JPH0313331A - Composite material variable in coefficient of thermal expansion and heat conductivity - Google Patents

Composite material variable in coefficient of thermal expansion and heat conductivity

Info

Publication number
JPH0313331A
JPH0313331A JP14757289A JP14757289A JPH0313331A JP H0313331 A JPH0313331 A JP H0313331A JP 14757289 A JP14757289 A JP 14757289A JP 14757289 A JP14757289 A JP 14757289A JP H0313331 A JPH0313331 A JP H0313331A
Authority
JP
Japan
Prior art keywords
thermal expansion
metal plate
plate
expansion metal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14757289A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nakamura
恭之 中村
Minoru Suenaga
末永 實
Makoto Kawakami
誠 川上
Kenji Hirano
健治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14757289A priority Critical patent/JPH0313331A/en
Publication of JPH0313331A publication Critical patent/JPH0313331A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32153Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/32175Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • H01L2224/32188Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a composite material whose coefficient of thermal expansion and heat conductivity can be aribitrarily selected corresponding to a use or purpose by integrating a high thermal expansion metal plate with a low thermal expansion metal plate having a large number of piercing holes in its thickness direction and selecting the thickness ratio of both metal plates and the surface area ratio of the exposed high and low thermal expansion metals. CONSTITUTION:A low thermal expansion metal plate having a large number of piercing holes 13 in its thickness direction, for example, a Kovar plate 12 is integrated with a high thermal expansion metal plate, for example, a copper plate 11 in a pressure contact state and the high thermal expansion metal is exposed to the surface of the low thermal expansion metal plate from the piercing holes 13 and, by appropriately selecting the thickness ratio of both metal plates or the exposed area ratio of these metal plates on a main surface, the coefficient of thermal expansion and heat conductivity can be arbitrarily changed. By rolling the high thermal expansion metal plate 11 and the low thermal expansion metal plate 12 having a large number of the piercing holes 13 in its thickness direction in a pressure contact state, an objective composite material 10 is prepared.

Description

【発明の詳細な説明】 利用産業分野 この発明は、例えば、半導体チップ搭載用放熱基板やリ
ードフレーム用材料の如く、半導体チップによる発熱を
効率良く外部に放熱するため、金属、セラミックス、S
i等の半導体、プラスチックス等の被着相手材との熱膨
張係数の整合性と良好な熱伝導性を両立できるように、
熱膨張係数及び熱伝導率を任意に変化させ得る複合材料
に係り、高熱膨張金属板に厚み方向に多数の貫通孔を有
する低熱膨張金属板を一体化し、前記貫通孔から高熱膨
張金属を低熱膨張金属板表面に露出させ、これら金属板
の厚さ比や主面におけるこれら金属板の露出面積比を適
宜選定することにより、熱膨張係数、熱伝導率を任意に
変化させる熱膨張係数及び熱伝導率可変複合材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention is applicable to materials such as metals, ceramics, S
In order to achieve both good thermal conductivity and consistency in thermal expansion coefficient with other materials such as semiconductors such as i and plastics,
This is a composite material whose thermal expansion coefficient and thermal conductivity can be arbitrarily changed. A high thermal expansion metal plate is integrated with a low thermal expansion metal plate having many through holes in the thickness direction, and the high thermal expansion metal is passed through the through holes to form a low thermal expansion metal plate. Thermal expansion coefficient and thermal conductivity can be changed arbitrarily by exposing the metal plate surface and appropriately selecting the thickness ratio of these metal plates and the exposed area ratio of these metal plates on the main surface. Concerning variable rate composite materials.

背景技術 半導体パッケージの集積回路チップ(以下チップ)、と
りわけ、大型コンピューター用のLSIやULSIは、
高集積度化、演算速度の高速化の方向に進んでおり、作
動中における消費電力の増加に伴う発熱量が非常に大き
くなっている。
Background Art Integrated circuit chips (hereinafter referred to as chips) in semiconductor packages, especially LSIs and ULSIs for large computers,
The trend is toward higher integration and faster calculation speeds, and the amount of heat generated during operation is increasing due to increased power consumption.

すなわち、チップは大容量化して、発熱量が大きくなっ
ており、基板材料の熱膨張係数がチップ材料であるシリ
コンやガリウムヒ素等と大きな差があると、チップが剥
離あるいは割れを生ずる問題がある。
In other words, chips have become larger in capacity and generate more heat, and if the coefficient of thermal expansion of the substrate material is significantly different from that of the chip material, such as silicon or gallium arsenide, there is a problem that the chip may peel off or crack. .

これに伴ない、半導体パッケージの設計も、熱放散性を
考慮したものとなり、チップを搭載する基板にも放熱性
が要求されるようになり、基板材料の熱伝導率が大きい
ことが求められている。
Along with this, the design of semiconductor packages has also begun to take heat dissipation into consideration, and the substrate on which the chip is mounted is also required to have heat dissipation, and the substrate material is required to have high thermal conductivity. There is.

従って、基板には、チップと熱膨張係数が近く、かつ熱
伝導率が大きいことが要求されている。従来の半導体パ
ッケージとしては、第12図aに示す構成のものが知ら
れている。
Therefore, the substrate is required to have a coefficient of thermal expansion close to that of the chip and a high thermal conductivity. As a conventional semiconductor package, one having the configuration shown in FIG. 12a is known.

すなわち、チップ(1)の熱膨張係数に近いMo材(2
)と、パッケージ基板を構成するアルミナ材(3)の熱
膨張係数に近いコバール合金材(4)をろう付は積層し
、Mo(2)材にチップを搭載し、コバール合金材(4
)を介してパッケージ基板に接合し、さらに放熱フィン
(5)を付設した構成がある。
In other words, the Mo material (2) has a coefficient of thermal expansion close to that of the chip (1).
) and the Kovar alloy material (4), which has a thermal expansion coefficient close to that of the alumina material (3) that makes up the package substrate, are laminated together by brazing, the chip is mounted on the Mo (2) material, and the Kovar alloy material (4) is laminated.
) is connected to the package substrate via a heat dissipation fin (5).

