JP2006186623A - Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device - Google Patents

Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device Download PDF

Info

Publication number
JP2006186623A
JP2006186623A JP2004377616A JP2004377616A JP2006186623A JP 2006186623 A JP2006186623 A JP 2006186623A JP 2004377616 A JP2004377616 A JP 2004377616A JP 2004377616 A JP2004377616 A JP 2004377616A JP 2006186623 A JP2006186623 A JP 2006186623A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
electrode
saw
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004377616A
Other languages
Japanese (ja)
Inventor
Keigo Iizawa
慶吾 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004377616A priority Critical patent/JP2006186623A/en
Publication of JP2006186623A publication Critical patent/JP2006186623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SAW element along with its manufacturing method capable of keeping desired frequency characteristics and performance even if film thickness of an electrode of IDT is increased. <P>SOLUTION: Relating to the surface acoustic wave element, an Al electrode film 15 of thickness H, where H/λ=0.05 to 0.15 for wavelength λ of SAW, is formed on the main surface of a quartz substrate 11 consisting of an in-plane rotation ST cut quartz plate. A resist pattern 16 is formed on the electrode film. The exposed portion of the electrode film is dry-etched to remove a part of it while a remaining part 15a is totally removed by wet-etching, thus forming interdigital electrodes 12a and 12b of IDT13. Here, line widths d1 and d2 at a lower and upper sides of the interdigital electrode are so set that (d1-d2)/electrode pitch p=0 to 0.16 in the propagation direction of SAW. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波(SAW:surface acoustic wave )を利用したSAW素子及びその製造方法、並びにかかるSAW素子を有するSAWデバイスに関する。   The present invention relates to a SAW element using a surface acoustic wave (SAW), a manufacturing method thereof, and a SAW device having such a SAW element.

従来から、圧電基板の表面に形成した交差指電極からなるIDT(すだれ状トランスデューサ)により励振する弾性表面波を利用したSAW素子を備える共振子、フィルタ、発振器等のSAWデバイスが、様々な電子機器に広く使用されている。特に最近は、通信機器などの分野で、通信の高速化に対応したSAWデバイスの高周波化及び高精度化が要求されている。   Conventionally, SAW devices such as resonators, filters, oscillators, and the like having SAW elements using surface acoustic waves excited by IDTs (interdigital transducers) formed of interdigitated electrodes formed on the surface of a piezoelectric substrate are various electronic devices. Widely used. In particular, in recent years, in the field of communication equipment and the like, there has been a demand for higher frequency and higher accuracy of SAW devices corresponding to higher communication speeds.

SAW素子のIDTは、圧電基板表面に成膜したAlなどの電極膜を、フォトリソグラフィ技術を用いてパターニングすることにより形成する。電極膜のパターニングは、ウエットエッチングで行う場合、サイドエッチング量が大きいためにアンダーカットを生じて電極の側面がテーパ化し、線幅の制御が困難でばらつきを生じ易いという問題がある。他方、反応性イオンエッチングなどのドライエッチングで行う場合、圧電基板の表面を損傷し、振動特性に悪影響を及ぼす虞がある。そこで、かかる問題を解消して電極を高精度にパターニングするために、電極膜を最初にドライエッチングで部分的に除去し、残余部分をウエットエッチングで完全に除去する方法が提案されている(例えば、特許文献1,2を参照)。   The IDT of the SAW element is formed by patterning an electrode film such as Al formed on the surface of the piezoelectric substrate using a photolithography technique. When the electrode film is patterned by wet etching, there is a problem that undercuts occur due to a large amount of side etching, the side surfaces of the electrode are tapered, and the line width is difficult to control and tends to vary. On the other hand, when dry etching such as reactive ion etching is performed, the surface of the piezoelectric substrate may be damaged and vibration characteristics may be adversely affected. In order to solve this problem and pattern the electrode with high accuracy, a method has been proposed in which the electrode film is first partially removed by dry etching and the remaining portion is completely removed by wet etching (for example, Patent Documents 1 and 2).

