以降、ρ(t) から前記PN
G48と同じ拡散符号P(t)に変わる。
The level of the control signal for acquisition of synchronization is
Although it does not change depending on the received electric field strength, this is due to AGC (Auto Gain Controlle) in the conventional SS demodulator.
This is because the amplitude limiting amplifier 18 can be used instead of r) 60. As a result, the control signal is stably detected regardless of the magnitude of the received electric field strength. Since the clock signal switched to the correlation point a or a'by this control signal and supplied to the PNG 49 is equivalent to the clock signal at the time of modulation, the spreading code generated by the PNG 49 is applied to the contact y of the switch Sw. After switching, ρ (t) to PN
It changes to the same spreading code P (t) as G48.

【0039】この拡散符号P(t)をLPF29を介して乗
算器(ミキサー)9に供給し、ここで前記の如く局部発
振器58からの局発信号で周波数変換したのち乗算器8
に供給して、ここで前記スペクトル拡散信号SS(t) を逆
拡散復調すると、逆拡散された中間周波信号fI (t)は
I (t) =(E*E0 /2)sin{ωi t+(Δf/fm)sinp
t}なる中間周波に変換された角度変調波となる。これ
をBPF13,振幅制限増幅器18を介して位相同期ル
ープ41(位相比較器10)に供給することにより、位
相同期ループ41で角度復調が良好に行われ、LPF3
0にて復調情報信号の周波数帯域以外の不要な成分が除
去された後、出力端子Out2より復調された情報S'(t) が
得られるものである。
The spread code P (t) is supplied to the multiplier (mixer) 9 through the LPF 29, where the frequency is converted by the local oscillator signal from the local oscillator 58 as described above, and then the multiplier 8 is supplied.
Is supplied to and where despread demodulating the spread spectrum signal SS (t), despread intermediate frequency signal f I (t) is f I (t) = (E * E 0/2) sin { ω i t + (Δf / fm) sinp
The angle-modulated wave is converted to an intermediate frequency t}. By supplying this to the phase-locked loop 41 (phase comparator 10) via the BPF 13 and the amplitude limiting amplifier 18, angle demodulation is favorably performed in the phase-locked loop 41, and the LPF 3
After removing unnecessary components other than the frequency band of the demodulation information signal at 0, the demodulated information S '(t) is obtained from the output terminal Out2.

【0040】次に、本発明のSS復調装置の第2実施例
について、図8のブロック構成図と共に説明する。この
図8において、図6に示した第1実施例装置2aと同一
構成要素には同一符号を付して、その説明を省略する。
第2実施例装置2bの主な特徴は、両図を比較すれば明
らかなように、同期捕捉のための回路構成等に若干の相
違がある。即ち、VCO24からスイッチSwに至る同期
捕捉用クロック信号生成回路系等が相違しており、動作
原理も当然異なるので、これについて以下詳細に説明す
る。
Next, a second embodiment of the SS demodulation device of the present invention will be described with reference to the block diagram of FIG. In FIG. 8, the same components as those of the apparatus 2a of the first embodiment shown in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.
The main characteristics of the device 2b of the second embodiment are that, as is clear from a comparison between the two figures, there are some differences in the circuit configuration and the like for synchronization acquisition. That is, the synchronization acquisition clock signal generation circuit system from the VCO 24 to the switch Sw is different, and the operation principle is naturally different, which will be described in detail below.

【0041】具体的な相違点の1つとして、EX−OR
回路の代りに第2実施例装置2bでは乗算器4を使用し
ており、しかも、各分周器で夫々分周しないで、PLL
41中のVCO24の出力及び局部発振器58からの局
発信号出力E0 *cosωt(周波数fL )を直接ここで掛
け合せている。VCO24の出力信号は、前記の如く同
期捕捉キャリア信号fiに同期しているので、乗算器4
からは当然fL +fiなる周波数の成分も出力される。
そこで、BPF15でこの周波数fL +fiなる信号成
分のみを通過させて、増幅器20にて必要に応じて増幅
して後、分周器26にて周波数分周を行い、基本周波数
が(fL +fi)/(N1 2 )の出力信号を得る。
One of the concrete differences is EX-OR.
The multiplier 4 is used in the device 2b of the second embodiment instead of the circuit, and the PLL is not divided by each divider.
The output of the VCO 24 in 41 and the local oscillator signal output E 0 * cosωt (frequency f L ) from the local oscillator 58 are directly multiplied here. Since the output signal of the VCO 24 is synchronized with the synchronization acquisition carrier signal fi as described above, the multiplier 4
Of course, a frequency component of f L + fi is also output.
Therefore, the BPF 15 allows only the signal component having the frequency f L + fi to pass therethrough, the amplifier 20 amplifies the signal as necessary, and the frequency divider 26 performs frequency division to obtain a fundamental frequency of (f L + fi ) / (N 1 N 2 ) output signal.

【0042】前記の如く、スペクトル拡散信号SS(t) の
中心キャリヤ周波数はN1 *f0 であるので、この分周
器出力は、f0 /N2 となって、スイッチSwに供給され
る。このf0 /N2 なる周波数は、前記SS変調装置1
における分周器28の基本分周キャリヤ周波数に等し
く、SS同期が確立した場合に変調用拡散符号発生回路
48に供給されるクロック信号と等しくなることも、前
記した通りである。
As described above, since the center carrier frequency of the spread spectrum signal SS (t) is N 1 * f 0 , the frequency divider output becomes f 0 / N 2 and is supplied to the switch Sw. . This frequency of f 0 / N 2 is the same as the SS modulator 1
As described above, the frequency is equal to the basic frequency-divided carrier frequency of the frequency divider 28 and is equal to the clock signal supplied to the modulation spread code generation circuit 48 when SS synchronization is established.

