JPH0590865A - Central frequency adjusting method for acoustic surface wave filter - Google Patents

Central frequency adjusting method for acoustic surface wave filter

Info

Publication number
JPH0590865A
JPH0590865A JP25256091A JP25256091A JPH0590865A JP H0590865 A JPH0590865 A JP H0590865A JP 25256091 A JP25256091 A JP 25256091A JP 25256091 A JP25256091 A JP 25256091A JP H0590865 A JPH0590865 A JP H0590865A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
acoustic wave
etching
surface acoustic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25256091A
Other languages
Japanese (ja)
Inventor
Masakatsu Kasagi
昌克 笠置
Hoku Hoa Uu
ウー・ホク・ホア
Nobuyoshi Sakamoto
信義 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP25256091A priority Critical patent/JPH0590865A/en
Publication of JPH0590865A publication Critical patent/JPH0590865A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To accurately adjust the deviation of the central frequency of acoustic surface wave filter from a desired value without deteriorating frequency characteristics thereof by applying dry etching to the piezoelectric substrate with the pattern being masked until the measured value of the central frequency of a interdigital electrode pattern reaches to the desired value. CONSTITUTION:The central frequency (f) of a acoustic surface wave is measured. Next, whether or not the central frequency (f) coincides with a desired value is discriminated, and if the (f) does not coincide with the desired value, the dry etching process 13 is executed. A dry etching method, such as plasma etching or the like is used, and etching of the surface 1a of a piezoelectric substrate 1 is implemented under a predetermined etching condition while masking electrode fingers 2a and 3a of interdigital electrodes 2 and 3. The surface 1a of the piezoelectric substrate 1 of the section where no electrode fingers 2a and 3a exist is ground, while sections 2b and 3b under electrode fingers are left unground. The central frequency (f) is measured, whether or not the central frequency (f) coincides with a desired value is discriminated by a frequency discriminator 12, and if no coincidence is found, dry etching 13 is repeated until the central frequency (f) reaches the desired value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板表面を伝搬する表
面弾性波を用いた弾性表面波フイルタの中心周波数調整
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adjusting a center frequency of a surface acoustic wave filter using surface acoustic waves propagating on a surface of a substrate.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
特願平2−39500号明細書等に記載されるものがあ
った。以下、その構成を図を用いて説明する。
2. Description of the Related Art Conventionally, as a technique in such a field,
Some of them were described in the specification of Japanese Patent Application No. 2-39500. The configuration will be described below with reference to the drawings.

【0003】図2は、前記文献に記載された従来の弾性
表面波フイルタの概略の構成図である。
FIG. 2 is a schematic configuration diagram of the conventional surface acoustic wave filter described in the above-mentioned document.

【0004】この弾性表面波フイルタは、圧電効果を有
する圧電基板1の表面に、電気信号を弾性表面波に変換
する入力側(または出力側)すだれ状電極2と、弾性表
面波を電気信号に変換する出力側(または入力側)すだ
れ状電極3とが対向配置されている。各すだれ状電極
2,3は、それぞれ複数の電極指2a,3aで構成され
ている。なお、図2中のGは高周波信号、Zs は入力抵
抗、ZL は負荷抵抗、sは弾性表面波である。
In this surface acoustic wave filter, an input (or output side) interdigital transducer 2 for converting an electric signal into a surface acoustic wave and a surface acoustic wave into an electric signal are formed on the surface of a piezoelectric substrate 1 having a piezoelectric effect. The output-side (or input-side) interdigital transducer 3 for conversion is arranged to face. Each of the interdigital electrodes 2 and 3 is composed of a plurality of electrode fingers 2a and 3a. In FIG. 2, G is a high frequency signal, Z s is an input resistance, Z L is a load resistance, and s is a surface acoustic wave.

