JPH057674B2 - - Google Patents

Info

Publication number
JPH057674B2
JPH057674B2 JP58070599A JP7059983A JPH057674B2 JP H057674 B2 JPH057674 B2 JP H057674B2 JP 58070599 A JP58070599 A JP 58070599A JP 7059983 A JP7059983 A JP 7059983A JP H057674 B2 JPH057674 B2 JP H057674B2
Authority
JP
Japan
Prior art keywords
earthquake
time
occurrence
exceeded
comparison circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58070599A
Other languages
Japanese (ja)
Other versions
JPS59195178A (en
Inventor
Kyoko Myashita
Tadamitsu Ryu
Hideaki Arisaka
Nobuaki Hashioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58070599A priority Critical patent/JPS59195178A/en
Publication of JPS59195178A publication Critical patent/JPS59195178A/en
Publication of JPH057674B2 publication Critical patent/JPH057674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • G01V1/01

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 発明の技術分野 本発明は地震波発生の時刻、即ち、地震波発生
の時点(time point)を精度高く判定する方式に
関する。 (2) 従来技術と問題点 従来から地震発生時刻を判定するため、複数の
地震波観測テレメータ装置における観測信号をデ
ータセンタに集め、移動平均法により地震波発生
の時刻を判定していた。すなわち第1図に示すよ
うに地震波を電圧レベルに変換して観測すると
き、1秒間程度の短時間a0〜a40平均の電圧レベ
ルaLと、40秒間程度の長時間b40〜b0平均値bL
を比較し、 bL×α<aL となるときの短時間a40〜a0のいずれかの開始時
刻を地震波発生の時刻と判定する。ただしαは1
より大きな任意の定数とし、起こり易い地震の大
きさに対応させて選定する。第1図ではa40、a39
……と推移し、a0において所定のスレシヨルドレ
ベルを超えたとき、長時間平均値bLは急激な変化
を起こさないので、短時間a0における平均値の方
が急に大きく変化する。この場合、長時間とする
長さ、αの大きさについて、理論的な妥当値を求
めることが困難であり、経験により適当な値を使
用していた。気象変化に対応してαを定めること
が良いという検討もされている。また、時刻aに
おいて、地震波と同一周波数帯域でノイズが発生
したときデータセンタは地震発生と判断するの
で、実際の地震とノイズとを区別できずに、地震
発生時刻を誤るという欠点があつた。 (3) 発明の目的 本発明の目的は前述の欠点を改善し、複数のデ
ータ処理を併せて行うことにより、精度高く地震
波発生の時刻を判定する方式を提供することにあ
る。 (4) 発明の構成 前述の目的を達成するための本発明の構成は、
地震波観測テレメータ装置からの観測信号をデー
タセンタに集め、該観測信号の変化から地震発生
の判定を行う方式において、前記観測信号を常時
高速フーリエ変換し、地震波特有の周波数範囲で
のスペクトルの積算値を平常時の積算値と比較す
る第1比較回路と、前記観測信号を移動平均演算
し平常時の値と比較する第2比較回路と、を具備
し、前記第1比較回路で規定レベルを超えたこと
を検出し、更に後記第2比較回路においても規定
レベルを超えたことを検出したとき地震発生と判
定し、その何れの比較回路によるか予め定めてお
いた比較回路により、規定レベルを超えたと判定
した時刻を地震発生時刻とする。 (5) 発明の実施例 第2図は本発明の一実施例の構成を示す図で、
地震計EQとそのテレメータ装置TMからの観測
信号はデータセンタDTCに集められる。データ
センタDTCではテレメータ受信装置TRVにおい
てA/D変換され、得られたデイジタル信号につ
いて判定を行う。デイジタル信号を前述の移動平
均法による移動平均処理回路TDと、本発明によ
る高速フーリエ変換処理回路FFTに入力する。
高速フーリエ変換処理は或る時刻のデイジタル信
号について、第3図A,Bに示すように、周波数
対振幅値を求めることである。即ち地震波の特有
の周波数範囲W1〜W2について、第3図Aに示す
前述のようなスレシヨルドレベルを超える信号が
入力したときに、振幅積分値A1と、第3図Bに
示す所謂平常時の雑音レベルにおける或る時刻t1
の振幅積分値A2とを比較する。そして A2×β<A1 (ただしβは1より大きな任意の定数とする) となつたときの時刻t0を地震波発生の時刻と判定
する。中央処理装置CPUは、高速フーリエ変換
処理を行うと共に、前記積算値A1,A2の比較
を行う第1比較回路として動作する。 更に中央処理装置CPUは従来の装置と同様に
移動平均法による判定を行うため、第2比較回路
としても動作する。 その結果中央処理装置CPUは前述と同様の移
動平均法により地震波発生を検出し、更にFFT
法により地震波発生を検出したとき、真の地震波
発生と判定し、この時地震発生時刻は移動平均法
により求められた時刻又はFFT法により求めた
時刻のうち、例えば後者のFFT法により求めた
時刻とするように予め定めておく。若し、移動平
均法によつて地震発生と判断したが、FFT法に
よつては発生としなければ、外来雑音などによる
こととして、中央処理装置はその後の処理を行わ
ない。更にFFTにより演算するとき、地震波特
有の帯域におけるノイズを常時調べているから、
地震波特有の帯域における観測信号について前記
ノイズ信号を差し引いて後、演算処理を行うこと
で、地震波に混入している雑音の影響を取り除く
ことが出来る。 (6) 発明の効果 このようにして本発明によると、高速フーリエ
変換による判定を従来の移動平均による判定と併
用することにより、異なる地点からの地震波を判
定するときに、途中の地質の状態や、気象条件に
基づく誤差を減少し、精度の高い地震波発生時刻
を求めることができる。また突発的な外来雑音が
到来し、バツクグランドノイズが変化していると
きでも、それらの影響が容易に取り除けるため、
時刻観測が正確となり、地震発生地点をより正確
に求めることができる。
(1) Technical Field of the Invention The present invention relates to a method for determining the time of seismic wave generation, that is, the time point of seismic wave generation with high accuracy. (2) Conventional technology and problems Conventionally, in order to determine the time of earthquake occurrence, observation signals from multiple seismic wave observation telemeter devices were collected at a data center, and the time of earthquake wave occurrence was determined using the moving average method. In other words, as shown in Figure 1, when seismic waves are converted to voltage levels and observed, the average voltage level a L for a short time of about 1 second is a 0 to a 40 , and the average voltage level a L for a long time of about 40 seconds b 40 to b 0 The average value b L is compared, and the start time of any one of the short periods a 40 to a 0 when b L ×α<a L is determined as the time of seismic wave generation. However, α is 1
A larger arbitrary constant is selected in accordance with the magnitude of earthquakes that are likely to occur. In Figure 1, a 40 and a 39
..., and when a predetermined threshold level is exceeded at a 0 , the long-term average value b L does not change suddenly, so the average value at short-time a 0 changes suddenly and greatly. . In this case, it is difficult to obtain theoretically appropriate values for the length of time and the size of α, and appropriate values have been used based on experience. It is also being considered that it would be better to determine α in response to weather changes. Furthermore, since the data center determines that an earthquake has occurred when noise occurs in the same frequency band as the seismic wave at time a, there is a drawback that the actual earthquake cannot be distinguished from the noise and the earthquake occurrence time is incorrect. (3) Purpose of the Invention The purpose of the present invention is to improve the above-mentioned drawbacks and to provide a method for determining the time of seismic wave generation with high accuracy by performing multiple data processing at the same time. (4) Structure of the invention The structure of the present invention to achieve the above object is as follows:
In a method in which observation signals from seismic wave observation telemeter equipment are collected in a data center and the occurrence of an earthquake is determined based on changes in the observation signals, the observation signals are constantly subjected to fast Fourier transform and the integrated value of the spectrum in a frequency range specific to seismic waves is calculated. and a second comparison circuit that calculates a moving average of the observed signal and compares it with the normal value; It is determined that an earthquake has occurred when the second comparison circuit (described below) also detects that the specified level has been exceeded. The time when it is determined that the earthquake occurred is the time when the earthquake occurred. (5) Embodiment of the invention FIG. 2 is a diagram showing the configuration of an embodiment of the invention.
Observation signals from the seismometer EQ and its telemeter device TM are collected at the data center DTC. In the data center DTC, the telemeter receiving device TRV performs A/D conversion, and a determination is made on the obtained digital signal. The digital signal is input to the moving average processing circuit TD using the above-mentioned moving average method and the fast Fourier transform processing circuit FFT according to the present invention.
The fast Fourier transform process is to obtain frequency versus amplitude values for a digital signal at a certain time, as shown in FIGS. 3A and 3B. That is, when a signal exceeding the above-mentioned threshold level shown in FIG. 3A is input for the characteristic frequency range W1 to W2 of seismic waves, the amplitude integral value A1 and the so-called normal state shown in FIG. 3B are At a certain time t1 at the noise level of
is compared with the amplitude integral value A2. Then, the time t0 when A2×β<A1 (where β is an arbitrary constant greater than 1) is determined to be the time of seismic wave generation. The central processing unit CPU performs fast Fourier transform processing and operates as a first comparison circuit that compares the integrated values A1 and A2. Furthermore, since the central processing unit CPU performs determination using the moving average method as in conventional devices, it also operates as a second comparison circuit. As a result, the central processing unit CPU detects the occurrence of seismic waves using the same moving average method as described above, and further uses the FFT
When the occurrence of seismic waves is detected by the method, it is judged as a true seismic wave occurrence, and in this case, the earthquake occurrence time is the time obtained by the moving average method or the time obtained by the FFT method, for example, the time obtained by the latter FFT method. It is determined in advance that If the moving average method determines that an earthquake has occurred, but the FFT method does not determine that an earthquake has occurred, the central processing unit assumes that it is due to external noise and does not perform any further processing. Furthermore, when calculating using FFT, noise in the band specific to seismic waves is constantly investigated, so
By subtracting the noise signal from the observed signal in a band specific to seismic waves and then performing arithmetic processing, it is possible to remove the influence of noise mixed in the seismic waves. (6) Effects of the Invention As described above, according to the present invention, by using determination based on fast Fourier transform together with determination based on conventional moving average, when determining seismic waves from different points, geological conditions along the way and , it is possible to reduce errors based on weather conditions and obtain highly accurate seismic wave generation times. In addition, even when sudden external noise arrives and the background noise changes, the effects can be easily removed.
Time observation becomes more accurate, and the location of earthquake occurrence can be determined more accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は地震波を移動平均法により判定する説
明図、第2図は本発明の一実施例の構成を示す
図、第3図は高速フーリエ変換処理の説明図であ
る。 EQ……地震計、TM……テレメータ装置、
DTC……データセンタ、TRV……移動平均法処
理回路、FFT……高速フーリエ変換処理回路、
CPU……中央処理装置。
FIG. 1 is an explanatory diagram for determining seismic waves by the moving average method, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 3 is an explanatory diagram of fast Fourier transform processing. EQ...seismograph, TM...telemeter device,
DTC...Data center, TRV...Moving average processing circuit, FFT...Fast Fourier transform processing circuit,
CPU...Central processing unit.