【0043】かかる構成により、第1実施例のSS復調
装置2aでは分周器を2つ必要としたが、本実施例では
1個ですみ、構成が更に簡素化されている。また、EX
−OR回路の代りに乗算器4を使用しているので、VC
O出力や局発信号はアナログ信号の形態でも構わないの
で、2値化手段も不要となる。
With this configuration, the SS demodulator 2a of the first embodiment requires two frequency dividers, but only one is required in this embodiment, and the configuration is further simplified. Also, EX
-Since the multiplier 4 is used instead of the OR circuit, VC
Since the O output and the local oscillation signal may be in the form of analog signals, the binarizing means is not necessary.

【0044】次に、本発明のSS復調装置の第3実施例
について、図9のブロック構成図と共に説明する。この
図9において、図6,図8に夫々示した第1,第2実施
例装置2a,2bと同一構成要素には同一符号を付し
て、その説明を省略する。第3実施例装置2cの主な特
徴は、図面を比較すれば明らかなように、復調用拡散符
号のビートダウンの仕方や同期捕捉のための回路構成に
若干の相違がある。
Next, a third embodiment of the SS demodulation device of the present invention will be described with reference to the block diagram of FIG. 9, the same components as those of the first and second embodiment devices 2a and 2b shown in FIGS. 6 and 8 are designated by the same reference numerals, and the description thereof will be omitted. The main characteristics of the third embodiment device 2c are that there are some differences in the beat-down method of the spreading code for demodulation and the circuit configuration for synchronization acquisition, as is clear by comparing the drawings.

【0045】具体的な相違点として、局部発振信号出力
用の局部発振器58を、前記第1,第2実施例装置2
a,2bにおける発振周波数よりもN2 で除した分だけ
低い周波数を発振するよう構成し、そして局部発振器5
8からの局発信号出力E0 *cosωtの周波数fL をN2
逓倍する逓倍器33を設けている。なお、VCO24か
らスイッチSwに至る同期捕捉用クロック信号生成回路系
は第1実施例装置2aの方に類似しており、EX−OR
回路22を使用しているので入力信号としてディジタル
信号しか扱えないが、乗算器に比べてバランス調整が不
要であるという特長を有する。
As a concrete difference, the local oscillator 58 for outputting a local oscillation signal is the same as the device 2 of the first and second embodiments.
The local oscillator 5 is configured to oscillate at a frequency lower than the oscillation frequency at a and 2b by the amount divided by N 2.
The frequency f L of the local signal output E 0 * cosωt from 8 is set to N 2
A multiplier 33 for multiplying is provided. The clock signal generation circuit system for synchronization acquisition from the VCO 24 to the switch Sw is similar to that of the device 2a of the first embodiment, and the EX-OR
Since the circuit 22 is used, only a digital signal can be handled as an input signal, but it has a feature that balance adjustment is unnecessary as compared with a multiplier.

【0046】ここで、第3実施例のSS復調装置2cに
おける同期捕捉動作について説明する。同期捕捉用信号
発生器57からの同期捕捉用信号Cs(t){その周波数f
sは正規のクロック信号C(t)の周波数fcより僅かに異
なる}を拡散符号発生回路49に供給して拡散符号ρ
(t) を発生させ、この拡散符号ρ(t) をLPF29を介
して乗算器(ミキサー)9に供給する動作は前記第1,
第2実施例装置2a,2bと同様である。
Now, the synchronization acquisition operation in the SS demodulator 2c of the third embodiment will be described. Synchronization acquisition signal Cs (t) from the synchronization acquisition signal generator 57 (its frequency f
s is slightly different from the frequency fc of the regular clock signal C (t)} to the spreading code generating circuit 49, and the spreading code ρ
(t) is generated and the spread code ρ (t) is supplied to the multiplier (mixer) 9 via the LPF 29.
This is similar to the second embodiment devices 2a and 2b.

【0047】一方、局部発振器58からは周波数fL'
る局発信号E0 *cosω0 tが出力されており、これが逓
倍器33によりN2 逓倍されて逓倍局発信号E0 *cosω
tとなり、上記ミキサー9に供給される。従って、ミキ
サー出力はρ(t)P(t)*f(t)*E0 *cosωtとなるが、B
PF13により中間周波に変換された同期捕捉キャリヤ
信号fSI(t) のみが抽出される。この信号fSI(t) は、
P(t)ρ(t)(E*E0 /2)sin{ωi t+(ΔF /fm)sinpt}
で表わされ、時間軸上で示すと、やはり前記図7(A) の
ようになる。
On the other hand, the local oscillator 58 outputs the local oscillator signal E 0 * cosω 0 t having the frequency f L ′ , which is multiplied by N 2 by the multiplier 33 and multiplied by the local oscillator signal E 0 * cosω.
t, and is supplied to the mixer 9. Therefore, the mixer output is ρ (t) P (t) * f (t) * E 0 * cosωt, but B
Only the synchronous acquisition carrier signal f SI (t) converted into the intermediate frequency by the PF 13 is extracted. This signal f SI (t) is
P (t) ρ (t) (E * E 0/2) sin {ω i t + (ΔF / fm) sinpt}
And is also shown on the time axis, as shown in FIG. 7 (A).

【0048】同期捕捉キャリヤ信号fSI(t) は振幅制限
増幅器18を介してPLL41を構成する位相比較器
(乗算器)10に供給され、PLL41を構成するVC
O24より、位相比較器10に供給される同期捕捉キャ
リヤ信号fiに同期した出力が分周器26に供給され
る。一方、上記局発信号E0 *cosω0 tは分周器25に
も供給され、ここでその基本周波数を 1/N1 に分周さ
れて、fL'/N1 なる基本周波数の出力信号となって、
EX−OR回路22の一方の端子に供給される。
The synchronous acquisition carrier signal f SI (t) is supplied to the phase comparator (multiplier) 10 which constitutes the PLL 41 via the amplitude limiting amplifier 18, and the VC which constitutes the PLL 41.
From O24, an output synchronized with the synchronous acquisition carrier signal fi supplied to the phase comparator 10 is supplied to the frequency divider 26. On the other hand, the local oscillator signal E 0 * cosω 0 t is also supplied to the frequency divider 25, where the fundamental frequency thereof is divided into 1 / N 1 and the output signal of the fundamental frequency f L ′ / N 1 And
It is supplied to one terminal of the EX-OR circuit 22.