【0005】この種の弾性表面波フイルタでは、高周波
信号Gを入力抵抗Zs を介してすだれ状電極2へ印加す
ると、該すだれ状電極2で弾性表面波Sを励振する。す
だれ状電極2で励振された弾性表面波Sがその電極指2
aと垂直な方向に伝搬し、すだれ状電極3へ到達する
と、該すだれ状電極3の各電極指3a間に電位差が生
じ、電気信号が誘起される。この電気信号が負荷抵抗Z
L 側へ出力される。
In this type of surface acoustic wave filter, when the high frequency signal G is applied to the interdigital transducer 2 via the input resistance Z s , the interdigital transducer 2 excites the surface acoustic wave S. The surface acoustic wave S excited by the interdigital transducer 2 is the electrode finger 2
When it propagates in the direction perpendicular to a and reaches the interdigital electrode 3, a potential difference is generated between the electrode fingers 3a of the interdigital electrode 3, and an electric signal is induced. This electric signal is the load resistance Z
Output to L side.

【0006】狭帯域の弾性表面波フイルタの中心周波数
fは、圧電基板1上を伝搬する弾性表面波Sの伝搬速度
v、電極指2a,3aの各ピッチd(=弾性表面波Sの
波長λ)より、f=v/dで決定される。ところが、伝
搬速度vは圧電基板1の種類により決まっているため、
該圧電基板1上に一旦すだれ状電極2,3を形成してし
まうと、その中心周波数fを変えることが非常に困難と
なる。
The center frequency f of the surface acoustic wave filter having a narrow band is the propagation velocity v of the surface acoustic wave S propagating on the piezoelectric substrate 1, the pitch d of the electrode fingers 2a and 3a (= the wavelength λ of the surface acoustic wave S). ), F = v / d is determined. However, since the propagation velocity v is determined by the type of the piezoelectric substrate 1,
Once the interdigital electrodes 2 and 3 are formed on the piezoelectric substrate 1, it becomes very difficult to change the center frequency f thereof.

【0007】そこで、前記文献に記載された従来の中心
周波数調整方法では、圧電基板1上にすだれ状電極2,
3を形成した後、該すだれ状電極2,3の電極指2a,
3aの膜厚を測定し、その膜厚が所望の厚さになるよう
にエッチングすることにより、弾性表面波Sの伝搬速度
vを変化させて調整していた。
Therefore, in the conventional center frequency adjusting method described in the above-mentioned document, the interdigital transducers 2, 2 are formed on the piezoelectric substrate 1.
3 is formed, then the electrode fingers 2a of the interdigital transducers 2, 3
The film thickness of 3a was measured, and the propagation speed v of the surface acoustic wave S was changed and adjusted by etching so that the film thickness became a desired thickness.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
方法では、次のような課題があった。従来の中心周波数
調整方法では、主としてウエットエッチングにより、す
だれ状電極2,3における電極指2a,3aの膜厚を減
少させて周波数調整を行っていたので、弾性表面波Sの
伝搬速度vを増加させる方向の周波数調整しかできな
い。そのため、中心周波数fが所望の値よりも大きなも
のに対しては調整が可能であるが、該中心周波数fが所
望の値よりも小さいものに対しては周波数調整ができな
いという欠点があった。
However, the conventional method has the following problems. In the conventional center frequency adjusting method, the film thickness of the electrode fingers 2a and 3a of the interdigital transducers 2 and 3 is reduced mainly by wet etching to adjust the frequency. Therefore, the propagation velocity v of the surface acoustic wave S is increased. You can only adjust the frequency in the direction of making it. Therefore, there is a drawback in that the central frequency f can be adjusted for those having a frequency larger than a desired value, but the frequency cannot be adjusted for those having a central frequency f smaller than the desired value.

【0009】また、主としてウエットエッチングを利用
するため、長時間エッチングを行わなければならない
が、長時間エッチングを行うと、電極指2a,3aの膜
厚だけでなく、その幅も減少してしまうため、周波数特
性が変わってしまう。そのため、中心周波数fからのず
れが大きいものは、調整できないという欠点があり、未
だ技術的に充分満足のゆく中心周波数調整方法を提供す
ることが困難であった。本発明は、前記従来技術が持っ
ていた課題として、中心周波数が所望の値よりも小さい
ものしか調整できない点、及びウエットエッチングによ
って長時間エッチングを行うと、周波数特性が変わって
しまうという点について解決した弾性表面波フイルタの
中心周波数調整方法を提供するものである。
Further, since wet etching is mainly used, it is necessary to perform etching for a long time. However, if etching is performed for a long time, not only the film thickness of the electrode fingers 2a and 3a but also its width is reduced. , The frequency characteristics change. For this reason, there is a drawback in that it cannot be adjusted if the deviation from the center frequency f is large, and it is still difficult to provide a center frequency adjusting method that is technically sufficiently satisfactory. The present invention solves the problems that the above-mentioned conventional art has, that the center frequency can only be adjusted to be smaller than a desired value, and that the frequency characteristics change when the wet etching is performed for a long time. The present invention provides a method for adjusting the center frequency of the surface acoustic wave filter.