SAW素子の圧電基板には、周波数温度特性の良好なSTカット水晶板が多く使用されている。図3に例示するように、水晶の直交する3つの結晶軸を電気軸(X軸)、機械軸(Y軸)、光学軸(Z軸)とし、オイラー角(φ,θ,ψ)が(0°,0°,0°)の水晶Z板1をX軸周りに角度θ=113〜135°回転させて得られる新しい座標軸(X,Y´,Z´)に沿って切り出したものが、STカット水晶板2である。本願出願人は、STカット水晶板が3次関数の温度特性を有することから、STカット水晶板2を更にZ´軸周りに角度ψ=±(40〜49)°回転させてSAWの伝播方向と一致するように切り出し、より良好な周波数温度特性を発揮する面内回転STカット水晶板3を提案している(特許文献3を参照)。   As a piezoelectric substrate of a SAW element, an ST cut quartz plate having a good frequency temperature characteristic is often used. As illustrated in FIG. 3, three orthogonal crystal axes of crystal are an electric axis (X axis), a mechanical axis (Y axis), and an optical axis (Z axis), and Euler angles (φ, θ, ψ) are ( A crystal Z plate 1 of 0 °, 0 °, 0 °) cut out along a new coordinate axis (X, Y ′, Z ′) obtained by rotating an angle θ = 113 to 135 ° around the X axis, This is an ST cut quartz plate 2. Since the ST cut quartz plate has a temperature characteristic of a cubic function, the applicant of the present application further rotates the ST cut quartz plate 2 around the Z ′ axis by an angle ψ = ± (40 to 49) ° to propagate the SAW. In-plane rotation ST-cut quartz plate 3 that exhibits better frequency temperature characteristics is proposed (see Patent Document 3).

特開昭63−285011号公報JP-A 63-285011 特開平10−135759号公報JP-A-10-135759 特開2003−152487号公報JP 2003-152487 A

更に本願出願人は、オイラー角(0°,θ,ψ)の水晶基板において角度ψを適当に選択し、より好ましくは更に角度θを適当に選択することにより、シングル型IDTによりレイリー波をストップバンドの上限モードで励振できることを見出した。これにより、周波数温度特性をより一層向上させることに加えて、電極の膜厚を大きくしても周波数降下を抑制することができ、電極の微細化及び高周波化に適している。しかしながら、上述した従来方法による電極のパターニングにおいて、電極の膜厚が大きくなると、それだけ電極の側面がテーパ化し易く、電極線幅の高精度な制御がより困難になる。特に、電極側面のテーパ化により線幅がその下辺と上辺とで大きな差を生じると、反射効率が低下し、SAW素子のCI値やQ値を低下させるという問題が発生する。   Further, the applicant of the present invention appropriately stops the Rayleigh wave by the single IDT by appropriately selecting the angle ψ, more preferably appropriately selecting the angle θ in the Euler angle (0 °, θ, ψ) quartz substrate. We found that it can be excited in the upper band mode. Thereby, in addition to further improving the frequency temperature characteristics, the frequency drop can be suppressed even if the film thickness of the electrode is increased, which is suitable for miniaturization and higher frequency of the electrode. However, in the electrode patterning according to the conventional method described above, as the electrode film thickness increases, the side surface of the electrode is easily tapered, and it becomes more difficult to control the electrode line width with high accuracy. In particular, when the line width causes a large difference between the lower side and the upper side due to the taper of the electrode side surface, the reflection efficiency is lowered, and the CI value and Q value of the SAW element are lowered.

そこで本発明は、かかる従来技術の問題点に鑑みてなされたものであり、その目的は、IDTの電極の膜厚を大きくしても、所望の周波数特性・性能を実質的に低下させることなく維持、確保することができるSAW素子及びその製造方法を提供することにある。   Therefore, the present invention has been made in view of the problems of the prior art, and the object thereof is to substantially reduce the desired frequency characteristics and performance even if the film thickness of the IDT electrode is increased. An object of the present invention is to provide a SAW element that can be maintained and secured and a method for manufacturing the SAW element.

更に本発明の目的は、優れた周波数温度特性を有しかつ高安定で、高周波化及び高精度化を可能にするSAW素子及びその製造方法を提供することにある。   A further object of the present invention is to provide a SAW element having excellent frequency temperature characteristics, high stability, high frequency and high accuracy, and a method for manufacturing the SAW element.