【0049】また、VCO24の出力は分周器26で 1
/N1 2 に分周されて基本分周周波数がfi/(N1
2 )となり、EX−OR回路22の他方の端子に供給
される。従って、EX−OR回路22では排他的論理和
演算による乗算が行なわれて、両信号の乗算出力が得ら
れるが、その中から(fL +fi)/(N1 2 )なる
周波数の信号をBPF15にて抽出し、増幅器20によ
り十分に増幅してからスイッチSwに供給する。なお、増
幅器20の出力基本周波数は前記した理由によりf0
2 となるが、このf0 /N2 は前記SS変調装置1に
おける分周器28の基本分周キャリヤ周波数に等しく、
SS同期が確立した場合に変調用の拡散符号発生回路4
8に供給されるクロック信号の周波数と等しくなる。
The output of the VCO 24 is output by the frequency divider 26 to 1
/ N 1 N 2 and the basic division frequency is fi / (N 1
N 2 ), and is supplied to the other terminal of the EX-OR circuit 22. Therefore, the EX-OR circuit 22 performs multiplication by an exclusive OR operation and obtains a multiplied output of both signals. From among them, a signal of a frequency of (f L + fi) / (N 1 N 2 ) is obtained. It is extracted by the BPF 15, sufficiently amplified by the amplifier 20, and then supplied to the switch Sw. The output fundamental frequency of the amplifier 20 is f 0 / for the above reason.
Although the N 2, the f 0 / N 2 is equal to the basic division carrier frequency divider 28 in the SS modulator 1,
Spreading code generation circuit 4 for modulation when SS synchronization is established
8 becomes equal to the frequency of the clock signal supplied.

【0050】図7(A) に示したBPF13の出力波形に
おける相関点a及びa′を検出するために、本実施例で
も、角度復調用のPLL41内の誤差増幅器19の出力
を利用しており、この角度復調出力から情報周波数より
も高域の周波数帯に生じる雑音を検出すると、図7(B)
に示したように相関点a,a′では雑音電圧が小さく、
非相関部分b,b′で雑音電圧が大きくなることを利用
して、第1実施例2a同様スイッチSwの切換え動作を行
なっている。これにより制御信号は受信電界強度により
変動することなく安定的に検出され、この制御信号によ
るスイッチSwの端子χよりyへの切換えで、PNG49
に供給されるクロック信号が変調時のクロック信号と等
価なものとなるので、PNG49から出力される拡散符
号はスイッチSwの切換え時にρ(t) からP(t)に変わる。
In order to detect the correlation points a and a'in the output waveform of the BPF 13 shown in FIG. 7A, the output of the error amplifier 19 in the angle demodulating PLL 41 is also used in this embodiment. , When the noise generated in the frequency band higher than the information frequency is detected from this angle demodulation output, FIG.
As shown in, the noise voltage is small at the correlation points a and a ′,
The switching operation of the switch Sw is performed similarly to the first embodiment 2a by utilizing the fact that the noise voltage becomes large in the uncorrelated portions b and b '. As a result, the control signal is stably detected without fluctuating due to the strength of the received electric field, and by switching from the terminal χ of the switch Sw to y by this control signal, the PNG 49
Since the clock signal supplied to the switch is equivalent to the clock signal at the time of modulation, the spreading code output from the PNG 49 changes from ρ (t) to P (t) when the switch Sw is switched.

【0051】かかる拡散符号P(t)はLPF29を介して
ミキサー9に供給され、ここで前記逓倍器33からの逓
倍局発信号E0 *cosωtと乗算された後、逆拡散用の乗
算器8に供給されて逆拡散が行われ、fI (t) =(E*
0 /2)sin{ωi t+(Δf/fm)*sinpt}なる中間周波
に変換された角度変調波(中間周波信号)となり、更に
PLL41で角度復調が行なわれた後、LPF30を介
して出力端子Out2より復調された情報S'(t) が出力され
る。
The spread code P (t) is supplied to the mixer 9 via the LPF 29, where it is multiplied by the multiplied local oscillation signal E 0 * cosωt from the multiplier 33 and then the multiplier 8 for despreading. And despreading is performed, and f I (t) = (E *
E 0/2) sin {ω i t + (Δf / fm) * sinpt} becomes converted to an intermediate frequency angle modulated wave (intermediate frequency signal), and then made further angle demodulation by PLL41, via the LPF30 Then, the demodulated information S '(t) is output from the output terminal Out2.

【0052】なお、以上説明した第3実施例の構成にお
いて、逓倍器33の逓倍数をN2 の代りにN1 とし、且
つ分周器25の分周数を 1/N1 の代りに 1/N2 とし
ても、ほぼ同様の結果が得られる。その場合、局部発振
器58は、前記第1,第2実施例装置2a,2bにおけ
る発振周波数よりもN1 で除した分だけ低い周波数を発
振するよう構成されることは言うまでもない。
In the configuration of the third embodiment described above, the multiplication number of the frequency multiplier 33 is N 1 instead of N 2 , and the frequency division number of the frequency divider 25 is 1 / N 1 instead. With / N 2 , almost the same result is obtained. In that case, it goes without saying that the local oscillator 58 is configured to oscillate at a frequency lower than the oscillation frequency in the first and second embodiment devices 2a and 2b by the amount divided by N 1 .