かかる構成において、アルミナ材(3)とコバール合金
材(4)とは熱膨張係数が近いため、剥離や割れを生ず
る危険は少ないが、放熱性を支配する材料が熱伝導率の
低いコバール合金材(4)であるため、放熱フィン(5
)を付設しても、充分な放熱性が得られない問題があっ
た。
In this configuration, the alumina material (3) and the Kovar alloy material (4) have similar coefficients of thermal expansion, so there is little risk of peeling or cracking, but the material that dominates heat dissipation is the Kovar alloy material with low thermal conductivity. (4), so the radiation fin (5
), there was a problem that sufficient heat dissipation could not be obtained.

そこで、チップの熱膨張係数との整合性を有し、熱伝導
率が大きいという、相反する要求を満足する材料として
、クラツド板やCu−MoあるいはCu−W合金等の放
熱基板用複合材料が提案されている。
Therefore, as a material that satisfies the conflicting demands of having consistency with the coefficient of thermal expansion of the chip and having high thermal conductivity, composite materials for heat dissipation substrates such as clad plates and Cu-Mo or Cu-W alloys have been developed. Proposed.

放熱基板用クラツド板としては、銅板とインバー合金板
を積層した材料が使用されている。
As the clad plate for the heat dissipation board, a material made by laminating a copper plate and an invar alloy plate is used.

すなわち、前記クラツド板は、銅は熱伝導性が良好であ
るが熱膨張係数が大きいため、これを抑制するためにイ
ンバー合金を積層圧接することにより、板の長手方向の
熱膨張に関して半導体素子との整合性を得るものである
In other words, since copper has good thermal conductivity but a large coefficient of thermal expansion, the clad plate has an invar alloy layered and pressure welded to suppress this, so that thermal expansion in the longitudinal direction of the plate is similar to that of semiconductor elements. This is to obtain consistency.

また、銅板の両面にインバー合金板を積層圧接したサン
ドイッチ構造を取ることにより、温度上昇によるそりを
防ぐ構造となっている。
Furthermore, by adopting a sandwich structure in which invar alloy plates are laminated and pressure bonded to both sides of a copper plate, the structure prevents warping due to temperature rise.

このクラツド板は、熱膨張係数に関してはチップとほぼ
同一にすることができるが、板厚方向への熱伝導度は、
第12図aの構成と同様に、インバー合金板を介在する
ため、必ずしも十分でない。
This clad plate can be made to have almost the same coefficient of thermal expansion as the chip, but the thermal conductivity in the thickness direction is
Similar to the structure shown in FIG. 12a, since an invar alloy plate is interposed, this is not necessarily sufficient.

一方、Cu−Mo、 Cu−W合金基板は、チップの熱
膨張係数とほぼ等しいMo、 W粉を焼結することによ
って、気孔率の大きい焼結体を作製し、その後、溶融し
た銅を含浸させて製造(特開昭59゜141247号公
報)するか、あるいはMo、Wの粉*と銅の粉末を焼結
(特開昭62−294147号公報)することによって
得られたMoあるいはWとCuの複合体である。
On the other hand, Cu-Mo and Cu-W alloy substrates are produced by sintering Mo and W powders, which have approximately the same coefficient of thermal expansion as the chip, to create a sintered body with a high porosity, and then impregnating it with molten copper. (Japanese Unexamined Patent Publication No. 59-141247), or by sintering Mo, W powder* and copper powder (Japanese Unexamined Patent Publication No. 62-294147). It is a complex of Cu.

かかる複合体基板(6)は、パッケージへの装着に際し
、第12図すに示す如く、チップ(1)の搭載面とは反
対側に、パッケージを構成するアルミナ材(3)と接合
するためのフランジ部(7)を付設し、回部で放熱する
構成からなる。
When this composite substrate (6) is attached to a package, as shown in FIG. It has a structure in which a flange part (7) is attached and heat is radiated by a turning part.

前記複合体は熱膨張係数、熱伝導度とも実用上満足すべ
き条件にかなっているが、Mo、W等が高密度であるた
め重く、所定の寸法を得るにはスライス加工しなければ
ならず、加工費が高く、歩留りが悪くなっていた。また
、複合体の構造上、材料の熱伝導度のばらつきが多くな
り、かつ機械的成形性が悪く、製造性に問題があった。
Although the above-mentioned composite has a thermal expansion coefficient and thermal conductivity that meet practically satisfactory conditions, it is heavy due to the high density of Mo, W, etc., and must be sliced to obtain the desired dimensions. , processing costs were high and yields were poor. Furthermore, due to the structure of the composite, there were many variations in the thermal conductivity of the materials, and the mechanical formability was poor, resulting in problems in manufacturability.

また、プラスチックスパッケージにおけるリードフレー
ムも被着相手材との熱膨張係数の整合、熱伝導度の向上
を同時に図る必要がある。
Furthermore, the lead frame in a plastic package must also match the coefficient of thermal expansion with the material to which it is attached and improve its thermal conductivity.

第13図に示す如き、樹脂封止の半導体パッケージにお
いては、リードフレームがチップの外部への電気的接続
の経路となるだけでなく、チップで発生する熱の枚数経
路として重要な役割を果している。
In a resin-sealed semiconductor package as shown in Figure 13, the lead frame not only serves as a path for electrical connections to the outside of the chip, but also plays an important role as a path for the heat generated in the chip. .