【0010】[0010]

【課題を解決するための手段】第1の発明は、前記課題
を解決するために、電気信号を弾性表面波に変換した後
にその弾性表面波を再度電気信号に変換するすだれ状電
極パターンを、圧電基板上に形成した狭帯域の弾性表面
波フイルタにおいて、前記すだれ状電極パターンに通電
して中心周波数を測定し、該測定値が所望の値になるま
で、前記すだれ状電極パターンをマスクにして所定のエ
ッチング条件下で前記圧電基板をドライエッチングする
ようにしている。
In order to solve the above-mentioned problems, a first aspect of the present invention provides a comb-shaped electrode pattern for converting an electric signal into a surface acoustic wave and then converting the surface acoustic wave into an electric signal again. In the narrow band surface acoustic wave filter formed on the piezoelectric substrate, the center frequency is measured by energizing the interdigital electrode pattern, and the interdigital electrode pattern is used as a mask until the measured value reaches a desired value. The piezoelectric substrate is dry-etched under predetermined etching conditions.

【0011】第2の発明では、第1の発明において、前
記圧電基板を水晶で形成し、前記すだれ状電極パターン
をアルミニウムまたはアルミニウム合金で形成してい
る。
According to a second invention, in the first invention, the piezoelectric substrate is made of quartz, and the interdigital electrode pattern is made of aluminum or an aluminum alloy.

【0012】[0012]

【作用】第1の発明によれば、以上のように弾性表面波
フイルタの中心周波数調整方法を構成したので、製造さ
れた弾性表面波フイルタのすだれ状電極パターンに通電
し、中心周波数を測定することにより、所望の値との周
波数差が求まる。そこで、周波数の差が0となるよう
に、該すだれ状電極パターンをマスクにしてドライエッ
チングを行えば、圧電基板表面のみがエッチングされ、
弾性表面波の伝搬速度が変わって中心周波数の調整が行
える。
According to the first aspect of the invention, since the center frequency adjusting method for the surface acoustic wave filter is constructed as described above, the center frequency is measured by energizing the interdigital electrode pattern of the manufactured surface acoustic wave filter. Thus, the frequency difference from the desired value can be obtained. Therefore, when the dry etching is performed using the interdigital electrode pattern as a mask so that the frequency difference becomes 0, only the surface of the piezoelectric substrate is etched,
The center frequency can be adjusted by changing the propagation velocity of the surface acoustic wave.

【0013】第2の発明によれば、すだれ状電極パター
ンを形成するアルミニウムまたはアルミニウム合金に比
べ、水晶からなる圧電基板のエッチング速度が大きいの
で、そのすだれ状電極パターンをマスクにして圧電基板
表面のみをドライエッチングで的確にエッチングでき、
弾性表面波の伝搬速度の増減が行える。従って、前記課
題を解決できるのである。
According to the second invention, since the etching rate of the piezoelectric substrate made of quartz is higher than that of aluminum or aluminum alloy forming the interdigital electrode pattern, only the surface of the piezoelectric substrate is masked with the interdigital electrode pattern. Can be accurately etched by dry etching,
The propagation velocity of surface acoustic waves can be increased or decreased. Therefore, the above problem can be solved.