本発明によれば、上記目的を達成するために、面内回転STカット水晶板からなる水晶基板と、該水晶基板の主面に所定のピッチpで形成された少なくとも1組の交差指電極からなるIDTとを備え、交差指電極の膜厚Hが、IDTにより励振されるSAWの波長λに対してH/λ=0.05〜0.15となるように設定され、SAWの伝搬方向に沿って交差指電極の下辺及び上辺における線幅d1,d2が(d1−d2)/p=0〜0.16となるように設定されたSAW素子が提供される。   According to the present invention, in order to achieve the above object, a quartz substrate made of an in-plane rotated ST-cut quartz plate and at least one set of interdigital electrodes formed on the principal surface of the quartz substrate with a predetermined pitch p. And the thickness H of the interdigitated electrode is set to be H / λ = 0.05 to 0.15 with respect to the wavelength λ of the SAW excited by the IDT, in the SAW propagation direction. A SAW element in which the line widths d1 and d2 on the lower side and the upper side of the cross finger electrode are set to be (d1−d2) / p = 0 to 0.16 is provided.

交差指電極の線幅は、理想的には、SAW伝搬方向に沿ってその下辺及び上辺における線幅が一致することが望ましい。本願発明者は、面内回転STカット水晶板からなる水晶基板を用いたSAW素子において、交差指電極の下辺及び上辺における線幅d1,d2を上記範囲内に設定するあることによって、たとえIDTの電極の膜厚を大きくしても、所望の周波数特性、性能を実質的に低下させることなく維持、確保し得ることを見い出し、本願発明を創出するに至ったものである。これにより、電極ピッチをより小さくして高周波化、高精度化を図ることが可能になる。   Ideally, it is desirable that the line widths of the cross finger electrodes coincide with each other along the SAW propagation direction. The inventor of the present application sets the line widths d1 and d2 on the lower side and the upper side of the cross finger electrode within the above range in the SAW element using the quartz substrate made of the in-plane rotated ST-cut quartz plate. It has been found that even if the film thickness of the electrode is increased, the desired frequency characteristics and performance can be maintained and secured without substantially degrading, and the present invention has been created. As a result, the electrode pitch can be further reduced to achieve higher frequency and higher accuracy.

また、従来から交差指電極のパターニングにおいて、電極ピッチは非常に安定して正確に制御されるので、これを基準とすることによって、交差指電極の下辺及び上辺における線幅をより正確に設定しかつ形成することができる。   Conventionally, in patterning of the crossed finger electrodes, the electrode pitch is very stably and accurately controlled. By using this as a reference, the line widths at the lower and upper sides of the crossed finger electrode can be set more accurately. And can be formed.

或る実施例では、オイラー角が(0°,θ,0°<|ψ|<90°)の水晶基板を用いることにより、SAW素子をストップバンドの上限モードで励振させることが可能で、それにより電極膜厚を大きくしても周波数降下を抑制することができる。従って、優れた周波数温度特性を有しかつ高安定で、高周波化及び高精度化の可能なSAW素子を実現することができる。   In one embodiment, by using a quartz substrate with Euler angles (0 °, θ, 0 ° <| ψ | <90 °), it is possible to excite the SAW element in the stopband upper limit mode, Thus, the frequency drop can be suppressed even if the electrode film thickness is increased. Therefore, it is possible to realize a SAW element having excellent frequency temperature characteristics, high stability, high frequency and high accuracy.

別の実施例では、水晶基板のオイラー角を(0°,θ,9°<|ψ|<46°)にすることにより、従来のSTカット水晶板よりも優れた周波数温度特性を発揮させ、温度変化に対する周波数変動量を小さくすることができ、更に別の実施例では、水晶基板のオイラー角を(0°,95°<θ<155°,33°<|ψ|<46°)にすることにより、更に一層優れた周波数温度特性を得ることができる。   In another embodiment, by setting the Euler angles of the quartz substrate to (0 °, θ, 9 ° <| ψ | <46 °), a frequency temperature characteristic superior to that of a conventional ST-cut quartz plate is exhibited, The frequency fluctuation amount with respect to the temperature change can be reduced, and in another embodiment, the Euler angles of the crystal substrate are set to (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °). As a result, even better frequency temperature characteristics can be obtained.

