JPH056949A - Heat sink - Google Patents

Heat sink

Info

Publication number
JPH056949A
JPH056949A JP3183383A JP18338391A JPH056949A JP H056949 A JPH056949 A JP H056949A JP 3183383 A JP3183383 A JP 3183383A JP 18338391 A JP18338391 A JP 18338391A JP H056949 A JPH056949 A JP H056949A
Authority
JP
Japan
Prior art keywords
heat sink
plating
alloy
thickness
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183383A
Other languages
Japanese (ja)
Inventor
Toshihito Kobayashi
俊仁 小林
Mikio Niimi
幹夫 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP3183383A priority Critical patent/JPH056949A/en
Publication of JPH056949A publication Critical patent/JPH056949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a high efficiency heat sink with low costs by a method wherein Cu plating is performed onto every part of upper, lower and end surfaces of a material selected from metals of Mo, W or an alloy thereof and an Fe-Ni alloy. CONSTITUTION:In a semiconductor device to which a power element is mounted through a heat sink, a heat sink material comprises one selected from metals of Mo, W or an alloy thereof and an Fe-Ni alloy. Namely, the heat sink material comprises a matter having the coefficient of linear expansion 3 to 7X10<-6>/K. A Cu plating having a thickness of at least 50mum or more is performed on the surface of the heat sink material and on every part of upper, lower, and end surfaces. Thus, the high efficiency heat sink is obtained with low costs, and further if a low-heat expansion material using as the heat sink material and a thickness in the Cu plating are appropriately selected, the heat sink making the most of both characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワ−素子用ヒ−トシ
ンクに関し、接合部信頼性と放熱性を改善したCuめっ
きヒ−トシンクに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink for power devices, and more particularly to a Cu-plated heat sink having improved joint reliability and heat dissipation.

【0002】[0002]

【従来の技術】従来、ヒ−トシンク材料としては、放熱
性の面からCuおよびCu合金が、はんだ接合部信頼性
の面からMoやWが用いられており、いずれもNiめっ
きを施してパワ−素子とAl2 3 セラミックス基板の
間に接合される。
2. Description of the Related Art Conventionally, as heat sink materials, Cu and Cu alloys have been used from the viewpoint of heat dissipation, and Mo and W have been used from the viewpoint of reliability of solder joints. Bonded between the element and the Al 2 O 3 ceramic substrate.

【0003】Cuは熱伝導性が高く優れた放熱性を有す
るが、熱膨張係数がSiやAl2 3 よりも3〜4倍大
きく、ハイパワ−素子が搭載される場合、熱膨張の違い
による歪が接合材のはんだの劣化を促進してしまう。一
方、MoやWは熱膨張係数が較的低く、はんだ劣化を遅
延させるには優れた材料であるが、熱伝導率が低いた
め、Cuを用いた場合よりも放熱性の点で劣る。従っ
て、両者を複合化することにより、パワ−素子用に適し
たヒ−トシンクが期待できる。
Cu has a high thermal conductivity and an excellent heat dissipation property, but its coefficient of thermal expansion is 3 to 4 times larger than that of Si or Al 2 O 3 , and when a high power element is mounted, it depends on the difference in thermal expansion. The distortion accelerates the deterioration of the solder of the bonding material. On the other hand, Mo and W have relatively low coefficients of thermal expansion and are excellent materials for delaying solder deterioration, but since they have low thermal conductivity, they are inferior in heat dissipation properties to the case of using Cu. Therefore, by combining both, a heat sink suitable for a power element can be expected.

【0004】CuとMoやWを複合させる提案として
は、MoやWを樹脂とともに成形し、樹脂を除去してポ
−ラスとしたのちCuを含浸する方法や、クラッドによ
り接合(CuとFe−42Ni合金が一般的)する方法
がある。
As a proposal to combine Cu and Mo or W, a method of molding Mo or W together with a resin, removing the resin to form a porous layer, and then impregnating Cu, or joining with a clad (Cu and Fe- 42Ni alloy is common).

【0005】[0005]

【発明が解決しようとする課題】前記従来技術におい
て、低熱膨張金属へのCuの含浸は工程が複雑でコスト
高をまねき、クラッド法では圧接条件が厳しく、信頼性
の高い接合は望めない。特にMoおよびWは焼結インゴ
ットからの圧延のため、長尺材を得るのが難しく、さら
に強固な酸化物の存在のため、異種金属とのクラッドは
困難を極める。
In the above-mentioned prior art, impregnation of Cu into a low thermal expansion metal involves a complicated process and leads to a high cost. In the cladding method, the pressure welding conditions are strict and reliable joining cannot be expected. In particular, since Mo and W are rolled from a sintered ingot, it is difficult to obtain a long material, and the presence of a strong oxide makes clading with a dissimilar metal extremely difficult.