【0014】[0014]

【実施例】図1(a),(b)は本発明の実施例を示す
弾性表面波フイルタにおける周波数調整方法の説明図で
あり、同図(a)は周波数調整処理のフローチャート、
同図(b)はドライエッチングによる質量負荷の変化を
示す。
1 (a) and 1 (b) are explanatory views of a frequency adjusting method in a surface acoustic wave filter showing an embodiment of the present invention. FIG. 1 (a) is a flow chart of frequency adjusting processing,
FIG. 6B shows the change in mass load due to dry etching.

【0015】本実施例の周波数調整方法では、従来の図
2に示すように、例えば水晶を用いて圧電基板1を形成
し、その圧電基板1上に、電極材料としてアルミニウム
あるいはアルミニウム合金を用いてすだれ状電極2,3
を形成し、例えば2.4GHz の狭帯域のタイミング抽
出用弾性表面波フイルタを製造する。
In the frequency adjusting method of this embodiment, as shown in FIG. 2 of the related art, a piezoelectric substrate 1 is formed by using, for example, crystal, and aluminum or aluminum alloy is used as an electrode material on the piezoelectric substrate 1. Interdigital electrodes 2, 3
It is formed and to produce a narrowband timing extraction SAW filter of the example 2.4 GHz z.

【0016】このようにして製造された弾性表面波フイ
ルタを用い、図1(a)に示すように、周波数測定処理
11において、ネットワークアナライザ等を用いて弾性
表面波フイルタの中心周波数fを測定する。次に、周波
数判定処理12において、弾性表面波フイルタの中心周
波数fが所望の値と一致するか否かの判定を行い、所望
の値と一致すれば、中心周波数調整処理を終了するが、
一致しなければドライエッチング処理13へ進む。
Using the surface acoustic wave filter manufactured in this manner, as shown in FIG. 1A, in the frequency measurement process 11, the center frequency f of the surface acoustic wave filter is measured using a network analyzer or the like. .. Next, in the frequency determination process 12, it is determined whether the center frequency f of the surface acoustic wave filter matches a desired value, and if the center frequency f matches the desired value, the center frequency adjustment process ends.
If they do not match, the process proceeds to the dry etching process 13.

【0017】ドライエッチング処理13では、図1
(b)に示すように、プラズマエッチング等のドライエ
ッチング法を用い、すだれ状電極2,3の電極指2a,
3aをマスクにして所定のエッチング条件下で圧電基板
1の表面1aをエッチングしていく。
In the dry etching process 13, as shown in FIG.
As shown in (b), by using a dry etching method such as plasma etching, the electrode fingers 2a of the interdigital electrodes 2 and 3,
The surface 1a of the piezoelectric substrate 1 is etched under predetermined etching conditions using 3a as a mask.

【0018】電極指2a,3aのない部分の圧電基板1
の表面1aは削られるが、電極指2a,3aの下の部分
2b,3bは削られずに残る。この部分2a,3bは、
エッチング後の基板表面1bに対して質量負荷となるた
め、その基板表面1bを伝搬する弾性表面波Sの伝搬速
度vを減速させる効果を持つ。しかも、エッチングの進
行に伴い、質量負荷が増大していくので、弾性表面波S
の伝搬速度vも減速していく。従って、圧電基板1の表
面1bを伝搬する弾性表面波Sの周波数、つまり弾性表
面波フイルタの中心周波数fが低下していく。
Piezoelectric substrate 1 where electrode fingers 2a and 3a are not present
The surface 1a of the above is abraded, but the portions 2b and 3b under the electrode fingers 2a and 3a remain without being abraded. These parts 2a and 3b are
Since a mass load is applied to the substrate surface 1b after etching, it has an effect of reducing the propagation velocity v of the surface acoustic wave S propagating on the substrate surface 1b. Moreover, since the mass load increases with the progress of etching, the surface acoustic wave S
The propagation velocity v of V is also decelerated. Therefore, the frequency of the surface acoustic wave S propagating on the surface 1b of the piezoelectric substrate 1, that is, the center frequency f of the surface acoustic wave filter decreases.