【0053】次に、本発明のSS復調装置の第4実施例
について、図10のブロック構成図と共に説明する。こ
の図10においても、図6,図8,図9に夫々示した第
1〜第3実施例装置2a〜2cと同一構成要素には同一
符号を付して、その詳細な説明を省略する。第4実施例
装置2dの回路構成は、図面を比較すれば明らかなよう
に、図9の第3実施例装置2cに最も類似しており、相
違点としては、局部発振器58を第1,第2実施例装置
2a,2bにおける発振周波数よりもN1 で除した分だ
け低い周波数を発振するよう構成し、この局部発振器5
8からの局発信号の周波数fL を逓倍する逓倍器33の
逓倍数を、N2 の代りにN1 としている。 これによ
り、分周器26の分周数が 1/N1 2 から 1/N1
なり、第3実施例装置2cで使用した分周器25は不要
となるので、回路構成が少し簡素化される。なお、かか
る第4実施例装置2dの同期捕捉動作や復調動作は、上
記第3実施例装置2c等と基本的には変らないので、そ
の詳細な説明は省略する。
Next, a fourth embodiment of the SS demodulation device of the present invention will be described with reference to the block diagram of FIG. Also in FIG. 10, the same components as those of the first to third embodiment devices 2a to 2c shown in FIGS. 6, 8 and 9 are designated by the same reference numerals, and detailed description thereof will be omitted. The circuit configuration of the device 2d of the fourth embodiment is most similar to that of the device 2c of the third embodiment of FIG. 9 as is clear from a comparison of the drawings. The local oscillator 5 is configured so as to oscillate at a frequency lower than the oscillation frequency in the devices 2a and 2b by N 1 according to the second embodiment.
The frequency of the frequency multiplier 33 for multiplying the frequency f L of the local oscillation signal from 8 is N 1 instead of N 2 . As a result, the frequency division number of the frequency divider 26 is changed from 1 / N 1 N 2 to 1 / N 1 and the frequency divider 25 used in the device 2c of the third embodiment is not required, so that the circuit configuration is slightly simplified. To be done. Since the synchronization acquisition operation and the demodulation operation of the fourth embodiment device 2d are basically the same as those of the third embodiment device 2c and the like, detailed description thereof will be omitted.

【0054】なお、以上の第3,第4実施例装置2c,
2dにおいても、EX−OR回路22の代りに乗算器を
用いても良く、これは、前記第1実施例装置2aと同様
の理由による。
The above-described third and fourth embodiment devices 2c,
Also in 2d, a multiplier may be used instead of the EX-OR circuit 22, for the same reason as in the first embodiment device 2a.

【0055】[0055]

【発明の効果】叙上の如く、本発明のSS変調及び/又
は復調装置によれば、角度変調出力信号の周波数を分周
したものを拡散符号生成用のクロック信号とし、且つ角
度変調出力信号の周波数を逓倍して所定のキャリヤ周波
数と周波数偏移を確保する角度変調波として、キャリヤ
周波数と拡散符号用クロック信号とに同期関係を持たせ
て、SS変調及び/又はSS復調を行なっているので、
次のような種々の特長を有する。 SS復調における逆拡散用拡散符号発生用のクロック
信号を、PLL,分周器,EX−OR回路(又は乗算
器),BPF等を用いて比較的容易に生成できる。 同期捕捉後の同期保持を上記角度復調用のPLLで容
易に行うことができ、これにより従来装置では不可欠だ
った同期保持用のDLLが不要となる。 中間周波段には簡単な振幅制限増幅器を使用している
ので、SS受信には必須とされるAGCを不要にできる
等により、SS変調復調が比較的簡単な回路構成で実現
可能となり、簡易な無線装置等へのSS技術の応用が可
能となる。
As described above, according to the SS modulation and / or demodulation device of the present invention, the frequency-divided frequency of the angle-modulated output signal is used as the clock signal for generating the spread code, and the angle-modulated output signal is used. Is multiplied to obtain a predetermined carrier frequency and frequency deviation, and the carrier frequency and the spread code clock signal are synchronized with each other to perform SS modulation and / or SS demodulation. So
It has the following various features. A clock signal for generating a spread code for despreading in SS demodulation can be generated relatively easily using a PLL, a frequency divider, an EX-OR circuit (or a multiplier), a BPF, and the like. The synchronization holding after the synchronization acquisition can be easily performed by the PLL for the angle demodulation, which eliminates the need for the DLL for the synchronization holding, which is indispensable in the conventional device. Since a simple amplitude limiting amplifier is used in the intermediate frequency stage, the AGC required for SS reception can be eliminated, and SS modulation and demodulation can be realized with a relatively simple circuit configuration. The SS technology can be applied to wireless devices and the like.

【0056】復調用拡散符号生成用のクロック信号の
生成手段におけるEX−OR回路を、乗算器で代用すれ
ば非常に高い周波数の乗算処理もでき、VCO出力や局
発信号はアナログ信号の形態でも構わないので、2値化
も不要となる。 復調用拡散符号生成用のクロック信号の生成手段を、
局部発振信号と電圧制御発振信号の両信号を 1/(N1
2 )に分周したもの同士を乗算又は排他的論理和演算
し、この演算出力の中からクロック信号生成に必要な周
波数成分のみを抽出するよう構成すると、キャリア周波
数が比較的に低い場合に有利である。
If the EX-OR circuit in the clock signal generating means for demodulating the spread code for demodulation is replaced with a multiplier, a very high frequency multiplication process can be performed, and the VCO output and the local oscillator signal can be in the form of analog signals. Since it does not matter, binarization is not necessary. A means for generating a clock signal for demodulation spread code generation,
Both the local oscillation signal and the voltage control oscillation signal are 1 / (N 1 N
It is advantageous when the carrier frequency is relatively low if the frequency division required in 2 ) is multiplied or the exclusive OR operation is performed and only the frequency components necessary for clock signal generation are extracted from this operation output. Is.

