JPH06177089A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06177089A
JPH06177089A JP4325168A JP32516892A JPH06177089A JP H06177089 A JPH06177089 A JP H06177089A JP 4325168 A JP4325168 A JP 4325168A JP 32516892 A JP32516892 A JP 32516892A JP H06177089 A JPH06177089 A JP H06177089A
Authority
JP
Japan
Prior art keywords
film
gas
pattern
etching
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4325168A
Other languages
Japanese (ja)
Inventor
Masaya Kobayashi
雅哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4325168A priority Critical patent/JPH06177089A/en
Publication of JPH06177089A publication Critical patent/JPH06177089A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a fine pattern as desired by preventing etching of an organic polymer film of a mask in a pattern sidewall direction in a method for forming the pattern in a process for manufacturing a semiconductor device which forms a pattern by etching using the film as the mask. CONSTITUTION:A pattern of organic polymer films 3a, 3b, 3c is formed on a film 2 to be processed formed on a base film 1. It is exposed with a plasma generated from gas mixed with gas containing Si and O2, and SiO2 films 4a, 4b, 4c, 4d, 4e, 4f are deposited only on the sidewalls of the films 3a, 3b, 3c. Thereafter, the pattern of the films 2a, 2b, 2c is formed by conducting a predetermined dry etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体装置の製造方
法,特に半導体装置製造プロセスにおける微細パターン
の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a fine pattern forming method in a semiconductor device manufacturing process.

【0002】半導体装置の電極,配線などの微細パター
ンを形成する場合,通常,感光性の有機ポリマーを基板
に塗布し,フォトリソグラフィ技術により,露光,現像
して,有機ポリマー膜の微細パターンを形成し,それを
マスクとして,導電性膜や絶縁膜をエッチング処理し
て,微細パターンの形成を行う。
When a fine pattern such as an electrode or wiring of a semiconductor device is formed, a substrate is usually coated with a photosensitive organic polymer and exposed and developed by a photolithography technique to form a fine pattern of an organic polymer film. Then, the conductive film and the insulating film are etched using the mask as a mask to form a fine pattern.

【0003】現在,パターンの寸法制御性などの点で,
プラズマエッチングが主流である。プラズマエッチング
のマスクに有機ポリマーを用いると,プラズマ中のイオ
ンや化学的に活性なエッチング種に曝されるため,マス
クである有機ポリマーもエッチングされてしまう。特
に,パターンの側壁方向にエッチングされると,設計寸
法通りのエッチングができなくなってしまう。
Currently, in terms of pattern size controllability,
Plasma etching is the mainstream. When an organic polymer is used as a mask for plasma etching, the organic polymer that is the mask is also etched because it is exposed to ions in plasma and chemically active etching species. In particular, if etching is performed in the side wall direction of the pattern, it becomes impossible to perform etching as designed.

【0004】そこで,マスクである有機ポリマーのパタ
ーンの側壁方向のエッチングを阻止して,設計寸法通り
の微細パターンを形成する技術が求められている。
Therefore, there is a demand for a technique for preventing the etching of the pattern of the organic polymer, which is the mask, in the direction of the side wall to form a fine pattern as designed.

【0005】[0005]

【従来の技術】従来,マスクの耐ドライエッチング性を
高めるために,様々な方法が提案されている。
2. Description of the Related Art Conventionally, various methods have been proposed to improve the dry etching resistance of a mask.

【0006】有機ポリマーをマスクに用いる場合,耐ド
ライエッチング性を高める方法として,UV(紫外線)
キュアにより,有機ポリマーの表面を硬化させる方法が
提案されている。
When an organic polymer is used as a mask, UV (ultraviolet) is used as a method for improving the dry etching resistance.
A method of curing the surface of an organic polymer by curing has been proposed.

【0007】また,マスクそのものに,SiO2 膜を用
いる方法も提案されている。
A method using a SiO 2 film for the mask itself has also been proposed.

【0008】[0008]

【発明が解決しようとする課題】UVキュアにより,有
機ポリマーの表面を硬化させる方法には,UVキュアで
は,完全に有機ポリマーのエッチングを阻止することが
できない,という問題があった。
The method of curing the surface of the organic polymer by UV curing has a problem that the UV curing cannot completely prevent the etching of the organic polymer.

【0009】マスクそのものに,SiO2 膜を用いる方
法は,耐ドライエッチング性の点ではかなり良いが,マ
スクを除去するのにさらに別のエッチング工程が必要で
あり,工程数が増加してしまう,という問題があった。
The method of using a SiO 2 film for the mask itself is quite good in terms of dry etching resistance, but another etching step is required to remove the mask, and the number of steps increases. There was a problem.