【0019】このようなドライエッチング処理13を行
った後、図1(a)の周波数測定処理11を行い、中心
周波数fを測定し、周波数判定処理12でその中心周波
数fが所望の値と一致するか否かを判定し、一致しなけ
れば再度ドライエッチング処理13を行い、中心周波数
fが所望の値に一致するまで前記の処理を繰り返す。図
3(a)〜(c)は、図1のドライエッチングによる基
板表面の変化を示す図である。図4は、エッチングガス
CF4 、すだれ状電極2,3の膜厚430Å、ガス流量
178sccm、圧力10Pa、放電パワー100Wの
条件下で、プラズマエッチング法を用いてドライエッチ
ング処理13を30秒、60秒、90秒、120秒、1
35秒行ったときのエッチング時間と中心周波数fのシ
フト量Δf(MHz )との関係を示す図である。
After performing the dry etching process 13 as described above, the frequency measurement process 11 shown in FIG. 1A is performed to measure the center frequency f, and the center frequency f coincides with a desired value in the frequency determination process 12. It is determined whether or not to do so, and if they do not match, the dry etching process 13 is performed again, and the above process is repeated until the center frequency f matches a desired value. 3A to 3C are views showing changes in the substrate surface due to the dry etching of FIG. FIG. 4 shows a dry etching process 13 using a plasma etching method for 30 seconds under the conditions of etching gas CF 4 , film thickness 430Å of the interdigital electrodes 2, 3, gas flow rate 178 sccm, pressure 10 Pa, and discharge power 100 W. Seconds, 90 seconds, 120 seconds, 1
It is a diagram showing the relationship between the shift amount of the etching time and the center frequency f Δf (MH z) when performing 35 seconds.

【0020】図3(a)〜(c)において、同図(a)
のエッチング前においては、圧電基板1の表面1aにア
モルファス層1Aが存在し、それがむき出しになってい
る。図3(b)のエッチング初期には、電極指2a,3
aをマスクとしてアモルファス層1Aがドライエッチン
グされるため、圧電基板1の表面1aの結晶格子が単結
晶に近付いて行く。そのため、表面1aを伝搬する弾性
表面波Sにとっては、機械的な抵抗が減少し、逆に伝搬
速度vが増加する。従って、図4に示すように、エッチ
ング初期には中心周波数fが上昇する。
In FIGS. 3A to 3C, FIG.
Before the etching of 1), the amorphous layer 1A is present on the surface 1a of the piezoelectric substrate 1 and is exposed. At the beginning of etching in FIG. 3B, the electrode fingers 2a and 3
Since the amorphous layer 1A is dry-etched using a as a mask, the crystal lattice of the surface 1a of the piezoelectric substrate 1 approaches a single crystal. Therefore, for the surface acoustic wave S propagating on the surface 1a, the mechanical resistance decreases, and conversely the propagation velocity v increases. Therefore, as shown in FIG. 4, the center frequency f rises at the beginning of etching.

【0021】ところが、図3(c)に示すエッチング後
期では、アモルファス層1Aをエッチングし終わると、
それ以後は基板結晶を削るだけになり、電極指2a,3
aの下の部分2b,3bの膜厚が厚くなって質量負荷
(機械的な抵抗)が増加していく。そのため、図4に示
すように、中心周波数fが低下していく。
However, in the latter stage of etching shown in FIG. 3C, when the amorphous layer 1A is completely etched,
After that, only the substrate crystal is scraped off, and the electrode fingers 2a, 3
The film thickness of the portions 2b and 3b below a becomes thicker and the mass load (mechanical resistance) increases. Therefore, as shown in FIG. 4, the center frequency f decreases.

【0022】図4のデータを基に、その図4のエッチン
グ条件下で、始め中心周波数fが2.497695GH
z であったタイミング抽出用弾性表面波フイルタに対し
て30秒、90秒、125秒のドライエッチングを行う
と、次のような結果が得られた。中心周波数fはエッチ
ングの進行に伴い2.50182GHz 、2.4992
575Hz と変化し、最終的に所望の周波数である2.
48832GHz に一致した。この際、エッチングの進
行に伴う伝送特性の変化がないことも確認され、本実施
例の方法の有効性が観察できた。
On the basis of the data of FIG. 4, the starting center frequency f is 2.497695 GH under the etching conditions of FIG.
The following results were obtained when dry etching of the surface acoustic wave filter for timing extraction, which was z , was performed for 30 seconds, 90 seconds, and 125 seconds. Center frequency f with the progress of etching 2.50182GH z, 2.4992
575H z and change a final desired frequency 2.
It was consistent with the 48832GH z. At this time, it was also confirmed that the transmission characteristics did not change with the progress of etching, and the effectiveness of the method of this example could be observed.