本発明の別の側面によれば、かかる本発明のSAW素子を製造するのに適したSAW素子の製造方法が提供される。この製造方法は、水晶基板の主面に、IDTにより励振されるSAWの波長λに対してH/λ=0.05〜0.15となるように厚さHの電極膜を形成する工程と、該電極膜の上に塗布したレジスト材料をパターニングして交差指電極のレジストパターンを形成する工程と、該レジストパターンから露出する電極膜をドライエッチングしてその一部を除去し、かつ電極膜の残余部分をウエットエッチングにより完全に除去することにより、交差指電極を、そのSAWの伝搬方向に沿って下辺及び上辺における線幅d1,d2が(d1−d2)/p=0〜0.16となるように形成する工程を有する。   According to another aspect of the present invention, a method of manufacturing a SAW element suitable for manufacturing the SAW element of the present invention is provided. In this manufacturing method, an electrode film having a thickness H is formed on the main surface of the quartz substrate so that H / λ = 0.05 to 0.15 with respect to the wavelength λ of SAW excited by the IDT. A step of patterning a resist material applied on the electrode film to form a resist pattern of a crossed finger electrode; a portion of the electrode film exposed from the resist pattern is dry-etched to remove a part thereof; and an electrode film Are completely removed by wet etching, so that the line widths d1 and d2 on the lower side and the upper side along the SAW propagation direction are (d1−d2) / p = 0 to 0.16. A step of forming such that

電極膜は、例えば蒸着又はスパッタリングによりその膜厚Hを比較的正確に制御してけいせいすることができる。電極膜のドライエッチングも、そのエッチング量を比較的正確に制御することができ、電極膜残存部分のウエットエッチングも、同様に使用するエッチング液によりエッチングレートが予め分かっている。従って、本発明によれば、成膜した電極膜の厚さに対して、ドライエッチング及びウエットエッチングの各エッチング量を予め計算することによって、各交差指電極の上下各辺の線幅d1,d2を比較的正確にかつ容易に所望の範囲に形成することができる。   The electrode film can be formed by controlling the film thickness H relatively accurately, for example, by vapor deposition or sputtering. In the dry etching of the electrode film, the etching amount can be controlled relatively accurately, and the etching rate of the wet etching of the remaining part of the electrode film is also known in advance by the etching solution used. Therefore, according to the present invention, the line widths d1 and d2 of the upper and lower sides of each cross-finger electrode are calculated in advance by calculating the etching amounts of dry etching and wet etching with respect to the thickness of the deposited electrode film. Can be formed in a desired range relatively accurately and easily.

更に、本発明の別の側面によれば、上述した本発明の弾性表面波素子を備えることにより、優れた周波数温度特性を有しかつ高安定で、高周波化及び高精度化可能なSAWデバイスが提供される。   Furthermore, according to another aspect of the present invention, there is provided a SAW device that has the above-described surface acoustic wave device of the present invention and has excellent frequency temperature characteristics, high stability, high frequency, and high accuracy. Provided.

以下に、添付図面を参照しつつ、本発明の好適な実施例について詳細に説明する。図1(A)は、本発明を適用した1ポート型共振子用のSAW素子10を示している。SAW素子10は、図3に関連して上述した面内回転STカット水晶板からなる矩形の水晶基板11を有する。水晶基板11の主面には、その略中央に1対の交差指電極12a、12bからなるSAW励振用のIDT13が形成され、その長手方向の両側にそれぞれ格子状の反射器14、14が形成されている。前記交差指電極及び反射器は、加工性及びコストの観点からAlからなる電極膜で形成されている。別の実施例では、前記電極膜にAl/Cu膜を用いることもできる。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1A shows a SAW element 10 for a one-port resonator to which the present invention is applied. The SAW element 10 has a rectangular quartz substrate 11 made of the in-plane rotating ST-cut quartz plate described above with reference to FIG. On the main surface of the quartz substrate 11, an IDT 13 for SAW excitation comprising a pair of crossed finger electrodes 12 a and 12 b is formed at substantially the center, and lattice-like reflectors 14 and 14 are formed on both sides in the longitudinal direction. Has been. The cross finger electrode and the reflector are formed of an electrode film made of Al from the viewpoint of workability and cost. In another embodiment, an Al / Cu film can be used as the electrode film.