【0057】クロック信号の生成手段を、局部発振信
号と電圧制御発振信号とを乗算して、得られた乗算出力
信号の中からクロック信号の生成に必要な周波数成分の
みを抽出し、更に 1/(N1 2 )に分周するよう構成す
れば、使用し得るキャリア周波数の範囲を広くできる。 復調用拡散符号生成用のクロック信号の生成手段を、
局部発振信号を 1/N1又は 1/N2 に分周して得た信
号と、電圧制御発振信号を 1/(N1 2 )に分周して得
た信号との乗算又は排他的論理和演算を行なって、この
演算出力信号の中からクロック信号の生成に必要な周波
数成分のみを通過させるよう構成し、且つ、局部発振信
号出力用の局部発振器を、必要な発振周波数よりもN2
又はN1 で除した分だけ低い周波数を発振するよう構成
し、更にこの局部発振器の出力信号周波数をN2 倍又は
1 倍に逓倍する周波数逓倍器を備えた場合には、キャ
リア周波数が高い場合でも安定なクロック再生ができ
る。
The clock signal generating means multiplies the local oscillation signal by the voltage control oscillation signal, extracts only the frequency component necessary for generating the clock signal from the obtained multiplication output signal, and further 1 / If the frequency is divided into (N 1 N 2 ), the usable carrier frequency range can be widened. A means for generating a clock signal for demodulation spread code generation,
The signal obtained by dividing the local oscillation signal into 1 / N 1 or 1 / N 2 and the signal obtained by dividing the voltage controlled oscillation signal into 1 / (N 1 N 2 ) are multiplied or exclusive A logical OR operation is performed to pass only the frequency component necessary for generating the clock signal from the operation output signal, and the local oscillator for outputting the local oscillation signal is set to have a frequency N higher than the required oscillation frequency. 2
Or configured to oscillate only low frequency amount divided by N 1, further an output signal frequency of the local oscillator when having a frequency multiplier for multiplying the doubled or N 1 × N has a higher carrier frequency Even in the case, stable clock reproduction can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の代表的なSS変調装置のブロック構成
図。
FIG. 1 is a block configuration diagram of a conventional representative SS modulator.

【図2】従来の代表的なSS復調装置のブロック構成
図。
FIG. 2 is a block configuration diagram of a conventional representative SS demodulation device.

【図3】従来のSS復調装置を構成するDLL型同期保
持用信号処理回路のブロック図。
FIG. 3 is a block diagram of a DLL-type synchronization holding signal processing circuit that constitutes a conventional SS demodulation device.

【図4】DLL型同期保持用信号処理回路における同期
保持動作説明用特性図。
FIG. 4 is a characteristic diagram for explaining a sync holding operation in a DLL type sync holding signal processing circuit.

【図5】スライディング相関型同期捕捉動作の説明用相
関特性図。
FIG. 5 is a correlation characteristic diagram for explaining a sliding correlation type synchronous capturing operation.

【図6】本発明のSS変調装置及びSS復調装置(第1
実施例)のブロック構成図。
FIG. 6 is an SS modulator and an SS demodulator of the present invention (first
(Embodiment) FIG.

【図7】本発明のSS変調装置における同期捕捉動作説
明用信号波形図。
FIG. 7 is a signal waveform diagram for explaining synchronization acquisition operation in the SS modulator of the present invention.

【図8】本発明のSS復調装置の第2実施例のブロック
構成図。
FIG. 8 is a block configuration diagram of a second embodiment of the SS demodulation device of the present invention.

【図9】本発明のSS復調装置の第3実施例のブロック
構成図。
FIG. 9 is a block configuration diagram of a third embodiment of the SS demodulation device of the present invention.

【図10】本発明のSS復調装置の第4実施例のブロッ
ク構成図。
FIG. 10 is a block configuration diagram of a fourth embodiment of an SS demodulation device of the present invention.

【符号の説明】[Explanation of symbols]