【0010】本発明は,上記の問題点を解決して,マス
クである有機ポリマー膜のパターン側壁方向のエッチン
グを阻止して,設計寸法通りの微細パターンが得られる
ようにした,半導体装置の製造方法,特に半導体装置製
造プロセスにおける微細パターンの形成方法を提供する
ことを目的とする。
The present invention solves the above problems and prevents the etching of the organic polymer film, which is a mask, in the direction of the pattern side wall so that a fine pattern according to the design dimension can be obtained. An object of the present invention is to provide a method, particularly a method for forming a fine pattern in a semiconductor device manufacturing process.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに,本発明は,次のように構成する。 (1)有機ポリマー膜をマスクに用いたエッチング処理
によりパターン形成を行う,半導体装置製造プロセスに
おける微細パターンの形成方法であって,基板上に形成
された被処理膜上に有機ポリマー膜のパターンを形成し
た後,該基板を,Siを含有するガスとO2 とを混合し
たガスから生成されるプラズマに曝し,前記有機ポリマ
ー膜の側壁のみにシリコン酸化膜を堆積させ,その後,
所定のドライエッチング処理を行って,被処理膜のパタ
ーンを形成することを含むように構成する。
In order to achieve the above object, the present invention is configured as follows. (1) A method for forming a fine pattern in a semiconductor device manufacturing process, wherein a pattern is formed by etching using an organic polymer film as a mask, wherein the pattern of the organic polymer film is formed on a film to be processed formed on a substrate. After formation, the substrate is exposed to plasma generated from a gas containing Si-containing gas and O 2 to deposit a silicon oxide film only on the sidewalls of the organic polymer film, and thereafter,
A predetermined dry etching process is performed to form a pattern of the film to be processed.

【0012】(2)前記(1)において,前記基板を曝
すプラズマを,Siを含有するガスとO2 とを混合した
ガスに,さらに,フッ素,臭素,および塩素のうちの一
つを含有するガスを混合したガスから生成するように構
成する。
(2) In the above (1), the plasma exposing the substrate is mixed with a gas containing Si and O 2, and further contains one of fluorine, bromine and chlorine. The gas is configured to be generated from the mixed gas.

【0013】(3)前記(1)または(2)において,
前記基板を曝すプラズマを,Siを含有するガスとO2
ガスとを混合したガスに,さらに,He,Ne,Ar等
の不活性ガスを混合したガスから生成するように構成す
る。
(3) In the above (1) or (2),
A plasma containing the substrate is exposed to a gas containing Si and O 2
The gas mixed with the gas is further mixed with an inert gas such as He, Ne and Ar to generate the gas.

【0014】(4)前記(1)〜(3)のうちの1つに
おいて,所定のドライエッチング処理を行って,被処理
膜のパターンを形成した後,後工程として,前記基板に
対して,フッ素を含んだガスによるプラズマを用いる処
理を行うように構成する。
(4) In one of the above (1) to (3), after performing a predetermined dry etching process to form a pattern of a film to be processed, as a post process, with respect to the substrate, The treatment is performed using plasma with a gas containing fluorine.

【0015】[0015]

【作用】図1は,本発明の原理説明図である。以下,図
1を用いて,本発明の原理を説明する。
FIG. 1 is a diagram for explaining the principle of the present invention. Hereinafter, the principle of the present invention will be described with reference to FIG.

【0016】図1(a)に示すように,下地膜1上に形
成された被処理膜2の表面に有機ポリマー膜3を形成し
た後,フォトリソグラフィ技術によって,有機ポリマー
膜のパターン3a,3b,3cを形成する。
As shown in FIG. 1A, after the organic polymer film 3 is formed on the surface of the film 2 to be processed formed on the base film 1, the organic polymer film patterns 3a and 3b are formed by photolithography. , 3c are formed.

【0017】これを,Siを含有するガスとO2 とを混
合したガスから生成するプラズマに曝す。これにより,
プラズマ中の反応により,SiO2 を多く含んだガラス
状の膜が基板表面に堆積し,有機ポリマー膜3a,3
b,3cの表面がSiO2 でコーティングされる。
This is exposed to plasma generated from a gas in which a gas containing Si and O 2 are mixed. By this,
Due to the reaction in the plasma, a glassy film containing a large amount of SiO 2 is deposited on the substrate surface, and the organic polymer films 3a, 3
The surfaces of b and 3c are coated with SiO 2 .

【0018】このとき,ガス比,処理室内の圧力,およ
び基板に印加する高周波電力を制御することにより,図
1(b)に示すように,有機ポリマー膜3a,3b,3
cの側壁のみに選択的にSiO2 膜4a,4b,4c,
4d,4e,4fが堆積し,有機ポリマー膜3a,3
b,3cの水平面上および被処理膜2上には,SiO2
膜がほとんど堆積しないようにすることができる。
At this time, by controlling the gas ratio, the pressure in the processing chamber, and the high frequency power applied to the substrate, as shown in FIG. 1 (b), the organic polymer films 3a, 3b, 3 are formed.
SiO 2 films 4a, 4b, 4c, selectively on only the side wall of c
4d, 4e, 4f are deposited, and organic polymer films 3a, 3
SiO 2 is formed on the horizontal planes b and 3c and the film 2 to be processed.
The film can be made to deposit very little.