すなわち、半導体パッケージにおいて、チップ(94)
はリードフレーム(90)の中央部に形成されるアイラ
ンド(91)に載置され、ろう材や接着材、はんだ等に
て固着されるとともに、ステッチ(92)(インナーリ
ード部)とボンディングワイヤ(95)を介して電気的
に接続され、さらに周囲を樹脂(96)にて封止されて
いる。
That is, in a semiconductor package, a chip (94)
is placed on the island (91) formed in the center of the lead frame (90) and fixed with brazing material, adhesive, solder, etc., and the stitch (92) (inner lead part) and bonding wire ( 95), and the periphery is further sealed with resin (96).

チップ(94)から発生する熱は、アイランド(91)
、樹脂(96)、ステッチ(92)という経路にてリー
ドフレーム(90)のリード部(93)に達し、外部に
放散されることになる。
The heat generated from the chip (94) is transferred to the island (91)
, the resin (96), and the stitches (92) to reach the lead portion (93) of the lead frame (90) and be dissipated to the outside.

従って、リードフレーム(90)には、チ′ツブから発
生する熱を半導体パッケージの外部に放散するために熱
伝導率の良い材料が望まれる。
Therefore, the lead frame (90) is desired to be made of a material with good thermal conductivity in order to dissipate the heat generated from the chip to the outside of the semiconductor package.

一方、チップ(94)とアイランド(91)との接着界
面の剥離や、樹脂(96)にみられるクラック等は、チ
ップ(94)や封止樹脂(96)とリードフレーム(9
0)との熱膨張係数の差を要因として発生しており、こ
れを防止するためには、前記チップ(94)及び樹脂(
96)とリードフレーム(90)との熱膨張係数の整合
性が不可欠となる。
On the other hand, peeling of the adhesive interface between the chip (94) and the island (91), cracks observed in the resin (96), etc.
This occurs due to the difference in thermal expansion coefficient between the chip (94) and the resin (0).
It is essential that the thermal expansion coefficients of the lead frame (96) and the lead frame (90) match.

上述したように半導体パッケージにおけるリードフレー
ムには、従来から、チップとの熱膨張係数の整合性から
42%Ni−Fe合金等の低熱膨張係数を有するNi−
Fe系合金が多用されている。
As mentioned above, lead frames in semiconductor packages have traditionally been made of Ni-Fe alloy, which has a low coefficient of thermal expansion such as 42% Ni-Fe alloy, in order to match the coefficient of thermal expansion with the chip.
Fe-based alloys are often used.

しかし、Ni−Fe系合金は熱伝導率が悪いため、現在
の要求を満すだけの熱の放牧性が得られていない。
However, Ni--Fe alloys have poor thermal conductivity, and therefore do not have sufficient thermal grazing properties to meet current requirements.

また、チップと封止樹脂との熱膨張差は非常に大きく、
リードフレームとチップとの熱膨張係数の整合性がよい
場合でも、リードフレームと樹脂との間の整合性が悪く
、封止樹脂に発生するクラックを完全に防止することは
困難であった。
In addition, the difference in thermal expansion between the chip and the sealing resin is very large.
Even when the lead frame and the chip have good matching in thermal expansion coefficient, the matching between the lead frame and the resin is poor, and it is difficult to completely prevent cracks from occurring in the sealing resin.

さらに、熱の放散性の観点から熱伝導率の良い銅合金か
らなるリードフレームを採用した半導体パッケージも提
案されている。
Furthermore, from the viewpoint of heat dissipation, a semiconductor package has been proposed that uses a lead frame made of a copper alloy with good thermal conductivity.

ところが、銅合金はチップとの熱膨張係数の整合性が悪
く、チップとアイランドとの接着界面の剥離等を防止す
ることができず、工業的規模の量産に際して安定し信頼
性の高い半導体パッケージを供給するに至っていない。
However, copper alloys have poor thermal expansion coefficient compatibility with chips, making it impossible to prevent peeling of the adhesive interface between chips and islands, making it difficult to create stable and reliable semiconductor packages for industrial-scale mass production. It has not yet been supplied.

発明の目的 この発明は、上述した半導体パッケージにおける熱の放
散性の問題の例で明らかにした如く、チップや封止樹脂
等の接着相手材の熱膨張係数との整合性にすぐれ、かつ
熱伝導性が良好というように、用途や目的に応じて熱膨
張係数と熱伝導率を任意に選定できる複合材料の提供を
目的としている。
Purpose of the Invention As clarified in the above-mentioned example of the heat dissipation problem in semiconductor packages, the present invention provides excellent thermal expansion coefficient matching with the thermal expansion coefficient of the bonding material such as a chip or sealing resin, and a heat conductive material. The objective is to provide a composite material whose thermal expansion coefficient and thermal conductivity can be arbitrarily selected depending on the use and purpose, such as good properties.

この発明は、例えば、半導体チップ搭載に際し、熱膨張
係数の整合性にすぐれ、かつ高い熱伝導度を有し、さら
に実装に際しての加工性や製造性にすぐれ、安価に提供
できる半導体パッケージ用放熱基板として用いることが
できる熱膨張係数及び熱伝導率可変複合材料の提供を目
的としている。
This invention provides, for example, a heat dissipating substrate for semiconductor packages that has excellent thermal expansion coefficient consistency and high thermal conductivity when mounting a semiconductor chip, has excellent processability and manufacturability during mounting, and can be provided at a low cost. The purpose of the present invention is to provide a composite material with variable thermal expansion coefficient and thermal conductivity that can be used as a composite material.