1…SS変調装置、2a〜2d…SS復調装置、3〜1
0…乗算器、11〜15…帯域濾波器、16〜20…増
幅器、21,24…VCO(電圧制御発振器)、22…
EX−OR(排他的論理和)回路、23,37…ループ
フィルタ、25〜28…分周器、29〜31…低域濾波
器、32…同期捕捉制御回路、33,53…逓倍器、4
1…PLL、48,49…PNG(拡散符号発生器)、
52…角度変調回路、57〜59…局部発振器、A1,
2 …アンテナ、Sw…スイッチ。
1 ... SS modulator, 2a-2d ... SS demodulator, 3-1
0 ... Multiplier, 11-15 ... Bandpass filter, 16-20 ... Amplifier, 21, 24 ... VCO (voltage controlled oscillator), 22 ...
EX-OR (exclusive OR) circuit, 23, 37 ... Loop filter, 25-28 ... Frequency divider, 29-31 ... Low-pass filter, 32 ... Synchronization acquisition control circuit, 33, 53 ... Multiplier, 4
1 ... PLL, 48, 49 ... PNG (spreading code generator),
52 ... Angle modulation circuit, 57-59 ... Local oscillator, A 1, A
2 ... Antenna, Sw ... Switch.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】音声等の情報信号を角度変調する角度変調
手段と、得られた角度変調信号を2以上の自然数N1
る逓倍数で周波数逓倍して逓倍角度変調波を得る周波数
逓倍手段と、上記角度変調信号を2以上の自然数N2
る分周数で分周してクロック信号を得る分周手段と、該
得られたクロック信号を基に拡散符号を発生する拡散符
号発生手段と、該得られた拡散符号で上記逓倍角度変調
波を拡散変調してスペクトル拡散変調波を出力する拡散
変調手段とを備えた、同期型のスペクトル拡散変調装
置。
1. An angle modulation means for angle-modulating an information signal such as voice, and a frequency multiplication means for frequency-multiplying the obtained angle-modulated signal by a multiplication factor of 2 or more natural numbers N 1 to obtain a multiplied angle-modulated wave. Dividing means for obtaining a clock signal by dividing the angle-modulated signal by a dividing number which is a natural number N 2 of 2 or more, and spreading code generating means for generating a spreading code based on the obtained clock signal, A spread spectrum modulator of the synchronous type, comprising: spread spectrum modulation means for spreading and modulating the multiplied angle modulated wave with the obtained spread code to output a spread spectrum modulated wave.
【請求項2】局部発振信号を出力する局部発振器と、該
局部発振信号により復調用拡散符号を中間周波に変換す
る周波数変換手段と、該中間周波に変換された復調用拡
散符号を前記スペクトル拡散変調波に乗算することによ
り逆拡散して角度変調波を得る逆拡散復調手段と、得ら
れた角度変調波を復調して角度復調信号を得る位相同期
ループと、該位相同期ループ内の電圧制御発振器より出
力される電圧制御発振信号と上記局部発振信号とを基に
クロック信号を発生させるクロック信号生成手段と、該
得られたクロック信号を基に上記復調用拡散符号を生成
する復調用拡散符号発生手段と、上記角度復調信号より
同期捕捉用の制御信号を生成してスペクトル拡散復調時
の同期捕捉を行なう同期捕捉手段とを備えた、同期型の
スペクトル拡散復調装置。
2. A local oscillator for outputting a local oscillation signal, frequency conversion means for converting the demodulation spreading code to an intermediate frequency by the local oscillation signal, and the demodulation spreading code converted to the intermediate frequency for the spread spectrum. Despread demodulation means for despreading to obtain an angle modulated wave by multiplying the modulated wave, a phase locked loop for demodulating the obtained angle modulated wave to obtain an angle demodulated signal, and voltage control in the phase locked loop Clock signal generating means for generating a clock signal based on the voltage controlled oscillation signal output from the oscillator and the local oscillation signal, and a demodulation spreading code for generating the demodulation spreading code based on the obtained clock signal Synchronous spread spectrum recovery, which includes a generation means and a synchronization acquisition means for generating a control signal for synchronization acquisition from the angle demodulation signal and performing synchronization acquisition during spread spectrum demodulation. Apparatus.
【請求項3】変調部には、音声等の情報信号を角度変調
する角度変調手段と、得られた角度変調信号を2以上の
自然数N1 で周波数逓倍して逓倍角度変調波を得る周波
数逓倍手段と、上記角度変調信号を2以上の自然数N2
で分周する分周手段と、該分周手段の出力をクロック信
号としてこれを基に拡散符号を生成する拡散符号発生手
段と、該得られた拡散符号で上記逓倍角度変調波を拡散
変調してスペクトル拡散変調波を出力する拡散変調手段
とを備え、 復調部には、局部発振信号を出力する局部発振器と、該
局部発振信号により復調用拡散符号を中間周波に変換す
る周波数変換手段と、該中間周波に変換された拡散符号
を上記スペクトル拡散変調波に乗算することにより逆拡
散して角度変調波を得る逆拡散復調手段と、該得られた
角度変調波を復調して角度復調信号を得る位相同期ルー
プと、該位相同期ループ内の電圧制御発振器より出力さ
れる電圧制御発振信号と上記局部発振信号とを基にクロ
ック信号を発生させるクロック信号生成手段と、該得ら
れたクロック信号を基に上記復調用拡散符号を生成する
復調用拡散符号発生手段と、上記角度復調信号より同期
捕捉用の制御信号を生成してスペクトル拡散復調時の同
期捕捉を行なう同期捕捉手段とを備えて構成した、同期
型のスペクトル拡散変調復調装置。
3. The modulating section, an angle modulating means for angle-modulating an information signal such as voice, and a frequency multiplier for multiplying the obtained angle modulated signal by a natural number N 1 of 2 or more to obtain a multiplied angle modulated wave. Means and a natural number N 2 of 2 or more for the angle modulated signal.
A frequency division means for frequency division, a spreading code generation means for generating a spreading code based on the output of the frequency division means as a clock signal, and a spreading code for the above multiplying angle modulated wave by the obtained spreading code. And a spread spectrum modulation means for outputting a spread spectrum modulated wave, the demodulation section, a local oscillator for outputting a local oscillation signal, a frequency conversion means for converting the spread spectrum code for demodulation to an intermediate frequency by the local oscillation signal, Despreading demodulation means for despreading the spread spectrum modulated wave by multiplying the spread code converted to the intermediate frequency to obtain the angle modulated wave, and demodulating the obtained angle modulated wave to obtain the angle demodulated signal. A phase-locked loop to be obtained, clock signal generation means for generating a clock signal based on the voltage-controlled oscillation signal output from the voltage-controlled oscillator in the phase-locked loop, and the local oscillation signal, and the obtained clock signal. A demodulation spreading code generating means for generating the demodulation spreading code based on a lock signal, and a synchronization acquiring means for generating a synchronization acquisition control signal from the angle demodulation signal to perform synchronization acquisition during spread spectrum demodulation. A synchronous spread spectrum modulation / demodulation device equipped with the same.
【請求項4】復調用拡散符号生成用のクロック信号の生
成手段を、局部発振信号を 1/(N12 )に分周して分
周局部発振信号を得る第1の分周器と、電圧制御発振信
号を1/(N1 2 )に分周して分周電圧制御発振信号を
得る第2の分周器と、該第1及び第2の分周器の両出力
の乗算又は排他的論理和演算を行なう演算手段と、該演
算手段の出力信号の中から,クロック信号の生成に必要
な周波数成分のみを通過させる帯域濾波器とで構成し
た、請求項2に記載のスペクトル拡散復調装置又は請求
項3に記載のスペクトル拡散変調復調装置。
4. A first frequency divider for dividing the local oscillation signal by 1 / (N 1 N 2 ) to obtain a frequency-divided local oscillation signal, by means of a clock signal generating means for generating a spreading code for demodulation. A second frequency divider for dividing the voltage controlled oscillation signal to 1 / (N 1 N 2 ) to obtain a divided voltage controlled oscillation signal, and multiplication of both outputs of the first and second frequency dividers 3. The spectrum according to claim 2, which is composed of arithmetic means for performing an exclusive OR operation and a bandpass filter which passes only a frequency component necessary for generating a clock signal from an output signal of the arithmetic means. The spread spectrum demodulation device or the spread spectrum modulation demodulation device according to claim 3.