【0019】これにより,マスク開口部のエッチング面
には,SiO2 膜が堆積せず,また,有機ポリマー膜3
a,3b,3cの水平の表面にも,SiO2 膜が堆積し
ない。
As a result, the SiO 2 film is not deposited on the etching surface of the mask opening, and the organic polymer film 3 is not deposited.
No SiO 2 film is deposited on the horizontal surfaces of a, 3b, and 3c.

【0020】その結果,その後の被処理膜2エッチング
時には,エッチング遅れが無く,有機ポリマー膜3a,
3b,3cの側壁に形成されたSiO2 膜4a,4b,
4c,4d,4e,4fが保護膜となり,有機ポリマー
膜3a,3b,3cが側壁方向にエッチングされるのを
阻止する。
As a result, there is no etching delay during the subsequent etching of the processed film 2, and the organic polymer film 3a,
SiO 2 films 4a, 4b formed on the side walls of 3b, 3c,
4c, 4d, 4e and 4f serve as protective films and prevent the organic polymer films 3a, 3b and 3c from being etched in the side wall direction.

【0021】有機ポリマー膜3a,3b,3cの上面部
は,被処理膜2エッチング時にエッチングされるが,エ
ッチングされた有機ポリマーは,エッチングされた被処
理膜2の側壁に堆積し,被処理膜2がサイドエッチング
されて,アンダーカット形状となるのを防止する,とい
う効果を奏する。
The upper surfaces of the organic polymer films 3a, 3b, 3c are etched when the film 2 to be processed is etched, but the etched organic polymer is deposited on the side walls of the film 2 to be processed, and the film to be processed is deposited. It is possible to prevent the undercut shape from being side-etched on the side surface 2.

【0022】したがって,有機ポリマー膜3a,3b,
3cの上面部は,エッチングされるのが良く,SiO2
膜4a,4b,4c,4d,4e,4fは,有機ポリマ
ー膜3a,3b,3cの側壁にのみ堆積させるのが良
い。
Therefore, the organic polymer films 3a, 3b,
The upper surface of 3c is preferably etched, and SiO 2
The films 4a, 4b, 4c, 4d, 4e and 4f are preferably deposited only on the side walls of the organic polymer films 3a, 3b and 3c.

【0023】被処理膜2のエッチング終了時の状態を図
1(c)に示す。同図から,本発明によれば,被処理膜
2a,2b,2cがアンダーカットされることなく,き
れいな垂直形状にエッチングされる。したがって,被処
理膜2を設計寸法通りのパターン形状2a,2b,2c
にエッチング形成することが可能になる。
FIG. 1C shows a state after the etching of the film 2 to be processed is completed. From the figure, according to the present invention, the processed films 2a, 2b, 2c are etched into a clean vertical shape without being undercut. Therefore, the pattern 2a, 2b, 2c of the film 2 to be processed according to the design dimension
It becomes possible to form a film by etching.

【0024】有機ポリマー膜3a,3b,3cの側壁に
SiO2 膜4a,4b,4c,4d,4e,4fを堆積
する装置は,通常の平行平板型RIE装置やECRプラ
ズマエッチング装置を用いればよく,被処理膜2のエッ
チング処理を行う直前に,同じ装置内で処理ガスを変え
ることにより行うことのできるプロセスであり,非常に
簡易な工程で済む。
An apparatus for depositing the SiO 2 films 4a, 4b, 4c, 4d, 4e, 4f on the side walls of the organic polymer films 3a, 3b, 3c may be a normal parallel plate type RIE apparatus or an ECR plasma etching apparatus. This is a process that can be performed by changing the processing gas in the same device immediately before the etching process of the film to be processed 2, and a very simple process is required.

【0025】エッチング処理後のレジスト剥離工程は,
通常のO2 ガスによるプラズマアッシングプロセスやO
2 ガスによるプラズマの下流でアッシングを行う,ダウ
ンフロータイプのアッシング,オゾンアッシング等で
は,有機ポリマー膜3a,3b,3cの剥離はできる
が,側壁を保護しているSiO2 膜4a,4b,4c,
4d,4e,4fは,エッチング除去できないため,S
iO2 膜4a,4b,4c,4d,4e,4fが残さと
なってしまう。
The resist stripping step after the etching treatment is
Ordinary O 2 gas plasma ashing process and O
In the case of down-flow type ashing, ozone ashing, etc., in which ashing is performed downstream of plasma by 2 gases, the organic polymer films 3a, 3b, 3c can be peeled off, but the SiO 2 films 4a, 4b, 4c that protect the side walls. ,
Since 4d, 4e, and 4f cannot be removed by etching, S
The iO 2 films 4a, 4b, 4c, 4d, 4e, 4f are left behind.