Claims (1)

【特許請求の範囲】 1 地震波観測テレメータ装置からの観測信号を
データセンタに集め、該観測信号の変化から地震
発生の判定を行う方式において、 前記観測信号を常時高速フーリエ変換し、地震
波特有の周波数範囲でのスペクトルの積算値を平
常時の積算値と比較する第1比較回路と、 前記観測信号を移動平均演算し平常時の値と比
較する第2比較回路と、を具備し、 前記第1比較回路で規定レベルを超えたことを
検出し、更に後記第2比較回路においても規定レ
ベルを超えたことを検出したとき地震発生と判定
し、 その何れの比較回路によるか予め定めておいた
比較回路により、規定レベルを超えたと判定した
時刻を地震波発生時刻とすること を特徴とする地震発生判定方式。
[Claims] 1. A method in which observation signals from a seismic wave observation telemeter device are collected in a data center and the occurrence of an earthquake is determined based on changes in the observation signals, the observation signals being constantly subjected to fast Fourier transform to determine the frequency characteristic of seismic waves. a first comparison circuit that compares the integrated value of the spectrum in the range with the integrated value during normal times; and a second comparing circuit that calculates a moving average of the observed signal and compares it with the normal value; When the comparison circuit detects that the specified level has been exceeded, and the second comparison circuit (described below) also detects that the specified level has been exceeded, it is determined that an earthquake has occurred. An earthquake occurrence determination method characterized by setting the time when a circuit determines that a specified level has been exceeded as the earthquake wave occurrence time.
JP58070599A 1983-04-21 1983-04-21 Earthquake deciding method Granted JPS59195178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070599A JPS59195178A (en) 1983-04-21 1983-04-21 Earthquake deciding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070599A JPS59195178A (en) 1983-04-21 1983-04-21 Earthquake deciding method