【0023】以上のように、本実施例では圧電基板1上
に形成したすだれ状電極2,3をマスクにして該圧電基
板1をドライエッチングすることにより、中心周波数f
を高い方にも、低い方にもシフトさせることができる。
そのため、従来のすだれ状電極をウエットエッチングす
る方法では調整不可能であった、所望の値より大きい中
心周波数fを持つ弾性表面波フイルタをも良品とするこ
とができる。しかも、すだれ状電極2,3を構成するア
ルミニウムまたはアルミニウム合金に比べ、圧電基板1
を構成する水晶のエッチング速度が著しく大きいので、
エッチング時間を長くしても、電極指2a,3aの幅に
は変化がない。従って、周波数特性の劣化がなく、所望
の中心周波数fを簡単かつ的確に得ることができる。
As described above, in this embodiment, the center frequency f is obtained by dry-etching the piezoelectric substrate 1 using the interdigital electrodes 2 and 3 formed on the piezoelectric substrate 1 as a mask.
Can be shifted higher or lower.
Therefore, a surface acoustic wave filter having a center frequency f higher than a desired value, which cannot be adjusted by the conventional method of wet-etching the interdigital transducer, can be made into a good product. Moreover, compared with aluminum or aluminum alloy that forms the interdigital electrodes 2, 3, the piezoelectric substrate 1
Since the etching rate of the crystal that constitutes
Even if the etching time is lengthened, the width of the electrode fingers 2a and 3a does not change. Therefore, the desired center frequency f can be easily and accurately obtained without deterioration of the frequency characteristic.

【0024】なお、発明は上記実施例に限定されず、種
々の変形が可能である。その変形例としては、例えば次
のようなものがある。
The invention is not limited to the above embodiment, but various modifications can be made. Examples of such modifications include the following.

【0025】(i) 上記実施例では圧電基板1を水晶
で形成し、すだれ状電極2,3をアルミニウムまたはア
ルミニウム合金で形成したが、すだれ状電極2,3に比
べて圧電基板1のエッチング速度が大きくなる電極材料
及び基板材料であれば、それらを他の材料で形成しても
良い。また、エッチング条件を非エッチング材料に対応
して他の条件に変えたり、さらにドライエッチング法と
してスパッタエッチングやイオンビームエッチング等と
いった他のドライエッチング法を用いても良い。
(I) In the above embodiment, the piezoelectric substrate 1 was made of quartz and the interdigital electrodes 2 and 3 were made of aluminum or aluminum alloy. However, the etching rate of the piezoelectric substrate 1 is higher than that of the interdigital electrodes 2 and 3. Any other material may be used as long as it is an electrode material and a substrate material that increase the thickness. Further, the etching conditions may be changed to other conditions depending on the non-etching material, and other dry etching methods such as sputter etching and ion beam etching may be used.

【0026】(ii) すだれ状電極2,3の表面に、エ
ッチング速度の小さいクロム等の金属膜を予め被着して
おき、ドライエッチング処理13によって圧電基板1の
表面1aをエッチングするようにすれば、電極指2a,
3aの幅の減少を極力抑え、周波数特性の劣化をより的
確に防止することが可能となる。また、弾性表面波フイ
ルタは図2の形状に限定されず、種々の形状及び構造に
変形しても良い。
(Ii) A metal film of chromium or the like having a low etching rate is previously deposited on the surfaces of the interdigital electrodes 2 and 3, and the surface 1a of the piezoelectric substrate 1 is etched by the dry etching process 13. For example, the electrode fingers 2a,
It is possible to suppress the decrease of the width of 3a as much as possible and prevent the deterioration of the frequency characteristic more accurately. The surface acoustic wave filter is not limited to the shape shown in FIG. 2 and may be modified into various shapes and structures.