【0006】[0006]

【課題を解決するための手段】本発明は上記問題点を解
決するためになされたもので、金属もしくは合金にCu
めっきしてなるヒ−トシンクを提案するものである。例
えば42Ni−Fe合金へのCuめっきでは、切断成形
された42Ni−Fe合金に、電気もしくは無電解でC
uをめっきし、上下・端面にCuがめっきされた42N
i−Fe合金の小片を得る。
The present invention has been made in order to solve the above-mentioned problems, and Cu is added to a metal or an alloy.
It proposes a heat sink formed by plating. For example, in Cu plating on a 42Ni-Fe alloy, the cut and formed 42Ni-Fe alloy is electrically or electrolessly C-coated.
42N with u plating and Cu plating on the top and bottom / end surfaces
Obtain a small piece of i-Fe alloy.

【0007】放熱性の程度により、Cuめっきとヒ−ト
シンク材の厚さを変えて各種のヒ−トシンクを得ること
がができる。また、よりパワ−素子との接合部の信頼性
を重視する場合には、Cuめっきの上にさらにNiめっ
きを施す。すなわち、本発明の要旨とするところは、M
o、Wの金属もしくはその合金、Fe−Ni合金より選
ばれた材料に上下・端面すべてにCuめっきしてなるヒ
−トシンクであり、放熱性を高めるためにCuめっき厚
さは50μm以上が好ましい。
Various heat sinks can be obtained by changing the thickness of the Cu plating and the heat sink material depending on the degree of heat dissipation. Further, when more importance is placed on the reliability of the joint with the power element, Ni plating is further applied on top of Cu plating. That is, the gist of the present invention is that M
It is a heat sink formed by Cu-plating all the upper and lower surfaces of a material selected from o and W metals or alloys thereof, and Fe-Ni alloy, and the Cu plating thickness is preferably 50 μm or more in order to enhance heat dissipation. .

【0008】[0008]

【作用およに効果】本発明により、高放熱性のヒ−トシ
ンクが安価に得られる。さらに、ヒ−トシンク材として
の低膨張材料の選定と、Cuめっきの厚さを適当に選定
すれば、両者の特徴を生かしたヒ−トシンクが得られ
る。
According to the present invention, a heat sink with high heat dissipation can be obtained at low cost. Furthermore, if a low expansion material as a heat sink material is selected and the thickness of Cu plating is appropriately selected, a heat sink that makes use of the characteristics of both can be obtained.

【0009】[0009]

【実施例】以下に本発明をその一実施例に基づいて説明
する。 (実施例1) 図1において、1は熱膨張係数が低い4
2Ni−Fe製板8に熱伝導性が高いCuめっき9を施
した作製したヒ−トシンクで、2は前記ヒ−トシンク1
上に搭載されたパワ−素子で、3は前記ヒ−トシンク1
のパワ−素子2とは反対側に配置されたセラミックス基
板で、4は前記セラミックス基板3のヒ−トシンク1と
は反対側に配置されたファンである。5はセラミックス
基板3とファン4との間に介在させた放熱グリ−スで、
6はヒ−トシンク1をパワ−素子2及びセラミックス基
板3に接合させるはんだである。
The present invention will be described below based on an embodiment thereof. (Example 1) In FIG. 1, 1 is a low coefficient of thermal expansion 4
2 A heat sink produced by applying a Cu plating 9 having a high thermal conductivity to a Ni-Fe plate 8 and 2 is the heat sink 1
The power device mounted on the upper part 3 is the heat sink 1
2 is a ceramic substrate arranged on the side opposite to the power element 2 and 4 is a fan arranged on the side opposite to the heat sink 1 of the ceramic substrate 3. Reference numeral 5 is a heat radiating grease interposed between the ceramic substrate 3 and the fan 4,
Reference numeral 6 is a solder for joining the heat sink 1 to the power element 2 and the ceramic substrate 3.