【0026】したがって,その後の工程で,SiO2
エッチングできるフッ素を含んだガスのプラズマ処理に
よりSiO2 を剥離する工程を加えるか,同様に,Si
2をエッチングするHF溶液での処理を加えれば良
い。
[0026] Thus, in a subsequent step, or adding a step of peeling the SiO 2 by plasma treatment gas containing fluorine can etch the SiO 2, similarly, Si
A treatment with an HF solution for etching O 2 may be added.

【0027】[0027]

【実施例】図2は,実施例に用いたカソード結合型RI
E装置の概略図である。図中,11はSiウェハ,12
は静電チャック,13はカソード電極,14はDC電
源,15はRF電源,16は処理室,17は絶縁物,1
8はアノード電極,19はエッチングガス供給口であ
る。
EXAMPLE FIG. 2 shows the cathode-coupled RI used in the example.
It is the schematic of the E apparatus. In the figure, 11 is a Si wafer, 12
Is an electrostatic chuck, 13 is a cathode electrode, 14 is a DC power supply, 15 is an RF power supply, 16 is a processing chamber, 17 is an insulator, 1
Reference numeral 8 is an anode electrode, and 19 is an etching gas supply port.

【0028】図2に示すRIE装置では,基板側のカソ
ード電極13に,RF電源15から13.56MHzの
高周波電力が供給されることによりプラズマが生成さ
れ,Siウェハ11に所定の処理が行われる。
In the RIE apparatus shown in FIG. 2, plasma is generated by supplying high-frequency power of 13.56 MHz from the RF power source 15 to the cathode electrode 13 on the substrate side, and the Si wafer 11 is subjected to predetermined processing. .

【0029】図3は,実施例および比較例に用いたサン
プルである。以下,このサンプルについて説明する。S
i基板21上に,膜厚1000ÅのSiO2 膜22を堆
積した後,被処理膜として膜厚4000ÅのAl膜23
を堆積した。Al膜23上に,ポジ型のフォトレジスト
(東京応化製,OFPR−800)24を塗布した後,
ベークし,フォトリソグラフィ技術によって露光,現像
を行い,幅1μmのラインパターン24a,24b,2
4cを形成した。以上のようにして,図3に示すサンプ
ルを作製した。
FIG. 3 shows samples used in Examples and Comparative Examples. The sample will be described below. S
After depositing a SiO 2 film 22 having a film thickness of 1000 Å on the i substrate 21, an Al film 23 having a film thickness of 4000 Å is formed as a film to be processed.
Was deposited. After applying a positive photoresist (Tokyo Ohka, OFPR-800) 24 on the Al film 23,
After baking, exposing and developing by photolithography technique, line patterns 24a, 24b, 2 having a width of 1 μm are formed.
4c was formed. The sample shown in FIG. 3 was produced as described above.

【0030】〔実施例1〕図3に示すサンプルを,図2
に示すカソード結合型RIE装置に入れ,本発明による
プラズマ処理を行った。処理条件は,以下に示す通りで
ある。
[Example 1] The sample shown in FIG.
It was placed in the cathode-coupled RIE device shown in FIG. 1 and plasma-treated according to the present invention. The processing conditions are as shown below.

【0031】SiCl4 流量 :10sccm O2 流量 :2sccm Cl2 流量 :10sccm He流量 :80sccm RFパワー密度 :0.6W/cm2 圧力 :0.1Torr 処理時間 :30秒間 以上の条件で,図3に示すサンプルに対して本発明によ
るプラズマ処理を行って,フォトレジスト24a,24
b,24cの側壁のみにSiO2 膜を堆積させた後,処
理ガスを以下に示すように変え,Al膜23のエッチン
グ処理を行った。
SiCl 4 flow rate: 10 sccm O 2 flow rate: 2 sccm Cl 2 flow rate: 10 sccm He flow rate: 80 sccm RF power density: 0.6 W / cm 2 pressure: 0.1 Torr processing time: 30 seconds Under the above conditions, as shown in FIG. Plasma treatment according to the present invention was performed on the samples shown to form photoresists 24a, 24
After depositing the SiO 2 film only on the side walls of b and 24c, the processing gas was changed as follows, and the Al film 23 was etched.

【0032】SiCl4 流量 :100sccm BCl3 流量 :40sccm Cl2 流量 :20sccm エッチング後,Al膜の異方性形状が得られ,寸法シフ
ト量は+90Åと少なく,設計寸法通りのエッチングが
できた。
SiCl 4 flow rate: 100 sccm BCl 3 flow rate: 40 sccm Cl 2 flow rate: 20 sccm After etching, an anisotropic shape of the Al film was obtained, and the dimension shift amount was as small as + 90Å, and etching was performed as designed.