発明の概要 この発明は、相手材に応じた熱膨張係数の整合性と放熱
性が確保できかつ製造性にすぐれた金属材料を目的に種
々検討した結果、高熱膨張金属板に厚み方向に多数の貫
通孔を有する低熱膨張金属板を圧接一体化し、前記貫通
孔から高熱膨張金属を低熱膨張金属板表面に露出させ、
これら金属板の厚さ比や主面におけるこれら金属板の露
出面積比を適宜選定することにより、熱膨張係数、熱伝
導率を任意に変化させ得ること、および高熱膨張金属板
と厚み方向に多数の貫通孔を有する低熱膨張金属板とを
圧接圧延することにより容易に目的とする複合材料が製
造できることを知見したものである。
Summary of the Invention As a result of various studies aimed at creating a metal material that can ensure consistency in thermal expansion coefficient and heat dissipation according to the mating material and has excellent manufacturability, the present invention has been developed by forming a high thermal expansion metal plate with a large number of layers in the thickness direction. Pressure-welding a low thermal expansion metal plate having a through hole, exposing a high thermal expansion metal to the surface of the low thermal expansion metal plate from the through hole,
By appropriately selecting the thickness ratio of these metal plates and the exposed area ratio of these metal plates on the main surface, the thermal expansion coefficient and thermal conductivity can be changed arbitrarily, and there are many high thermal expansion metal plates in the thickness direction. The inventors have discovered that the desired composite material can be easily produced by pressure rolling a low thermal expansion metal plate having through-holes.

すなわち、この発明は、 高熱膨張金属板の少なくとも一方主面に、厚み方向に多
数の貫通孔を有する低熱膨張金属板が一体化されて、前
記貫通孔から高熱膨張金属が低熱膨張金属板表面に露出
した構成からなり、。
That is, in the present invention, a low thermal expansion metal plate having a large number of through holes in the thickness direction is integrated with at least one main surface of a high thermal expansion metal plate, and the high thermal expansion metal is applied to the surface of the low thermal expansion metal plate from the through holes. Consisting of exposed composition.

これら金属板の厚さ比およびlまたは露出した高熱膨張
金属と低熱膨張金属との表面積比を選定し、熱膨張係数
および!または熱伝導率を所要値に変化させることを特
徴とする熱膨張係数及び熱伝導率可変複合材料である。
Select the thickness ratio of these metal plates and the exposed surface area ratio of high thermal expansion metal and low thermal expansion metal, and determine the thermal expansion coefficient and! Alternatively, it is a composite material with variable thermal expansion coefficient and thermal conductivity, which is characterized by changing thermal conductivity to a required value.

例えば、Cu等の高熱膨張金属板の両生面にNi−Fe
系合金、Ni−Co−Fe系合金等の低熱膨張金属板を
一体化し、少なくとも一方主面の低熱膨張金属板に厚み
方向の多数の貫通孔を設けて、前記貫通孔から高熱膨張
金属を低熱膨張金属板表面に露出させることにより、チ
ップ搭載用放熱基板等の熱膨張係数及び熱伝導率可変複
合材料が得られる。
For example, Ni-Fe can be applied to the bidirectional surface of a high thermal expansion metal plate such as Cu.
A low thermal expansion metal plate such as a Ni-Co-Fe alloy or a Ni-Co-Fe alloy is integrated, and a large number of through holes are provided in the thickness direction of the low thermal expansion metal plate on at least one of the principal surfaces, and the high thermal expansion metal is passed through the through holes at a low temperature. By exposing the material to the surface of the expanded metal plate, a composite material with variable thermal expansion coefficient and thermal conductivity can be obtained, such as a heat dissipating substrate for mounting a chip.

発明の構成 この発明は、高熱膨張金属板に厚み方向に多数の貫通孔
を有する低熱膨張金属板を一体化し、前記貫通孔から高
熱膨張金属を低熱膨張金属板表面に露出させ、主にこれ
ら金属板の厚さ比の選定に上り熱膨張係数を任意に変化
させることができ、高熱膨張金属に高熱伝導性金属を用
い、露出した高熱膨張金属の低熱膨張金属板表面での面
積比を適宜選定することにより熱伝導率を任意に変化さ
せ得るもので、高熱膨張金属板と低熱膨張金属板の材質
選定、組合せ、並びに前記厚さ比と露出面積比の選定に
より、種々の用途、目的に応じた熱膨張係数及び熱伝導
率を設定でき、多種の複合材料を提供できる。
Structure of the Invention This invention integrates a high thermal expansion metal plate with a low thermal expansion metal plate having a large number of through holes in the thickness direction, and exposes the high thermal expansion metal on the surface of the low thermal expansion metal plate from the through holes. The coefficient of thermal expansion can be changed arbitrarily by selecting the thickness ratio of the plate, using a high thermal conductivity metal as the high thermal expansion metal, and appropriately selecting the area ratio of the exposed high thermal expansion metal on the surface of the low thermal expansion metal plate. The thermal conductivity can be changed arbitrarily by changing the thermal conductivity, and by selecting the materials and combinations of the high thermal expansion metal plate and the low thermal expansion metal plate, as well as selecting the thickness ratio and exposed area ratio, it can be used to suit various uses and purposes. It is possible to set the thermal expansion coefficient and thermal conductivity, and it is possible to provide a wide variety of composite materials.