図1(B)は、SAWの伝搬方向に沿って交差指電極12a、12bの断面を示している。同図に示すように、各電極12a、12bはそのパターニングの工程によって、側面がテーパ化している。本実施例では、IDT13の電極ピッチ即ち隣接する交差指電極間の中心距離をp、電極12a、12bのSAW伝搬方向における下辺及び上辺の線幅をそれぞれd1,d2としたとき、(下辺d1−上辺d2)/電極ピッチp=Rが0〜0.16の範囲内に入るように、好ましくは概ね0.1となるようにIDT13を形成する。R=0の場合は、下辺d1=上辺d2となる理想的な場合である。   FIG. 1B shows a cross section of the crossed finger electrodes 12a and 12b along the SAW propagation direction. As shown in the figure, the side surfaces of the electrodes 12a and 12b are tapered by the patterning process. In this embodiment, when the electrode pitch of the IDT 13, that is, the center distance between the adjacent interdigitated electrodes is p, and the line widths of the lower and upper sides of the electrodes 12 a and 12 b in the SAW propagation direction are d1 and d2, respectively (lower side d1− The IDT 13 is formed so that the upper side d2) / electrode pitch p = R preferably falls within the range of 0 to 0.16, preferably about 0.1. The case of R = 0 is an ideal case where the lower side d1 = the upper side d2.

従来から、SAW素子の製造において交差指電極のパターニングでは、電極ピッチを非常に安定して正確に制御することができる。従って、電極ピッチを基準とすることによって、交差指電極の下辺及び上辺における線幅d1,d2をより正確に設定しかつ形成することが可能である。   Conventionally, in the patterning of the interdigitated electrodes in the manufacture of SAW elements, the electrode pitch can be controlled very stably and accurately. Therefore, by using the electrode pitch as a reference, the line widths d1 and d2 on the lower side and the upper side of the cross finger electrode can be set and formed more accurately.

反射器14、14も、同様にSAWの伝搬方向に沿った断面において、IDT13の各交差指電極12a、12bと同じテーパ角度を有するように形成される。   Similarly, the reflectors 14 and 14 are also formed so as to have the same taper angle as the crossed finger electrodes 12a and 12b of the IDT 13 in the cross section along the SAW propagation direction.

本実施例の水晶基板11は、オイラー角(0°,θ,0°<|ψ|<90°)の面内回転STカット水晶板であり、そのX´軸方向がSAWの伝搬方向と一致するように形成される。これにより、本実施例のようなシングル型IDTにおいてストップバンドの上限モードで励振させることが可能であり、電極膜厚を大きくしても、周波数降下を抑制することができる。従って、電極ピッチをより小さくして高周波化、高精度化を図ることができる。   The quartz substrate 11 of this embodiment is an in-plane rotated ST-cut quartz plate with Euler angles (0 °, θ, 0 ° <| ψ | <90 °), and the X′-axis direction coincides with the SAW propagation direction. To be formed. Thereby, it is possible to excite in the upper limit mode of the stop band in the single type IDT as in this embodiment, and even if the electrode film thickness is increased, the frequency drop can be suppressed. Therefore, the electrode pitch can be further reduced to achieve higher frequency and higher accuracy.

水晶基板11は、より好ましくはオイラー角が(0°,θ,9°<|ψ|<46°)であり、それにより従来のSTカット水晶板よりも優れた周波数温度特性を発揮し、温度変化に対する周波数変動量を小さくすることができる。更に好ましくは、水晶基板11のオイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)であり、より一層優れた周波数温度特性を得ることができる。   The quartz substrate 11 preferably has an Euler angle (0 °, θ, 9 ° <| ψ | <46 °), thereby exhibiting a frequency temperature characteristic superior to that of a conventional ST-cut quartz plate, The amount of frequency fluctuation with respect to the change can be reduced. More preferably, the Euler angles of the quartz substrate 11 are (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °), and even better frequency temperature characteristics can be obtained.