【0010】より具体的に説明すると、ダイヤモンド砥
石により7mm×7mmの形状に切断した厚さ0.3mmの4
2Ni−Fe板8の端面を含む全面に、厚さ100μm
のCuめっき9を施した。ここで、Cuめっきは一般的
なピロリン酸浴による電気めっき法で行った。
More specifically, a diamond grindstone cut into a shape of 7 mm × 7 mm and having a thickness of 0.3 mm
The thickness of 100 μm on the entire surface including the end surface of the 2Ni-Fe plate 8
Cu plating 9 was applied. Here, Cu plating was performed by an electroplating method using a general pyrophosphoric acid bath.

【0011】(実施例2) 図2は熱膨張係数が低い4
2Ni−Fe製板8に熱伝導性が高いCuめっき9を施
したのち、さらにはんだ接合部の信頼性の高いNiめっ
き10を施して作製したヒ−トシンクであり、他の構成
は実施例1と同じである。
Example 2 FIG. 2 shows that the coefficient of thermal expansion is low.
2 Ni-Fe plate 8 is a heat sink manufactured by applying Cu plating 9 having high thermal conductivity, and then Ni plating 10 having high reliability of the solder joint portion, and other configurations are those of Example 1 Is the same as.

【0012】より具体的に説明すると、ダイヤモンド砥
石により7mm×7mmの形状に切断した厚さ0.3mmの4
2Ni−Fe板8の端面を含む全面に、厚さ100μm
のCuめっき9を施したものに、Niめっき10を施し
た。ここで、Cuめっきは一般的なピロリン酸Cuめっ
き浴による電気めっき法で行い、Niめっきは一般的な
ワット浴による電気めっき法で行い5μm のめっき厚と
した。
More specifically, a diamond grindstone cut into a shape of 7 mm × 7 mm having a thickness of 0.3 mm
The thickness of 100 μm on the entire surface including the end surface of the 2Ni-Fe plate 8
The Ni plating 10 was applied to the Cu plating 9 of the above. Here, Cu plating was performed by a general electroplating method using a Cu pyrophosphate plating bath, and Ni plating was performed by a general electroplating method using a Watts bath to a plating thickness of 5 μm.

【0013】(実施例3) 実施例1と同様にヒ−トシ
ンク1を7mm×7mmの形状に作製し、また、厚さ0.5
mmの42Ni−Fe板8から切り出し7mm×7mmの小片
を作成し、比較材とした。
(Embodiment 3) The heat sink 1 was formed in a shape of 7 mm x 7 mm in the same manner as in Embodiment 1, and the thickness was 0.5.
A 7 mm × 7 mm piece was cut out from a 42 mm Ni-Fe plate 8 having a size of 8 mm to prepare a comparative material.

【0014】これらのヒ−トシンク1を図3に示す如
く、理想放熱を想定した積層構造に組み込み、パワ−素
子2とセラミックス基板3とで挟んではんだ6で接合
し、該セラミックス基板3を放熱グリ−ス5を介してA
l製のファン4と接触させた。さらに、パワ−素子2を
発熱させ、そのときの温度上昇を温度測定点7で熱電対
により測定した。
As shown in FIG. 3, these heat sinks 1 are assembled in a laminated structure assuming ideal heat radiation, sandwiched between the power element 2 and the ceramic substrate 3 and joined with solder 6, and the ceramic substrate 3 is radiated. A through grease 5
It was brought into contact with an l-made fan 4. Further, the power element 2 was made to generate heat, and the temperature rise at that time was measured by a thermocouple at the temperature measuring point 7.

【0015】図4が発熱量5W、10W,15Wのとき
の温度上昇を示した図であり、比較材の42Ni−Fe
(1b)が熱抵抗3.9K/Wの熱抵抗を示すのに対し
て、本発明のCuめっき42Ni−Fe(1a)では
1.0K/Wへ放熱性が改善されている。
FIG. 4 is a graph showing the temperature rise when the heating value is 5 W, 10 W, and 15 W.
While (1b) shows a thermal resistance of 3.9 K / W, the Cu plating 42Ni-Fe (1a) of the present invention has improved heat dissipation to 1.0 K / W.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、42Ni−Fe板にCuめっきを施し
た本発明のヒ−トシンクを用いた半導体装置の側断面図
である。
FIG. 1 is a side sectional view of a semiconductor device using a heat sink of the present invention in which a 42Ni—Fe plate is plated with Cu.

【図2】図2は、42Ni−Fe板にCuめっきを施し
たものに、さらにNiめっきを施した本発明のヒ−トシ
ンクを用いた半導体装置の側断面図である。
FIG. 2 is a side sectional view of a semiconductor device using a heat sink of the present invention in which a 42Ni—Fe plate is plated with Cu and further plated with Ni.