この発明による熱膨張係数及び熱伝導率可変複合材料は
、 高熱膨張金属板の片面あるいは両面の全面あるいは部分
的に低熱膨張金属板を積層化する低熱膨張金属板の全面
あるいは部分的に厚み方向の貫通孔を所要間隔、パター
ンで配置する高熱膨張金属板の両面の全面あるいは部分
的に積層化した低熱膨張金属板の片方に貫通孔を設けな
い 高熱膨張金属板の両面の全面あるいは部分的に、同材質
あるいは異材質の低熱膨張金属板を積層化する 高熱膨張金属板の両面に積層化した低熱膨張金属板の貫
通孔の孔寸法、パターン等を変えるめっき等の被膜処理
を所要面の全面あるいは部分的に施す などの手段を選定組み合せることにより、複合材料の全
体あるいは部分的に、用途、目的に応じた熱膨張係数及
び熱伝導率を設定でき、例えば、所要の金属、セラミッ
クス、Si等の半導体、プラスチックス等の相手材の熱
膨張係数との整合性を図り、かつ所要の熱伝導性を有す
る複合材料が得られる。
The variable thermal expansion coefficient and thermal conductivity composite material according to the present invention is produced by laminating a low thermal expansion metal plate on one or both sides of a high thermal expansion metal plate or partially laminating a low thermal expansion metal plate on one or both sides. Fully or partially on both sides of a high thermal expansion metal plate in which through holes are arranged at required intervals and in a pattern, or partially on both sides of a high thermal expansion metal plate without through holes on one side of the laminated low thermal expansion metal plate, Laminate low thermal expansion metal plates made of the same or different materials. Apply coating treatment such as plating to change the hole size, pattern, etc. of the through holes in the laminated low thermal expansion metal plates on both sides of the high thermal expansion metal plate. By selecting and combining methods such as partial application, it is possible to set the thermal expansion coefficient and thermal conductivity of the whole or part of the composite material according to the application and purpose. A composite material can be obtained that is compatible with the coefficient of thermal expansion of a mating material such as a semiconductor or plastic, and has the required thermal conductivity.

例えば、チップと整合する熱膨張係数と、封止樹脂と整
合する熱膨張係数とが異なる場合、チップを配設する部
分の低熱膨張金属板表面における高熱膨張金属板の面積
占積率や低熱膨張金属板の厚さ等の条件と、裏面の直接
封止樹脂に接触する表面との条件を前述の如く変えるこ
とにより、各主面の熱的特性を要求する値に近似させる
ことできる。
For example, if the coefficient of thermal expansion that matches the chip and the coefficient of thermal expansion that matches the sealing resin are different, the area occupancy factor of the high thermal expansion metal plate on the surface of the low thermal expansion metal plate where the chip is placed, or the low thermal expansion By changing the conditions such as the thickness of the metal plate and the conditions of the surface directly in contact with the sealing resin on the back side as described above, the thermal characteristics of each main surface can be approximated to the required values.

また、高熱膨張金属板の両面に低熱膨張金属板を積層し
たサンドイッチ構成において、芯材を高熱膨張金属同志
の積層板として、低熱膨張金属板の貫通孔から表面に露
出させる高熱膨張金属を異材質とするなど、種々の構成
を取ることができる。
In addition, in a sandwich structure in which low thermal expansion metal plates are laminated on both sides of a high thermal expansion metal plate, the core material is a laminate of high thermal expansion metals, and the high thermal expansion metal is exposed to the surface through the through hole of the low thermal expansion metal plate. Various configurations can be taken, such as.

高熱膨張金属板と低熱膨張金属板の熱膨張係数差は、必
ずしも大きくとる必要はなく、相互の熱膨張係数が異な
れば、用途に応じていかなる金属板をも組み合せること
ができる。
The difference in thermal expansion coefficient between the high thermal expansion metal plate and the low thermal expansion metal plate does not necessarily have to be large, and any metal plates can be combined depending on the purpose as long as their thermal expansion coefficients are different.

この発明による複合材の熱膨張係数は、高熱膨張金属板
と低熱膨張金属板の体積比、すなわち、積層板の厚み比
により、高熱膨張金属板の熱膨張係数と低熱膨張金属板
との間の任意の値を選択することが可能である。
The coefficient of thermal expansion of the composite material according to the present invention is determined by the volume ratio of the high thermal expansion metal plate and the low thermal expansion metal plate, that is, the thickness ratio of the laminate. It is possible to select any value.

例えば、既存のチップが熱歪の影響を受けないための熱
膨張係数aは、常温〜900℃において、5〜9xlO
−6/’Cであることが必要であり、より好ましくは、
4〜8 x 10−6/”Cである。
For example, the thermal expansion coefficient a for existing chips to be unaffected by thermal strain is 5 to 9xlO at room temperature to 900°C.
-6/'C, more preferably,
4 to 8 x 10-6/''C.

前記チップ搭載用放熱基板の場合、 30℃〜200℃における平均熱膨張係数が10xlO
−6/”C以下のNi−Fe系合金、Ni−Co−Fe
系合金等の低熱膨張金属板と、30℃〜200℃におけ
る平均熱膨張係数が10xlO−6/”Cを越えるCu
、 Cu合金等の高熱膨張金属板を紹み合せて用いるこ
とができ、特に、高熱膨張金属板の20℃における熱伝
導率が140W/m−に以上であることが望ましい。ま
た、低熱膨張金属板表面における高熱膨張金属板の面積
比率を20〜80%の範囲で適宜選定することが望まし
い。
In the case of the heat dissipation board for chip mounting, the average coefficient of thermal expansion at 30°C to 200°C is 10xlO.
-6/”C or less Ni-Fe alloy, Ni-Co-Fe
Low thermal expansion metal plates such as alloys, and Cu whose average coefficient of thermal expansion at 30°C to 200°C exceeds 10xlO-6/”C
A high thermal expansion metal plate such as a Cu alloy or the like can be used in combination, and it is particularly desirable that the high thermal expansion metal plate has a thermal conductivity of 140 W/m or more at 20°C. Further, it is desirable to appropriately select the area ratio of the high thermal expansion metal plate on the surface of the low thermal expansion metal plate within a range of 20 to 80%.