【0033】〔実施例2〕図3に示すサンプルを,図2
に示すカソード結合型RIE装置に入れ,本発明による
プラズマ処理を行った。処理条件は,以下に示す通りで
ある。
[Embodiment 2] The sample shown in FIG.
It was placed in the cathode-coupled RIE device shown in FIG. 1 and plasma-treated according to the present invention. The processing conditions are as shown below.

【0034】SiBr4 流量 :10sccm O2 流量 :2sccm HBr流量 :10sccm He流量 :80sccm RFパワー密度 :0.6W/cm2 圧力 :0.1Torr 処理時間 :30秒間 以上の条件で,図3に示すサンプルに対して本発明によ
るプラズマ処理を行って,フォトレジスト24a,24
b,24cの側壁のみにSiO2 膜を堆積させた後,処
理ガスを以下に示すように変え,Al膜23のエッチン
グ処理を行った。
SiBr 4 flow rate: 10 sccm O 2 flow rate: 2 sccm HBr flow rate: 10 sccm He flow rate: 80 sccm RF power density: 0.6 W / cm 2 pressure: 0.1 Torr processing time: 30 seconds As shown in FIG. The plasma treatment according to the present invention is performed on the sample to remove the photoresists 24a and 24a.
After depositing the SiO 2 film only on the side walls of b and 24c, the processing gas was changed as follows, and the Al film 23 was etched.

【0035】SiCl4 流量 :100sccm BCl3 流量 :40sccm Cl2 流量 :20sccm エッチング後,Al膜の異方性形状が得られ,寸法シフ
ト量は+130Åと少なく,設計寸法通りのエッチング
ができた。
SiCl 4 flow rate: 100 sccm BCl 3 flow rate: 40 sccm Cl 2 flow rate: 20 sccm After etching, an anisotropic shape of the Al film was obtained, and the dimension shift amount was as small as + 130Å, and etching was performed as designed.

【0036】〔実施例3〕実施例1および実施例2のエ
ッチング処理後のサンプルを,ダウンフロータイプのア
ッシング装置に入れ,フォトレジストのアッシングを行
った。
[Embodiment 3] The samples after the etching treatments of Embodiments 1 and 2 were put into a downflow type ashing apparatus to ash the photoresist.

【0037】図4に,ダウンフロータイプのアッシング
装置の例を示す。図中,31は発光室,32はマイクロ
波,33は石英窓,34はガス導入口,35はプラズ
マ,36はシャワーヘッド,37はステージ,38はS
iウェハである。
FIG. 4 shows an example of a downflow type ashing device. In the figure, 31 is a light emitting chamber, 32 is a microwave, 33 is a quartz window, 34 is a gas inlet, 35 is plasma, 36 is a shower head, 37 is a stage, and 38 is S.
It is an i-wafer.

【0038】また,図中のdは,プラズマ35−Siウ
ェハ38間の距離であり,本実施例および,後述する実
施例4および比較例2で用いた装置の場合,d=70m
mであった。
Further, d in the figure is the distance between the plasma 35 and the Si wafer 38, and in the case of the apparatus used in this example and in Example 4 and Comparative Example 2 described later, d = 70 m.
It was m.

【0039】以下に本実施例のアッシング条件を示す。 O2 流量 :900sccm N2 流量 :100sccm マイクロ波パワー :1.5kW 圧力 :1.0Torr ウェハ温度 :200℃ 処理時間 :1分間 以上の条件でエッチング処理後のサンプルのアッシング
を行った後,サンプルをアッシング装置から取り出し,
さらに,2%のHF溶液に10秒間曝し,純粋洗浄し,
乾燥させた。
The ashing conditions of this embodiment are shown below. O 2 flow rate: 900 sccm N 2 flow rate: 100 sccm Microwave power: 1.5 kW Pressure: 1.0 Torr Wafer temperature: 200 ° C. Processing time: 1 minute After the ashing of the sample after the etching process under the above conditions, the sample was removed. Take it out of the ashing device,
Furthermore, it was exposed to a 2% HF solution for 10 seconds, washed purely,
Dried.

【0040】その結果,残さも無く,設計寸法通りのA
lパターンが得られた。 〔実施例4〕実施例1および実施例2のエッチング処理
後のサンプルを,図4に示すダウンフロータイプのアッ
シング装置に入れ,フォトレジストのアッシングを行っ
た。
As a result, there is no residue and the A
1 pattern was obtained. [Embodiment 4] The samples after the etching treatments of Embodiments 1 and 2 were put into the downflow type ashing apparatus shown in FIG. 4 to ash the photoresist.

【0041】以下に本実施例のアッシング条件を示す。 O2 流量 :900sccm N2 流量 :100sccm マイクロ波パワー :1.5kW 圧力 :1.0Torr ウェハ温度 :200℃ 処理時間 :1分間 以上の条件でエッチング処理後のサンプルのアッシング
を行った後,処理ガスを変えて,次の条件でプラズマ処
理を行った。
The ashing conditions of this embodiment are shown below. O 2 flow rate: 900 sccm N 2 flow rate: 100 sccm Microwave power: 1.5 kW Pressure: 1.0 Torr Wafer temperature: 200 ° C. Processing time: 1 minute After the etching treatment of the sample under the above conditions, the processing gas is used. And plasma treatment was performed under the following conditions.