次に、図2を用いて、図1のIDT13を形成する工程を説明する。先ず、図2(A)に示すように、水晶基板11の表面にAl電極膜15を蒸着又はスパッタリングなどにより所定の膜厚Hに形成する。Al電極膜15の上にレジスト材料を塗布し、これをフォトリソグラフィ技術によりパターニングして、レジストパターン16を形成する。レジストパターン16から露出したAl電極膜15の一部を、反応性イオンエッチングなどのドライエッチングにより除去する(図2(B))。次に、適当なエッチング液を用いたウエットエッチングにより、Al電極膜15の残存部分15aを除去する(図2(C))。最後に、レジストパターン16を除去すると、図1(B)に示す所望の構造を有する交差指電極12a、12bからなるIDT13が形成される(図2(D))。   Next, a process of forming the IDT 13 of FIG. 1 will be described with reference to FIG. First, as shown in FIG. 2A, an Al electrode film 15 is formed on the surface of the quartz substrate 11 to have a predetermined film thickness H by vapor deposition or sputtering. A resist material is applied on the Al electrode film 15 and patterned by a photolithography technique to form a resist pattern 16. A part of the Al electrode film 15 exposed from the resist pattern 16 is removed by dry etching such as reactive ion etching (FIG. 2B). Next, the remaining portion 15a of the Al electrode film 15 is removed by wet etching using an appropriate etching solution (FIG. 2C). Finally, when the resist pattern 16 is removed, an IDT 13 including the interdigital electrodes 12a and 12b having a desired structure shown in FIG. 1B is formed (FIG. 2D).

Al電極膜15の膜厚Hは蒸着又はスパッタリングにより比較的正確に制御され、ドライエッチングによるAl電極膜15のエッチング量も比較的正確に制御でき、Al電極膜残存部分15aのウエットエッチングも、使用するエッチング液によりエッチングレートが予め分かっている。本実施例では、図示するように、最初のドライエッチングで水晶基板11の表面近くまで電極膜15を除去したが、ドライエッチング及びウエットエッチングの各エッチング量を予め計算することによって、各交差指電極の上下各辺の線幅d1,d2を比較的正確に上述した所望の範囲に形成することができる。   The film thickness H of the Al electrode film 15 is controlled relatively accurately by vapor deposition or sputtering, the etching amount of the Al electrode film 15 by dry etching can be controlled relatively accurately, and wet etching of the Al electrode film remaining portion 15a is also used. The etching rate is known in advance by the etching solution. In the present embodiment, as shown in the drawing, the electrode film 15 is removed to the vicinity of the surface of the quartz substrate 11 by the first dry etching. However, by calculating each etching amount of dry etching and wet etching in advance, The line widths d1 and d2 of the upper and lower sides can be formed in the above-described desired range relatively accurately.

実際に、オイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)の水晶基板を使用し、その表面に、図2に示す本発明の方法に従って厚さ1μmのAl電極膜を成膜しかつパターニングし、電極ピッチ5μm、線幅(=d1)3μmの交差指電極からなるIDTを形成した。各電極のSAW伝搬方向における下辺及び上辺の線幅をd1,d2として、(下辺d1−上辺d2)/電極ピッチpの値Rが0〜0.16の範囲内に入るように設定した。その結果、得られたSAW素子は、理想的なR=0の場合と反射効率が略同じであり、従って略同じ周波数特性を示すことが確認された。   Actually, a quartz substrate having Euler angles (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °) is used, and the surface is thickened according to the method of the present invention shown in FIG. An Al electrode film having a thickness of 1 μm was formed and patterned to form an IDT composed of cross-finger electrodes having an electrode pitch of 5 μm and a line width (= d1) of 3 μm. The line widths of the lower side and the upper side in the SAW propagation direction of each electrode were set as d1 and d2, and the value R of (lower side d1−upper side d2) / electrode pitch p was set within the range of 0 to 0.16. As a result, it was confirmed that the obtained SAW element had substantially the same reflection efficiency as that of an ideal R = 0, and therefore exhibited substantially the same frequency characteristics.

また、この水晶基板からなるSAW素子は、上述したように電極の膜厚を大きくしても周波数降下が小さいので有利である。従来のSTカット水晶板を用いた場合には、電極膜厚(H)とSAW波長(λ)との関係がH/λ=約0.03である。これに対し、本実施例のSAW素子は、H/λ=0.05〜0.15に設定することができる。従って本発明によれば、このように電極膜厚を大きくしても、反射効率及び周波数特性を良好に維持することができる。   Further, the SAW element made of this quartz substrate is advantageous because the frequency drop is small even if the electrode film thickness is increased as described above. When the conventional ST cut quartz plate is used, the relationship between the electrode film thickness (H) and the SAW wavelength (λ) is H / λ = about 0.03. On the other hand, the SAW element of the present embodiment can be set to H / λ = 0.05 to 0.15. Therefore, according to the present invention, even if the electrode film thickness is increased in this way, the reflection efficiency and the frequency characteristics can be maintained well.