高熱膨張金属板は、圧接や鍛造等にて低熱膨張金属板の
貫通孔内に圧入充填されることから、Cu、 Cu合金
、AI、A1合金、鋼等の展延伸性に富む材料を用いる
ことが好ましい。
Since high thermal expansion metal plates are press-fitted into through holes of low thermal expansion metal plates by pressure welding, forging, etc., materials with high malleability such as Cu, Cu alloy, AI, A1 alloy, steel, etc. should be used. is preferred.

また、低膨張金属板には、展延性のあるMO130〜5
0wt%Niを含有するNi−Fe系合金、25〜35
wt%Ni、4〜20wt%Coを含有するNi−Co
−Fe系合金、Wなどを用いることができる。
In addition, the low expansion metal plate has a malleable MO130 to 5
Ni-Fe alloy containing 0 wt% Ni, 25-35
Ni-Co containing wt% Ni, 4-20 wt% Co
-Fe-based alloy, W, etc. can be used.

製造方法には、例えば、低熱膨張金属板の所要位置に厚
み方向の貫通孔を多数せん孔配置した後、被着面を清浄
化し、該低熱膨張金属板と高熱膨張金属板とを冷間圧接
し、さらに拡散熱処理を施して密着性を向上させる等、
公知の圧接、圧延あるいは鍛造技術が採用できるため、
工業的規模における量産に際しても安定した特性を有す
る複合材料を提供できる。
The manufacturing method includes, for example, drilling a large number of through holes in the thickness direction at desired positions of a low thermal expansion metal plate, cleaning the adhering surface, and cold-pressing the low thermal expansion metal plate and the high thermal expansion metal plate. , further improves adhesion by applying diffusion heat treatment, etc.
Known pressure welding, rolling or forging techniques can be used,
It is possible to provide a composite material with stable properties even when mass-produced on an industrial scale.

また、この発明の複合材料における低膨張金属板の表面
に露出する高熱膨張金属の形状や配列形態は、前述の如
く目的に応じあるいは製造方法により各種形態を取り得
るが、貫通孔間隔が細かなほうが製品のばらつきを低減
する上で有利であり、通常3mm以下、好ましくは1m
m以下であり、さらに好ましくは0.5玉以下である。
In addition, the shape and arrangement of the high thermal expansion metal exposed on the surface of the low expansion metal plate in the composite material of the present invention can take various forms depending on the purpose or manufacturing method as described above. It is advantageous to reduce product variations, and is usually 3 mm or less, preferably 1 m.
m or less, more preferably 0.5 balls or less.

また、低熱膨張金属板の板厚み方向の貫通孔は、プレス
打ち抜き等の機械加工のほか、エツチング等の化学的加
工も採用でき、貫通孔形状も横断面が円、楕円、多角形
状等、縦断面がストレート、テーパー等種々形状が採用
でき、テーパー状の場合、貫通孔内への圧入を容易にし
かつ接合強度を高めることができる。
In addition, in addition to mechanical processing such as press punching, chemical processing such as etching can be used to form through holes in the thickness direction of low thermal expansion metal plates. Various shapes such as a straight or tapered surface can be adopted, and when the surface is tapered, it can be easily press-fitted into the through hole and the bonding strength can be increased.

さらに、この発明の複合材料の使用に際して、ろう付は
性また耐食性を向上させるため、あるいはAu、Agめ
っきの被着性を向上させるため、Ni、 Cu、 Sn
、はんだ等の各種金属のめっき層を所要部に被着するこ
とができる。
Furthermore, when using the composite material of the present invention, brazing is performed to improve the properties and corrosion resistance, or to improve the adhesion of Au and Ag plating.
, plating layers of various metals such as solder can be applied to required parts.

この発明の複合材料は、上述した構成により、固有の熱
膨張係数及び熱伝導率を有するが、さらに異なる熱膨張
係数及び熱伝導率を有するこの発明の複合材料を厚み方
向に積層し、任意の熱膨張係数及び熱伝導率を設定する
ことができる。
The composite material of this invention has a unique coefficient of thermal expansion and thermal conductivity due to the above-mentioned configuration, but furthermore, the composite material of this invention having different coefficients of thermal expansion and thermal conductivity is laminated in the thickness direction, and an arbitrary Thermal expansion coefficient and thermal conductivity can be set.

また、低膨張金属板に板厚み方向の貫通孔を多数せん孔
配置したのち、該低膨張金属板と高熱膨張金属板とを冷
間圧接した後、低膨張金属板一方面に被着された高熱膨
張金属板を公知の表面研削方法等で除去すると、貫通孔
内にのみ高熱膨張金属板が正大充填された板状低膨張金
属からなる複合材料を得ることができる。
In addition, after arranging a large number of through holes in the plate thickness direction in a low expansion metal plate, and after cold pressure welding the low expansion metal plate and a high thermal expansion metal plate, the high thermal expansion metal plate adhered to one side of the low expansion metal plate is When the expansion metal plate is removed by a known surface grinding method or the like, it is possible to obtain a composite material made of a plate-shaped low expansion metal in which only the through holes are filled with high thermal expansion metal plates to a large extent.

図面に基づ〈発明の開示 第1図から第6図はこの発明による複合材料の実施例を
示す斜視説明図である。
Based on the Drawings (Disclosure of the Invention) FIGS. 1 to 6 are perspective explanatory views showing embodiments of the composite material according to the present invention.

第7図、第8図はこの発明による複合材料の製造方法の
一実施例を示す斜視説明図である。
FIGS. 7 and 8 are perspective explanatory views showing one embodiment of the method for manufacturing a composite material according to the present invention.

第9図はこの発明による複合材料を用いて製造した放熱
基板の放熱効果を説明する断面説明図である。
FIG. 9 is a cross-sectional explanatory diagram illustrating the heat dissipation effect of the heat dissipation board manufactured using the composite material according to the present invention.