【0027】[0027]

【発明の効果】以上詳細に説明したように、第1の発明
によれば、圧電基板上に形成したすだれ状電極パターン
をマスクにして該圧電基板をドライエッチングすること
により、中心周波数の調整を行うようにしたので、該中
心周波数を高い方にも、低い方にもシフトさせることが
できる。そのため、従来の方法では調整不可能であっ
た、所望の値より大きい中心周波数を持つ弾性表面波フ
イルタをも良品とすることができるようになる。
As described in detail above, according to the first invention, the center frequency is adjusted by dry etching the piezoelectric substrate using the interdigital electrode pattern formed on the piezoelectric substrate as a mask. Since this is done, it is possible to shift the center frequency to either the higher side or the lower side. Therefore, a surface acoustic wave filter having a center frequency higher than a desired value, which cannot be adjusted by the conventional method, can be made a good product.

【0028】しかも、電極材料に比べてエッチング速度
の大きな圧電基板材料を用いる等の最適なエッチング条
件下で、ドライエッチングを行うことにより、ウエット
エッチングに比べて短時間でエッチング処理が行える。
そのため、電極幅に変化がなく、周波数特性の劣化を的
確に防止でき、中心周波数からのずれが大きいものに対
しても、精度良く、周波数の調整が可能となる。
Moreover, by performing dry etching under optimum etching conditions such as using a piezoelectric substrate material having an etching rate higher than that of the electrode material, etching processing can be performed in a shorter time than wet etching.
Therefore, there is no change in the electrode width, it is possible to accurately prevent deterioration of the frequency characteristics, and it is possible to accurately adjust the frequency even for a large deviation from the center frequency.

【0029】第2の発明によれば、圧電基板を水晶で形
成し、すだれ状電極パターンをアルミニウムまたはアル
ミニウム合金で形成したので、すだれ状電極パターンに
比べて圧電基板のエッチング速度が大きく、該電極パタ
ーンの幅を減少させることなく、圧電基板表面のみを的
確にエッチングできる。
According to the second invention, since the piezoelectric substrate is made of quartz and the interdigital electrode pattern is made of aluminum or aluminum alloy, the etching rate of the piezoelectric substrate is higher than that of the interdigital electrode pattern, and the electrode is formed. Only the surface of the piezoelectric substrate can be accurately etched without reducing the width of the pattern.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す周波数調整方法の説明図
である。
FIG. 1 is an explanatory diagram of a frequency adjusting method according to an embodiment of the present invention.

【図2】従来の弾性表面波フイルタの概略の構成図であ
る。
FIG. 2 is a schematic configuration diagram of a conventional surface acoustic wave filter.

【図3】図1のドライエッチングによる基板表面の変化
を示す図である。
FIG. 3 is a diagram showing changes in the substrate surface due to the dry etching of FIG.

【図4】図1のエッチング時間と中心周波数シフト量の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the etching time and the center frequency shift amount of FIG.

【符号の説明】[Explanation of symbols]

1 圧電基板 2,3 すだれ状電極 2a,3a 電極指 11 周波数測定処理 12 周波数判定処理 13 ドライエッチング処理 DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate 2,3 Interdigital electrode 2a, 3a Electrode finger 11 Frequency measurement process 12 Frequency determination process 13 Dry etching process