以上、本発明の好適な実施例について説明したが、本発明は上記実施例に限定されるものではなく、これに様々な変形・変更を加えて実施し得ることは当業者に明らかである。例えば、上記実施例の1ポート型、シングル型IDT以外に、反射器を有しないものや、2ポート型、トランスバーサル型などの様々な構成を有するSAW素子についても、本発明は同様に適用することができ、また共振子以外の様々なSAWデバイスに用いることができる。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it will be apparent to those skilled in the art that various modifications and changes can be made thereto. For example, in addition to the 1-port type and single-type IDT of the above-described embodiment, the present invention is similarly applied to SAW elements having various configurations such as those having no reflector, 2-port type, and transversal type. And can be used in various SAW devices other than resonators.

(A)図は本発明を適用したSAW素子を示す平面図、(B)図はそのI−I線における部分拡大断面図。(A) The figure is a top view which shows the SAW element to which this invention is applied, (B) The figure is the elements on larger scale in the II line. (A)〜(D)図は図1のSAW素子を製造する工程を順に示す図1(B)と同様の部分拡大断面図。FIGS. 4A to 4D are partial enlarged cross-sectional views similar to FIG. 1B showing steps for manufacturing the SAW element of FIG. 本発明に使用する面内回転STカット水晶板を示す説明図。Explanatory drawing which shows the in-plane rotation ST cut quartz plate used for this invention.

符号の説明Explanation of symbols

1…水晶Z板、2…STカット水晶板、3…面内回転STカット水晶板、10…SAW素子、11…水晶基板、12a,12b…交差指電極、13…IDT、14…反射器、15…Al電極膜、15a…残存部分、16…レジストパターン。 DESCRIPTION OF SYMBOLS 1 ... Crystal Z plate, 2 ... ST cut crystal plate, 3 ... In-plane rotation ST cut crystal plate, 10 ... SAW element, 11 ... Crystal substrate, 12a, 12b ... Interstitial electrode, 13 ... IDT, 14 ... Reflector, 15 ... Al electrode film, 15a ... remaining portion, 16 ... resist pattern.

Claims (6)

面内回転STカット水晶板からなる水晶基板と、前記水晶基板の主面に所定のピッチpで形成された少なくとも1組の交差指電極からなるIDTとを備え、
前記交差指電極の膜厚Hが、前記IDTにより励振される弾性表面波(SAW)の波長λに対してH/λ=0.05〜0.15となるように設定され、
前記SAWの伝搬方向に沿って前記交差指電極の下辺及び上辺における線幅d1,d2が、(d1−d2)/p=0〜0.16となるように設定されていることを特徴とする弾性表面波素子。
A quartz substrate made of an in-plane rotating ST-cut quartz plate, and an IDT made of at least one set of interdigitated electrodes formed at a predetermined pitch p on the principal surface of the quartz substrate,
The thickness H of the interdigitated electrode is set to be H / λ = 0.05 to 0.15 with respect to the wavelength λ of the surface acoustic wave (SAW) excited by the IDT,
Line widths d1 and d2 on the lower side and the upper side of the cross-finger electrode along the SAW propagation direction are set to be (d1−d2) / p = 0 to 0.16. Surface acoustic wave device.
前記水晶基板のオイラー角が(0°,θ,0°<|ψ|<90°)であることを特徴とする請求項1に記載の弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein an Euler angle of the quartz crystal substrate is (0 °, θ, 0 ° <| ψ | <90 °). 前記水晶基板のオイラー角が(0°,θ,9°<|ψ|<46°)であることを特徴とする請求項2に記載の弾性表面波素子。   3. The surface acoustic wave device according to claim 2, wherein the Euler angles of the quartz substrate are (0 °, θ, 9 ° <| ψ | <46 °). 前記水晶基板のオイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)であることを特徴とする請求項3に記載の弾性表面波素子。   4. The surface acoustic wave device according to claim 3, wherein the Euler angles of the quartz substrate are (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °). 請求項1乃至4のいずれかに記載の弾性表面波素子を製造するために、前記水晶基板の主面に、前記IDTにより励振されるSAWの波長λに対してH/λ=0.05〜0.15となるように厚さHの電極膜を形成する工程と、前記電極膜の上に塗布したレジスト材料をパターニングして前記交差指電極のレジストパターンを形成する工程と、前記レジストパターンから露出する前記電極膜をドライエッチングしてその一部を除去し、かつ前記電極膜の残余部分をウエットエッチングにより完全に除去することにより、前記交差指電極を、その前記SAWの伝搬方向に沿って下辺及び上辺における線幅d1,d2が(d1−d2)/p=0〜0.16となるように形成する工程を有することを特徴とする弾性表面波素子の製造方法。   5. In order to manufacture the surface acoustic wave device according to claim 1, H / λ = 0.05 to the wavelength λ of the SAW excited by the IDT on the main surface of the quartz substrate. A step of forming an electrode film having a thickness H so as to be 0.15, a step of patterning a resist material applied on the electrode film to form a resist pattern of the crossed finger electrode, The exposed electrode film is dry-etched to remove a part thereof, and the remaining part of the electrode film is completely removed by wet etching, so that the cross finger electrode is moved along the propagation direction of the SAW. A method of manufacturing a surface acoustic wave device, comprising a step of forming line widths d1 and d2 on a lower side and an upper side to be (d1-d2) / p = 0 to 0.16. 請求項1乃至4のいずれかに記載の弾性表面波素子を備えることを特徴とする弾性表面波デバイス。   A surface acoustic wave device comprising the surface acoustic wave element according to claim 1.
JP2004377616A 2004-12-27 2004-12-27 Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device Pending JP2006186623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377616A JP2006186623A (en) 2004-12-27 2004-12-27 Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377616A JP2006186623A (en) 2004-12-27 2004-12-27 Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006186623A true JP2006186623A (en) 2006-07-13