Publications (2)

Publication Number Publication Date
JPS59195178A JPS59195178A (en) 1984-11-06
JPH057674B2 true JPH057674B2 (en) 1993-01-29

Family

ID=13436186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070599A Granted JPS59195178A (en) 1983-04-21 1983-04-21 Earthquake deciding method

Country Status (1)

Country Link
JP (1) JPS59195178A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103596A (en) * 1985-10-31 1987-05-14 Radio Res Lab Seismic forecast by potential difference or dynamic spectrum of radio wave
JPH10508109A (en) * 1995-07-05 1998-08-04 ゲオフォルシュンクスツェントルム・ポツダム Earthquake monitoring
CA2496988C (en) * 2002-08-30 2013-05-14 Seismic Warning Systems, Inc. Sensor apparatus and method for detecting earthquake generated p-waves and generating a responsive control signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115281A (en) * 1977-03-18 1978-10-07 Oki Electric Ind Co Ltd Earthquake discrimination system
JPS56166481A (en) * 1980-05-28 1981-12-21 Fujitsu Ltd Deciding method of earthquake
JPS5757273A (en) * 1980-09-25 1982-04-06 Japanese National Railways<Jnr> Early sensing and warning system for earthquake

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115281A (en) * 1977-03-18 1978-10-07 Oki Electric Ind Co Ltd Earthquake discrimination system
JPS56166481A (en) * 1980-05-28 1981-12-21 Fujitsu Ltd Deciding method of earthquake
JPS5757273A (en) * 1980-09-25 1982-04-06 Japanese National Railways<Jnr> Early sensing and warning system for earthquake

Also Published As

Publication number Publication date
JPS59195178A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US10932073B2 (en) Method and system for measuring total sound pressure level of noise, and computer readable storage medium
CN111161171B (en) Blasting vibration signal baseline zero drift correction and noise elimination method, device, equipment and system
Sereno Jr et al. Seismic detection capability at NORESS and implications for the detection threshold of a hypothetical network in the Soviet Union
JP4509837B2 (en) Early earthquake specifications estimation method and system
MaMullen et al. A simple rising-edge detector for time-of-arrival estimation
Davis et al. An assessment of the accuracy of GSN sensor response information
US10386510B2 (en) Earthquake Detection System and Method
JPH057674B2 (en)
JP4465509B2 (en) Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method
Wenz Some periodic variations in low‐frequency acoustic ambient noise levels in the ocean
JP3291102B2 (en) Ultrasonic distance measuring device
CN112834774B (en) Threshold value self-adaptive rotating speed signal processing system and method thereof
JPH0682067B2 (en) Earthquake detector
Montes et al. Co-phase analysis of atmospheric wave data
RU2796528C1 (en) Noise rejection method in magnetotelluric sounding
CN115372920B (en) Radar condensation compensation method, device, equipment and storage medium
JPH0263194B2 (en)
JPS587538A (en) Knocking detecting device
KR100236234B1 (en) Lag inspector of shock absorber
JPS5621059A (en) Method and device for determining position in ae measurement
RU2055402C1 (en) Method for assessment of noises generated by remote ships in shallow sea
JPH0311751Y2 (en)
JPH01133198A (en) Method for alarming earthquake
JP2024057455A (en) Epicenter distance estimation device, epicenter distance estimation program, and epicenter distance estimation method
CN117992930A (en) Structural modal parameter identification method based on frequency response filtering