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気信号を弾性表面波に変換した後にそ
の弾性表面波を再度電気信号に変換するすだれ状電極パ
ターンを、圧電基板上に形成した狭帯域の弾性表面波フ
イルタにおいて、 前記すだれ状電極パターンに通電して中心周波数を測定
し、該測定値が所望の値になるまで、前記すだれ状電極
パターンをマスクにして所定のエッチング条件下で前記
圧電基板をドライエッチングすることを特徴とする弾性
表面波フイルタの中心周波数調整方法。
1. A narrow band surface acoustic wave filter formed on a piezoelectric substrate with a comb-shaped electrode pattern for converting an electric signal into a surface acoustic wave and then converting the surface acoustic wave into an electric signal again. An electric current is applied to the electrode pattern to measure the center frequency, and the piezoelectric substrate is dry-etched under predetermined etching conditions using the interdigital electrode pattern as a mask until the measured value reaches a desired value. A method for adjusting the center frequency of a surface acoustic wave filter.
【請求項2】 請求項1記載の弾性表面波フイルタの中
心周波数調整方法において、 前記圧電基板を水晶で形成し、前記すだれ状電極パター
ンをアルミニウムまたはアルミニウム合金で形成した弾
性表面波フイルタの中心周波数調整方法。
2. The center frequency adjusting method for a surface acoustic wave filter according to claim 1, wherein the piezoelectric substrate is made of quartz, and the interdigital electrode pattern is made of aluminum or an aluminum alloy. Adjustment method.
JP25256091A 1991-09-30 1991-09-30 Central frequency adjusting method for acoustic surface wave filter Withdrawn JPH0590865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25256091A JPH0590865A (en) 1991-09-30 1991-09-30 Central frequency adjusting method for acoustic surface wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25256091A JPH0590865A (en) 1991-09-30 1991-09-30 Central frequency adjusting method for acoustic surface wave filter

Publications (1)

Publication Number Publication Date
JPH0590865A true JPH0590865A (en) 1993-04-09

Family

ID=17239074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25256091A Withdrawn JPH0590865A (en) 1991-09-30 1991-09-30 Central frequency adjusting method for acoustic surface wave filter

Country Status (1)

Country Link
JP (1) JPH0590865A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043880A (en) * 2000-07-26 2002-02-08 Murata Mfg Co Ltd Frequency control method for surface acoustic wave element
JP2010177820A (en) * 2009-01-27 2010-08-12 Epson Toyocom Corp Method of manufacturing surface acoustic wave element
JP2010233203A (en) * 2009-02-27 2010-10-14 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator
JP2011041287A (en) * 2009-02-27 2011-02-24 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043880A (en) * 2000-07-26 2002-02-08 Murata Mfg Co Ltd Frequency control method for surface acoustic wave element
JP2010177820A (en) * 2009-01-27 2010-08-12 Epson Toyocom Corp Method of manufacturing surface acoustic wave element
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
JP2010233203A (en) * 2009-02-27 2010-10-14 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator
JP2011041287A (en) * 2009-02-27 2011-02-24 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator
JP4645923B2 (en) * 2009-02-27 2011-03-09 セイコーエプソン株式会社 Surface acoustic wave resonator and surface acoustic wave oscillator
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus

Similar Documents

Publication Publication Date Title
US5923231A (en) Surface acoustic wave device with an electrode insulating film and method for fabricating the same
JPH0590865A (en) Central frequency adjusting method for acoustic surface wave filter
JP4841640B2 (en) Elastic wave device and manufacturing method thereof
JP3712035B2 (en) Manufacturing method of surface wave device
JP2000216632A (en) Surface acoustic wave oscillator
US6603371B2 (en) Surface acoustic wave device having a small acoustic velocity distribution and method of producing the same
JP3402311B2 (en) Surface acoustic wave device
US20020079987A1 (en) Recessed reflector single phase unidirectional transducer
JPH02295211A (en) Energy shut-up type surface acoustic wave element
JP2006186623A (en) Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device
KR20200081815A (en) SAW resonator to enhance Q-factor and manufacturing method thereof
EP0744830B1 (en) Surface acoustic wave device and production method thereof
JPH04258008A (en) Surface acoustic wave device
JP3442202B2 (en) Surface acoustic wave filter
JPH04199906A (en) Surface acoustic wave resonator
JPS5839105A (en) Compensating method for frequency-temperature characteristic of surface acoustic wave resonator
JP2568551B2 (en) Manufacturing method of surface acoustic wave device
JPH0232806B2 (en) DANSEIHYOMENHASOCHI
JPS6346605B2 (en)
JPH09148879A (en) Surface acoustic wave device
JPH0590866A (en) Central frequency adjusting method for surface acoustic wave filter
JPH11112274A (en) Surface acoustic wave filter
JPH06164286A (en) Manufacture of surface acoustic wave resonator
JPH09162670A (en) Surface acoustic wave device and its pattern formation method
JP2002217665A (en) Manufacturing method of surface acoustic wave element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203