以下の説明において、高熱膨張金属板として銅板を、低
熱膨張金属板としてコバール(Fe−Co−Ni合金)
板を用いた例を説明する。
In the following description, a copper plate is used as a high thermal expansion metal plate, and Kovar (Fe-Co-Ni alloy) is used as a low thermal expansion metal plate.
An example using a board will be explained.

第1図〜第3図に示す複合材料(10)、(20)、(
30)は、いずれも銅板(11)、(21)、(31)
の両面に、厚み方向に多数の貫通孔を有するコバール板
(12)、(22)、(32)を圧接した構成からなる
Composite materials (10), (20), (
30) are all copper plates (11), (21), (31)
Kovar plates (12), (22), and (32) having a large number of through holes in the thickness direction are pressed onto both sides of the plate.

第1図の複合材料(10)は、貫通孔(13)を通して
コバール板(12)表面に露出する銅板の露出面(14
)がクラッドされた材料(10)の全面にわたって分散
する構成からなる。
The composite material (10) in FIG.
) are dispersed over the entire surface of the cladding material (10).

第2図の材料(20)は、貫通孔(23)を通してコバ
ール板(22)表面に露出する銅板の露出面(24)が
材料(20)の両主面にストライプ状に分散する構成か
らなる。
The material (20) in Fig. 2 has a structure in which the exposed surface (24) of the copper plate exposed on the surface of the Kovar plate (22) through the through hole (23) is distributed in stripes on both main surfaces of the material (20). .

第3図の材料(30)は、貫通孔(33)を介してコバ
ール板(32)表面に露出する銅板の露出面(34)の
1群が材料(30)の両主面に各々長手方向に不連続に
分散する構成からなる。
The material (30) in Fig. 3 has one group of exposed surfaces (34) of the copper plate exposed on the surface of the Kovar plate (32) through the through holes (33) on both main surfaces of the material (30) in the longitudinal direction. It consists of a discontinuously distributed configuration.

これらのいずれの構成においても、銅板(11)、(2
1)、(31)の両面に圧接されるコバール板(12)
、(22)、(32)の各々の厚み及び露出する銅板の
露出面(14)(24X34)の分散状態等を選定する
ことにより、各主面の熱的特性を要求される特性に近似
させることできる。
In any of these configurations, the copper plates (11), (2
Kovar plate (12) pressed against both sides of 1) and (31)
, (22), and (32) and the dispersion state of the exposed surface (14) (24×34) of the exposed copper plate, etc., the thermal characteristics of each principal surface are approximated to the required characteristics. I can do that.

第2図、第3図に示す構成は、所要部分の表裏に銅板の
露出面を分散させてあり、部分的な熱放散が可能な構成
を示している。
The configuration shown in FIGS. 2 and 3 shows a configuration in which exposed surfaces of the copper plate are distributed on the front and back sides of required portions, allowing partial heat dissipation.

第4図に示す複合材料(40)は、銅板(41)の両面
の中央部にストライブ状にコバール(42)を圧接した
もので、所要位置に貫通孔(43)を通して銅板の表面
(44)を部分的に配置した構成である。
The composite material (40) shown in Fig. 4 is made by pressing Kovar (42) in a strip-like manner onto the central part of both sides of a copper plate (41). ) is partially arranged.

この構成によれば、相手材の当接部分のみ熱膨張係数の
整合性を考慮すればよく、材料全体の熱放散性が極めて
よい。
According to this configuration, it is only necessary to consider the consistency of the coefficient of thermal expansion of the abutting portion of the mating material, and the heat dissipation of the entire material is extremely good.

第5図に示す複合材料(50)は、第1図〜第3図と同
様に銅板(51)の両面にコバール板(52aX52b
)を圧接した構成であるが、一方のコバール板(52a
)にのみ貫通孔(53)を設け、−主面の所要箇所に銅
板の露出面(54)を部分的に配置した構成である。
The composite material (50) shown in FIG. 5 is made of Kovar plates (52a
), but one Kovar plate (52a
), and the exposed surface (54) of the copper plate is partially arranged at required locations on the main surface.

第6図に示す複合材料(60)は、銅板(61)の−主
面にのみ貫通孔(63)を有するコバール板(62)を
圧接して所要箇所に銅板の露出面(64)を全面に配置
した構成である。
The composite material (60) shown in Fig. 6 is produced by press-welding a Kovar plate (62) having through holes (63) only on the main surface of a copper plate (61), so that the exposed surface (64) of the copper plate is completely covered at required points. This is the configuration arranged in.

第5図、第6図に示す構成は、銅板の露出面の有無、コ
バール板の有無を設定することにより、材料の表裏の熱
的特性の差をより一層大きくすることができる。
The configurations shown in FIGS. 5 and 6 can further increase the difference in thermal properties between the front and back sides of the material by setting the presence or absence of the exposed surface of the copper plate and the presence or absence of the Kovar plate.

第1図の構成からなる複合材料(10)の製造方法を説
明すると、第7図に示す如く、一対のコバール板(12
X12)は、予めプレスによる打ち抜き加工を行い、例
えば、小さな孔を多数個穿孔して網目状となし、さらに
、焼鈍後、表面処理を施してコイルに巻き取っである。
To explain the manufacturing method of the composite material (10) having the structure shown in Fig. 1, as shown in Fig. 7, a pair of Kovar plates (12
In X12), punching is performed in advance using a press, for example, a large number of small holes are punched to form a mesh shape, and after annealing, surface treatment is performed and winding is performed into a coil.

所要寸法、厚みの銅板(11)コイルを巻き戻し、上方
及び下方より巻き戻した前記コバール板(12)を重ね
て、圧延ロール(70)により圧延接合する。
A copper plate (11) coil having the required dimensions and thickness is unwound, and the unwound Kovar plates (12) are overlapped from above and below and rolled and joined by a rolling roll (70).