【図3】図3は、実施例3におけるヒ−トシンクの熱抵
抗測定積層構造図である。
FIG. 3 is a thermal resistance measurement laminated structure diagram of a heat sink according to a third embodiment.

【図4】図4は、本発明と従来のヒ−トシンクの熱抵抗
(発熱量に伴う温度上昇)を示した線図である。
FIG. 4 is a diagram showing the thermal resistance (temperature rise with heat generation amount) of the heat sink of the present invention and the conventional heat sink.

【符号の説明】[Explanation of symbols]

1:ヒ−トシンク 2:パワ−素子 3:セラミックス基板 4:フィン 5:放熱グリ−ス 5:はんだ 7:温度測定点 8:42Ni−Fe板 9:Cuめっき層 10:Niめっき層 1: Heat sink 2: Power element 3: Ceramics substrate 4: Fins 5: Heat dissipation grease 5: Solder 7: Temperature measurement point 8: 42 Ni-Fe plate 9: Cu plating layer 10: Ni plating layer

Claims (1)

【特許請求の範囲】 【請求項1】 パワ−素子がヒ−トシンクを介して搭載
される半導体装置において、前記ヒ−トシンクの材料は
Mo,Wの金属もしくはその合金、Fe−Ni合金から
選ばれた材料で構成し、該ヒ−トシンク材の表面に少な
くとも50μm以上の厚さのCuめっきが施されてお
り、上下・端面すべてにCuめっきされていることを特
徴とするヒ−トシンク。
Claim: What is claimed is: 1. In a semiconductor device in which a power element is mounted via a heat sink, the material of the heat sink is selected from Mo and W metals or their alloys, and Fe-Ni alloys. A heat sink, characterized in that the surface of the heat sink material is Cu-plated with a thickness of at least 50 μm or more, and the upper, lower, and end surfaces are all Cu-plated.
JP3183383A 1991-06-27 1991-06-27 Heat sink Pending JPH056949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183383A JPH056949A (en) 1991-06-27 1991-06-27 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183383A JPH056949A (en) 1991-06-27 1991-06-27 Heat sink

Publications (1)

Publication Number Publication Date
JPH056949A true JPH056949A (en) 1993-01-14

Family

ID=16134813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183383A Pending JPH056949A (en) 1991-06-27 1991-06-27 Heat sink

Country Status (1)

Country Link
JP (1) JPH056949A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051468A (en) * 2000-12-22 2002-06-29 밍 루 Structure for a radiant heat of power device module
WO2008123172A1 (en) * 2007-03-27 2008-10-16 Ngk Insulators, Ltd. Heat spreader module, heat sink and method for manufacturing the heat spreader module and the heat sink
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2016100520A (en) * 2014-11-25 2016-05-30 トヨタ自動車株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051468A (en) * 2000-12-22 2002-06-29 밍 루 Structure for a radiant heat of power device module
WO2008123172A1 (en) * 2007-03-27 2008-10-16 Ngk Insulators, Ltd. Heat spreader module, heat sink and method for manufacturing the heat spreader module and the heat sink
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2016100520A (en) * 2014-11-25 2016-05-30 トヨタ自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JPH07202063A (en) Ceramic circuit board
JPS5846073B2 (en) Thermal conductive conductive support for supporting semiconductor elements
JP2004507073A (en) High rigidity, multi-layer semiconductor package and manufacturing method thereof
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
JP2004253736A (en) Heat spreader module
JP2003168770A (en) Silicon nitride circuit board
JPH056949A (en) Heat sink
JP5047315B2 (en) Ceramic circuit board
JP6020496B2 (en) Junction structure and manufacturing method thereof
JP2005095944A (en) Metallic substrate-metal impregnated carbon composite structure, and method of producing the structure
JP4557398B2 (en) Electronic element
JPH10144967A (en) Thermoelectric element module for cooling
JP3192911B2 (en) Ceramic circuit board
JPH04230063A (en) Multilayer heat sink
JP2006344764A (en) Heat dissipation substrate and its manufacturing method
JP2006229247A (en) Circuit board and manufacturing method therefor
JPH05109947A (en) Heat conducting material and its manufacture
JP4627839B2 (en) Module and its manufacturing method
JP2503775B2 (en) Substrate for semiconductor device
JP2020189307A (en) Joining sheet and method of manufacturing joining body
JPH0420269B2 (en)
JP2000349400A (en) Circuit board
JPS62216251A (en) High thermal conductive substrate
JP2006041231A (en) Ceramic circuit board and electric apparatus