【請求項5】復調用拡散符号生成用のクロック信号の生
成手段を、局部発振信号と電圧制御発振信号とを乗算す
る乗算器と、該乗算手段の出力信号の中からクロック信
号の生成に必要な周波数成分のみを通過させる帯域濾波
器と、該帯域濾波器の出力信号を 1/(N1 2 )に分周
する分周器とで構成した、請求項2に記載のスペクトル
拡散復調装置又は請求項3に記載のスペクトル拡散変調
復調装置。
5. A means for generating a clock signal for generating a spread code for demodulation is required for generating a clock signal from a multiplier for multiplying a local oscillation signal and a voltage controlled oscillation signal, and an output signal of the multiplication means. 3. The spread spectrum demodulation device according to claim 2, wherein the spread spectrum demodulation device comprises a bandpass filter which allows passage of only frequency components and a frequency divider which divides an output signal of the bandpass filter into 1 / (N 1 N 2 ). Alternatively, the spread spectrum modulation / demodulation device according to claim 3.
【請求項6】復調用拡散符号生成用のクロック信号の生
成手段を、局部発振信号を 1/N1又は 1/N2 に分周
して分周発振信号を得る第1の分周器と、電圧制御発振
信号を 1/(N1 2 )に分周して分周電圧制御発振信号
を得る第2の分周器と、該第1及び第2の分周器の両出
力信号の乗算又は排他的論理和演算を行なう演算手段
と、該演算手段の出力信号の中からクロック信号の生成
に必要な周波数成分のみを通過させる帯域濾波器とで構
成し、 且つ、局部発振信号出力用の局部発振器を、必要な発振
周波数よりもN2 又はN1 で除した分だけ低い周波数を
発振するよう構成し、更にこの局部発振器の出力信号周
波数をN2 倍又はN1 倍に周波数逓倍して前記周波数変
換手段に供給する周波数逓倍器を備えた、請求項2に記
載のスペクトル拡散復調装置又は請求項3に記載のスペ
クトル拡散変調復調装置。
6. A first frequency divider for obtaining a divided oscillation signal by dividing a local oscillation signal into 1 / N 1 or 1 / N 2 by means of a clock signal generating means for generating a spreading code for demodulation. A second frequency divider for dividing the voltage-controlled oscillation signal to 1 / (N 1 N 2 ) to obtain a divided voltage-controlled oscillation signal, and an output signal of both the first and second frequency dividers. Comprising arithmetic means for performing multiplication or exclusive OR operation, and a bandpass filter for passing only frequency components necessary for generating a clock signal from the output signal of the arithmetic means, and for outputting a local oscillation signal Of the local oscillator is oscillated at a frequency lower than the required oscillation frequency by N 2 or N 1 , and the frequency of the output signal of this local oscillator is multiplied by N 2 or N 1. The spectrum spreader according to claim 2, further comprising a frequency multiplier for supplying the frequency to the frequency conversion means. Regulating device or spread spectrum modulation and demodulation apparatus according to claim 3.
【請求項7】復調用拡散符号生成用のクロック信号の生
成手段を、電圧制御発振信号を 1/N1 に分周して分周
電圧制御発振信号を得る第1の分周器と、この分周器の
出力信号と局部発振信号との乗算又は排他的論理和演算
を行なう演算手段と、該演算手段の出力信号中よりクロ
ック信号の生成に必要な周波数成分のみを通過させる帯
域濾波器と、該帯域濾波器の出力信号を1/N2 に分周
してクロック信号を生成する第2の分周器とで構成し、 且つ、局部発振信号出力用の局部発振器を、必要な発振
周波数よりもN1 で除した分だけ低い周波数を発振する
よう構成し、更にこの局部発振器の出力信号周波数をN
1 倍に周波数逓倍して前記周波数変換手段に供給する周
波数逓倍器を備えた、請求項2に記載のスペクトル拡散
復調装置又は請求項3に記載のスペクトル拡散変調復調
装置。
7. A first frequency divider for obtaining a divided voltage controlled oscillation signal by dividing the voltage controlled oscillation signal into 1 / N 1 by means of a clock signal generating means for generating a spread code for demodulation. Arithmetic means for performing multiplication or exclusive OR operation of the output signal of the frequency divider and the local oscillation signal; and a bandpass filter for passing only the frequency component necessary for generating the clock signal from the output signal of the arithmetic means. A second frequency divider for generating a clock signal by dividing the output signal of the band-pass filter by 1 / N 2 , and a local oscillator for outputting a local oscillation signal having a required oscillation frequency. It is configured to oscillate a frequency that is lower than N 1 by N 1 , and the output signal frequency of this local oscillator is N
The spread spectrum demodulation device according to claim 2 or the spread spectrum modulation and demodulation device according to claim 3, further comprising a frequency multiplier that frequency-multiplies by a factor of 1 and supplies it to the frequency conversion means.
【請求項8】復調用拡散符号生成用のクロック信号の周
波数よりも僅かに異なる周波数の同期捕捉用信号を発生
する同期捕捉用信号発生手段と、同期捕捉が成立した際
には該同期捕捉用信号発生手段から前記クロック信号の
生成手段に切換えて出力するスイッチ手段とを更に備え
た、請求項2又は請求項4乃至請求項7の内いずれか1
項に記載の同期型スペクトル拡散復調装置もしくは請求
項3に記載のスペクトル拡散変調復調装置。
8. A synchronization acquisition signal generating means for generating a synchronization acquisition signal having a frequency slightly different from the frequency of the clock signal for generating the spread code for demodulation, and the synchronization acquisition signal when the synchronization acquisition is established. 8. A switch means for switching from a signal generating means to a generating means for the clock signal and outputting the clock signal, further comprising any one of claims 2 or 4 to 7.
4. The spread spectrum demodulation device according to claim 3 or the spread spectrum modulation and demodulation device according to claim 3.
【請求項9】前記同期捕捉手段として、位相同期ループ
で復調される角度復調出力から前記情報信号の周波数帯
域より高い周波数帯域を有する雑音成分を検出して相関
点と非相関部分の識別を行い、識別結果を制御信号に変
換して上記スイッチ手段を切換えることにより同期捕捉
を行うよう構成した、請求項2又は請求項4乃至請求項
8の内いずれか1項に記載の同期型スペクトル拡散復調
装置もしくは請求項3に記載のスペクトル拡散変調復調
装置。
9. The synchronization acquisition means detects a noise component having a frequency band higher than the frequency band of the information signal from an angle demodulation output demodulated in a phase locked loop to identify a correlation point and a non-correlation part. 9. The synchronous spread spectrum demodulation according to any one of claims 2 or 4 to 8, wherein the identification result is converted into a control signal and the switching means is switched to perform synchronization acquisition. An apparatus or a spread spectrum modulation / demodulation apparatus according to claim 3.
JP36098092A 1992-12-28 1992-12-28 Spread spectrum modulation and / or demodulation device Expired - Lifetime JP2682363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36098092A JP2682363B2 (en) 1992-12-28 1992-12-28 Spread spectrum modulation and / or demodulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36098092A JP2682363B2 (en) 1992-12-28 1992-12-28 Spread spectrum modulation and / or demodulation device