【0042】O2 流量 :900sccm CF4 流量 :100sccm マイクロ波パワー :1.5kW 圧力 :1.0Torr ウェハ温度 :200℃ 処理時間 :20秒間 その結果,残さも無く,設計寸法通りのAlパターンが
得られた。
O 2 flow rate: 900 sccm CF 4 flow rate: 100 sccm Microwave power: 1.5 kW Pressure: 1.0 Torr Wafer temperature: 200 ° C. Processing time: 20 seconds As a result, there is no residue and an Al pattern as designed is obtained. Was given.

【0043】〔比較例1〕図3に示すサンプルを,図2
に示すカソード結合型RIE装置に入れ,本発明のプラ
ズマ処理を行わず,以下の条件でAl膜23のエッチン
グ処理を行った。
[Comparative Example 1] The sample shown in FIG.
The plasma treatment of the present invention was not carried out in the cathode-coupled RIE apparatus shown in (3), and the Al film 23 was etched under the following conditions.

【0044】SiCl4 流量 :100sccm BCl3 流量 :40sccm Cl2 流量 :20sccm エッチング後,Al膜の異方性形状が得られたが,寸法
シフト量は−1500Åと大きく,設計寸法通りのエッ
チングができなかった。
SiCl 4 flow rate: 100 sccm BCl 3 flow rate: 40 sccm Cl 2 flow rate: 20 sccm After etching, an anisotropic shape of the Al film was obtained, but the dimension shift amount was as large as -1500 Å, and etching as designed dimensions was possible. I didn't.

【0045】〔比較例2〕実施例1および実施例2のエ
ッチング処理後のサンプルを,図4に示すダウンフロー
タイプのアッシング装置に入れ,フォトレジストのアッ
シングを行った。
[Comparative Example 2] The samples after the etching treatments of Example 1 and Example 2 were put into the downflow type ashing apparatus shown in FIG. 4 to ash the photoresist.

【0046】以下に本比較例のアッシング条件を示す。 O2 流量 :900sccm N2 流量 :100sccm マイクロ波パワー :1.5kW 圧力 :1.0Torr ウェハ温度 :200℃ 処理時間 :90秒間 以上の条件でエッチング処理後のサンプルのアッシング
を行ったところ,Alパターン上には,多くの残さが発
生した。これは,本発明のように,フッ素を含んだガス
によるプラズマを用いる処理を行っていないためであ
る。
The ashing conditions of this comparative example are shown below. O 2 flow rate: 900 sccm N 2 flow rate: 100 sccm Microwave power: 1.5 kW Pressure: 1.0 Torr Wafer temperature: 200 ° C. Processing time: 90 seconds When the sample after etching was ashed under the above conditions, an Al pattern was obtained. On the top, there was a lot of residue. This is because, unlike the present invention, the process using plasma with a gas containing fluorine is not performed.

【0047】以上,実施例および比較例を説明したが,
本発明は,上述した実施例に限らず種々の変形例を含む
ものである。特に,プラズマを生成するガスは,上述し
た実施例のものも含めて,次の場合が含まれる。
The examples and comparative examples have been described above.
The present invention is not limited to the above-described embodiments and includes various modifications. In particular, the gas for generating plasma includes the following cases, including those of the above-described embodiments.

【0048】 プラズマを生成するガスが,Siを含
有するガスとO2 ガスとを混合したガスである場合。 上記の場合であって,Siを含有するガスが,S
iBr4 ,SiCl4,およびSiF4 のうちの一つで
ある場合。
When the gas that generates plasma is a gas containing a gas containing Si and an O 2 gas. In the above case, the gas containing Si is S
When it is one of iBr 4 , SiCl 4 , and SiF 4 .

【0049】 プラズマを生成するガスが,Siを含
有するガスとO2 ガスとを混合したガスに,さらに,フ
ッ素,臭素,および塩素のうちの一つを含有するガスで
ある場合。
When the gas generating plasma is a gas obtained by mixing a gas containing Si and an O 2 gas and further containing one of fluorine, bromine and chlorine.

【0050】 プラズマを生成するガスが,Siを含
有するガスとO2 ガスとを混合したガスに,さらに,H
e,Ne,Ar等の不活性ガスを混合したガスから成る
場合。
The gas for generating plasma is a gas containing Si-containing gas and O 2 gas, and further H 2
When composed of a gas mixed with an inert gas such as e, Ne, Ar.