Family

ID=36739401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377616A Pending JP2006186623A (en) 2004-12-27 2004-12-27 Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006186623A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142794A (en) * 2005-11-18 2007-06-07 Epson Toyocom Corp Surface acoustic wave element chip and surface acoustic wave device
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
JPWO2011145449A1 (en) * 2010-05-19 2013-07-22 株式会社村田製作所 Surface acoustic wave device
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142794A (en) * 2005-11-18 2007-06-07 Epson Toyocom Corp Surface acoustic wave element chip and surface acoustic wave device
JP4569447B2 (en) * 2005-11-18 2010-10-27 エプソントヨコム株式会社 Surface acoustic wave element and surface acoustic wave device
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
JPWO2011145449A1 (en) * 2010-05-19 2013-07-22 株式会社村田製作所 Surface acoustic wave device
US9368712B2 (en) 2010-05-19 2016-06-14 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus

Similar Documents

Publication Publication Date Title
US10938371B2 (en) Acoustic wave resonator, filter, and multiplexer
US20210066575A1 (en) Elastic wave device
TWI762832B (en) Surface acoustic wave device
JP6415469B2 (en) Acoustic wave resonator, filter and multiplexer, and method for manufacturing acoustic wave resonator
JP5187444B2 (en) Surface acoustic wave device
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
WO2010137279A1 (en) Acoustic wave resonator and duplexer using same
JPH1174751A (en) Surface acoustic wave device
JP2006270906A (en) Temperature high stability/high-coupling groove structure surface acoustic wave substrate and surface acoustic wave function element using the substrate
JP2002330051A (en) Surface acoustic wave unit and surface acoustic wave device using the same
WO2020204045A1 (en) High-order mode surface acoustic wave device
JP2006186623A (en) Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device
JP5213708B2 (en) Manufacturing method of surface acoustic wave device
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
EP1184978A2 (en) Surface acoustic wave device and method of producing the same
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP2007288812A5 (en)
JP2010103621A (en) Elastic wave apparatus
JP2006074136A (en) Surface acoustic wave element chip and surface acoustic wave device
JP3341596B2 (en) Surface wave device
JPWO2002056466A1 (en) Surface acoustic wave device and method of manufacturing the same
JP2007053670A (en) Elastic boundary wave element
WO2024029361A1 (en) Elastic wave device and filter device
JP3341704B2 (en) Manufacturing method of edge reflection type surface acoustic wave device
JP2003218665A (en) Surface acoustic wave filter