Publications (2)

Publication Number Publication Date
JPH06204971A true JPH06204971A (en) 1994-07-22
JP2682363B2 JP2682363B2 (en) 1997-11-26

Family

ID=18471695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36098092A Expired - Lifetime JP2682363B2 (en) 1992-12-28 1992-12-28 Spread spectrum modulation and / or demodulation device

Country Status (1)

Country Link
JP (1) JP2682363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035110A1 (en) * 1998-12-09 2000-06-15 Tsubochi Kazuo Code division multiplex communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193745A (en) * 1984-10-12 1986-05-12 Matsushita Electric Ind Co Ltd Spread spectrum transceiver
JPS6193744A (en) * 1984-10-12 1986-05-12 Matsushita Electric Ind Co Ltd Spread spectrum transmitter
JPH0247940A (en) * 1988-08-09 1990-02-16 Mitsubishi Electric Corp Direct frequency spread synchronizing system
JPH0272731A (en) * 1988-09-07 1990-03-13 Nippon Soken Inc Spread spectrum communication equipment
JPH04265030A (en) * 1991-02-20 1992-09-21 Victor Co Of Japan Ltd Spread spectrum modulating equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193745A (en) * 1984-10-12 1986-05-12 Matsushita Electric Ind Co Ltd Spread spectrum transceiver
JPS6193744A (en) * 1984-10-12 1986-05-12 Matsushita Electric Ind Co Ltd Spread spectrum transmitter
JPH0247940A (en) * 1988-08-09 1990-02-16 Mitsubishi Electric Corp Direct frequency spread synchronizing system
JPH0272731A (en) * 1988-09-07 1990-03-13 Nippon Soken Inc Spread spectrum communication equipment
JPH04265030A (en) * 1991-02-20 1992-09-21 Victor Co Of Japan Ltd Spread spectrum modulating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035110A1 (en) * 1998-12-09 2000-06-15 Tsubochi Kazuo Code division multiplex communication method
US6865174B1 (en) 1998-12-09 2005-03-08 Kazuo Tsubouchi Code division multiple access communication system

Also Published As

Publication number Publication date
JP2682363B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US5301206A (en) Spread spectrum communication system
JPH069348B2 (en) Spread spectrum communication system
JPH0542863B2 (en)
JPH06204971A (en) Spread spectrum modulation and/or demodulation device
JP2591398B2 (en) Spread spectrum wireless communication equipment
JP2591401B2 (en) Spread spectrum wireless communication equipment
JP2650556B2 (en) Synchronous spread spectrum modulation demodulator
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator
JPH08307396A (en) Ss type radio equipment
JP2650550B2 (en) Synchronous spread spectrum modulated wave demodulator
JPS60119156A (en) Msk rectangular synchronization detecting circuit
JP3368936B2 (en) Direct conversion FSK receiver
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JPH07177057A (en) Spread spectrum modulator and/or demodulator
JPS60171839A (en) Space diversity
JPH1188290A (en) Spread spectrum communication system
JP3396047B2 (en) Receiver
JP2650572B2 (en) Demodulator in spread spectrum system
JPS61177054A (en) Receiving circuit of phase modulating signal
JPS60218952A (en) Automatic frequency control system
JPH05244117A (en) Multichannel type spread spectrum modem
JPH09233044A (en) Radio communication equipment
JPH05207078A (en) Msk demodulation circuit
JPS60200656A (en) Automatic frequency control system
JPH0396036A (en) Fsk demodulation circuit