【0051】また,エッチング処理される被処理膜は,
Al膜に限らず,半導体膜,導電体膜,絶縁膜など,半
導体装置の製造に用いられる全ての膜を被処理膜とする
ことができる。
The film to be processed by etching is
Not only the Al film, but also all films used for manufacturing a semiconductor device such as a semiconductor film, a conductor film, and an insulating film can be used as the film to be processed.

【0052】[0052]

【発明の効果】本発明によれば,有機ポリマー膜をマス
クに用いたエッチング処理により,パターン形成を行
う,半導体装置製造プロセスにおける微細パターンの形
成方法において,マスクである有機ポリマー膜のパター
ン側壁方向のエッチングを阻止することが可能になるの
で,寸法シフト量の少ないエッチング処理が可能にな
り,設計寸法通りの微細パターンが得られるようにな
る。
According to the present invention, in a method of forming a fine pattern in a semiconductor device manufacturing process in which a pattern is formed by etching using an organic polymer film as a mask, the pattern side wall direction of the organic polymer film as the mask Since it is possible to prevent the etching, it is possible to perform an etching process with a small amount of dimension shift, and it is possible to obtain a fine pattern as designed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】カソード結合型RIE装置の概略図である。FIG. 2 is a schematic diagram of a cathode-coupled RIE device.

【図3】実施例および比較例に用いたサンプルを示す図
である。
FIG. 3 is a diagram showing samples used in Examples and Comparative Examples.

【図4】ダウンフロータイプのアッシング装置の例を示
す図である。
FIG. 4 is a diagram showing an example of a downflow type ashing device.

【符号の説明】[Explanation of symbols]

1 下地膜 2 被処理膜 3 有機ポリマー膜 4 SiO2 1 Underlayer film 2 Processed film 3 Organic polymer film 4 SiO 2 film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機ポリマー膜をマスクに用いたエッチ
ング処理によりパターン形成を行う,半導体装置製造プ
ロセスにおける微細パターンの形成方法であって,基板
上に形成された被処理膜上に有機ポリマー膜のパターン
を形成した後,該基板を,Siを含有するガスとO2
を混合したガスから生成されるプラズマに曝し,前記有
機ポリマー膜の側壁のみにシリコン酸化膜を堆積させ,
その後,所定のドライエッチング処理を行って,被処理
膜のパターンを形成することを含む半導体装置の製造方
法。
1. A method for forming a fine pattern in a semiconductor device manufacturing process, wherein a pattern is formed by etching using an organic polymer film as a mask, wherein the organic polymer film is formed on a film to be processed formed on a substrate. After forming the pattern, the substrate is exposed to plasma generated from a gas containing Si-containing gas and O 2 to deposit a silicon oxide film only on the side wall of the organic polymer film,
Then, a method of manufacturing a semiconductor device, which comprises performing a predetermined dry etching process to form a pattern of a film to be processed.
【請求項2】 請求項1において,前記基板を曝すプラ
ズマを,Siを含有するガスとO2 とを混合したガス
に,さらに,フッ素,臭素,および塩素のうちの一つを
含有するガスを混合したガスから生成することを特徴と
する半導体装置の製造方法。
2. The plasma exposing the substrate according to claim 1, wherein a gas containing Si-containing gas and O 2 is further mixed with a gas containing one of fluorine, bromine and chlorine. A method for manufacturing a semiconductor device, which is characterized in that it is generated from a mixed gas.
【請求項3】 請求項1または2において,前記基板を
曝すプラズマを,Siを含有するガスとO2 ガスとを混
合したガスに,さらに,He,Ne,Ar等の不活性ガ
スを混合したガスから生成することを特徴とする半導体
装置の製造方法。
3. The plasma exposing the substrate according to claim 1 or 2, wherein a gas containing a gas containing Si and an O 2 gas is further mixed with an inert gas such as He, Ne, Ar or the like. A method for manufacturing a semiconductor device, which is characterized in that it is generated from gas.
【請求項4】 請求項1〜3のうちの1項において,所
定のドライエッチング処理を行って,被処理膜のパター
ンを形成した後,後工程として,前記基板に対して,フ
ッ素を含んだガスによるプラズマを用いる処理を行うこ
とを特徴とする半導体装置の製造方法。
4. The method according to claim 1, wherein after a predetermined dry etching process is performed to form a pattern of a film to be processed, fluorine is added to the substrate as a post process. A method of manufacturing a semiconductor device, which comprises performing a process using plasma with a gas.
JP4325168A 1992-12-04 1992-12-04 Manufacture of semiconductor device Withdrawn JPH06177089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325168A JPH06177089A (en) 1992-12-04 1992-12-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325168A JPH06177089A (en) 1992-12-04 1992-12-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06177089A true JPH06177089A (en) 1994-06-24

Family

ID=18173776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325168A Withdrawn JPH06177089A (en) 1992-12-04 1992-12-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06177089A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237236A (en) * 1999-12-09 2001-08-31 Lam Res Corp Cleaning method of substrate surfaces after etching process
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7326634B2 (en) 2004-03-31 2008-02-05 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7368791B2 (en) 2002-08-23 2008-05-06 Intel Corporation Multi-gate carbon nano-tube transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US7579280B2 (en) * 2004-06-01 2009-08-25 Intel Corporation Method of patterning a film
US8294180B2 (en) 2005-09-28 2012-10-23 Intel Corporation CMOS devices with a single work function gate electrode and method of fabrication
KR101274308B1 (en) * 2005-05-31 2013-06-13 램 리써치 코포레이션 Critical dimension reduction and roughness control
US9048314B2 (en) 2005-02-23 2015-06-02 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US9190518B2 (en) 2004-10-25 2015-11-17 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
US9224754B2 (en) 2008-06-23 2015-12-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US9337307B2 (en) 2005-06-15 2016-05-10 Intel Corporation Method for fabricating transistor with thinned channel
JP2020074452A (en) * 2011-10-27 2020-05-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Processing chamber for etching low k and another dielectric film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237236A (en) * 1999-12-09 2001-08-31 Lam Res Corp Cleaning method of substrate surfaces after etching process
US7514346B2 (en) 2002-08-23 2009-04-07 Intel Corporation Tri-gate devices and methods of fabrication
US7368791B2 (en) 2002-08-23 2008-05-06 Intel Corporation Multi-gate carbon nano-tube transistors
US7427794B2 (en) 2002-08-23 2008-09-23 Intel Corporation Tri-gate devices and methods of fabrication
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7326634B2 (en) 2004-03-31 2008-02-05 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7579280B2 (en) * 2004-06-01 2009-08-25 Intel Corporation Method of patterning a film
US9190518B2 (en) 2004-10-25 2015-11-17 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
US9741809B2 (en) 2004-10-25 2017-08-22 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
US10236356B2 (en) 2004-10-25 2019-03-19 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
US9048314B2 (en) 2005-02-23 2015-06-02 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US9368583B2 (en) 2005-02-23 2016-06-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
KR101274308B1 (en) * 2005-05-31 2013-06-13 램 리써치 코포레이션 Critical dimension reduction and roughness control
US11978799B2 (en) 2005-06-15 2024-05-07 Tahoe Research, Ltd. Method for fabricating transistor with thinned channel
US9806195B2 (en) 2005-06-15 2017-10-31 Intel Corporation Method for fabricating transistor with thinned channel
US9337307B2 (en) 2005-06-15 2016-05-10 Intel Corporation Method for fabricating transistor with thinned channel
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US8294180B2 (en) 2005-09-28 2012-10-23 Intel Corporation CMOS devices with a single work function gate electrode and method of fabrication
US9450092B2 (en) 2008-06-23 2016-09-20 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US9224754B2 (en) 2008-06-23 2015-12-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US9806193B2 (en) 2008-06-23 2017-10-31 Intel Corporation Stress in trigate devices using complimentary gate fill materials
JP2020074452A (en) * 2011-10-27 2020-05-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Processing chamber for etching low k and another dielectric film
US11410860B2 (en) 2011-10-27 2022-08-09 Applied Materials, Inc. Process chamber for etching low k and other dielectric films

Similar Documents

Publication Publication Date Title
US7429533B2 (en) Pitch reduction
US6326307B1 (en) Plasma pretreatment of photoresist in an oxide etch process
US7977242B2 (en) Double mask self-aligned double patterning technology (SADPT) process
JPH06177089A (en) Manufacture of semiconductor device
US5254213A (en) Method of forming contact windows
JPH065560A (en) Manufacture of semiconductor device
KR100595090B1 (en) Improved techniques for etching with a photoresist mask
JPH09283503A (en) Formation of semiconductor slope contact hole using high-density plasma etching device
JP2000091318A (en) Manufacture of semiconductor device
JPH06177092A (en) Manufacture of semiconductor device
JP3318801B2 (en) Dry etching method
KR20020041447A (en) Techniques for improving etching in a plasma processing chamber
US6647994B1 (en) Method of resist stripping over low-k dielectric material
JPH0945633A (en) Method for forming fine hole of semiconductor integrated circuit device
JP4343379B2 (en) Substrate processing method, substrate processing apparatus, and device manufacturing method
JP3484317B2 (en) Method for manufacturing semiconductor device
US6613680B2 (en) Method of manufacturing a semiconductor device
JP2003298049A (en) Manufacturing method for semiconductor device
KR100439844B1 (en) method for removing photoresist after metal layer etching in semiconductor device
JPH05109673A (en) Manufacture of semiconductor device
JP3116369B2 (en) Multilayer resist dry etching method
KR100528266B1 (en) Solution for removing residual wall residue after dry etching
KR100253315B1 (en) Etching method in oder to form wire of semiconductor device
JP2001007094A (en) General post-etching processing method for dielectric etching process
JP2001237415A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307