圧接の結果、第1図に示すように、コバール板(12)
の多数個の貫通孔(13)内に銅が侵入し、コバール板
(12)の所要位置に銅板(11)の露出面(14)が
部分的に配置形成される。
As a result of pressure welding, as shown in Figure 1, Kovar plate (12)
Copper enters into the numerous through holes (13), and the exposed surface (14) of the copper plate (11) is partially arranged and formed at a predetermined position of the Kovar plate (12).

次に、この複合材料を拡散焼鈍することにより、より一
層密着性を向上させることができる。
Next, by diffusion annealing this composite material, the adhesion can be further improved.

また、第6図に示す銅板(61)の−主面にのみコバー
ル板(62)を圧接した複合材料(60)を製造するに
は、第8図に示す如く、予めプレスによる打ち抜き加工
を行ったコバール板(62)と上方より巻き戻したCu
板(61)を重ねて、圧延ロール(70)により圧延接
合するとよい。
In addition, in order to manufacture the composite material (60) in which the Kovar plate (62) is pressed only on the main surface of the copper plate (61) shown in Fig. 6, punching with a press is performed in advance as shown in Fig. 8. Kovar plate (62) and Cu unwound from above
It is preferable to overlap the plates (61) and roll them together using a rolling roll (70).

第7図に示す方法で得られた複合材料を公知の方法にて
放熱基板(80)に加工し、半導体パッケージを組立る
と、第9図に示す如く、チップ(1)を載置する部分は
実質的にコバール板(82)に被覆されているため、熱
的な整合性が良く、コバール板(82)の貫通孔(83
)を介して部分的に露出する銅(81)の露出面(84
)から効率良く熱を吸収し、パッケージ外部に熱を放散
することができる。
When the composite material obtained by the method shown in FIG. 7 is processed into a heat dissipating substrate (80) by a known method and a semiconductor package is assembled, the part on which the chip (1) is placed is shown in FIG. is substantially covered by the Kovar plate (82), so it has good thermal consistency, and the through hole (83) of the Kovar plate (82)
) The exposed surface (84) of the copper (81) is partially exposed through the
) can efficiently absorb heat and dissipate it to the outside of the package.

また、下面も他の接触材料の熱膨張係数に対応してコバ
ール板(82)の厚みとともに銅(81)の露出面(8
4)の面積比率を調整することにより、熱的な整合性を
良好にすることができる。
In addition, the lower surface also has a thickness of the Kovar plate (82) and an exposed surface (81) of the copper (81) in accordance with the thermal expansion coefficient of other contact materials.
By adjusting the area ratio of 4), thermal matching can be improved.

上述の如くこの発明の複合材料用いた放熱基板は、圧延
加工及び圧接により所定の寸法の板状で得られるため、
所定の厚みに仕上げるのにスライス加工等の複雑な加工
方法を用いる必要はなく、安価に製造でき、また、切削
加工性にすぐれ、パッケージ基板やチップに応じて容易
に加工できる利点がある。
As mentioned above, the heat dissipation board using the composite material of the present invention can be obtained in the form of a plate with predetermined dimensions by rolling and pressure welding.
There is no need to use complicated processing methods such as slicing to finish to a predetermined thickness, and it has the advantage that it can be manufactured at low cost, has excellent cutting workability, and can be easily processed depending on the package substrate or chip.

実施例 去箇旦U 板厚0.3mm、板幅30mmの一対のコバール板(2
9Ni−16Co−Fe合金)に、各々孔径1.Omm
、孔間隔1.5mmで多数の穿孔を施し、さらに、90
0℃で焼鈍後、ワイヤーブラッシングした。コバール板
の30〜200°Cにおける平均熱膨張係数は5.2x
lO−6rCであった。
Example: A pair of Kovar plates (2
9Ni-16Co-Fe alloy), each with a pore size of 1. Omm
, a large number of holes were made with a hole spacing of 1.5 mm, and 90
After annealing at 0°C, wire brushing was performed. The average coefficient of thermal expansion of Kovar plate at 30-200°C is 5.2x
It was lO-6rC.

また、板厚1.2M、板幅30mmのCu板に、同様に
焼鈍、ワイヤーブラッシングを施した。Cu板の30〜
200°Cにおける平均熱膨張係数は17.2xlO−
6/’Cであった。
Further, a Cu plate having a thickness of 1.2M and a width of 30mm was similarly annealed and wire brushed. 30~ of Cu board
The average coefficient of thermal expansion at 200°C is 17.2xlO-
It was 6/'C.

前記コバール板とCu板を、第7図に示す冷間圧接機に
より圧接し、板厚0.7 mmの複合材料を得た。圧延
率は61%であった。
The Kovar plate and the Cu plate were pressure-welded using a cold pressure welding machine shown in FIG. 7 to obtain a composite material with a plate thickness of 0.7 mm. The rolling ratio was 61%.

すなわち、冷間圧接時にコバール板の貫通孔中に銅が侵
入し、コバール板表面の所要位置に銅板表面が部分的に
露出した第1図に示す如き複合材料が得られた。
That is, copper entered the through holes of the Kovar plate during cold welding, and a composite material as shown in FIG. 1 was obtained in which the surface of the copper plate was partially exposed at a predetermined position on the surface of the Kovar plate.

この複合材料を800℃で5分間、拡散焼鈍して接合一
体化した。
This composite material was diffusion annealed at 800° C. for 5 minutes to be joined and integrated.

得られた複合材料の主面におけるCu露出面は圧延方向
に長い楕円形となり、孔間隔は圧延方向に1.0皿であ
り、コバール板に対するCu露出面の比率は35%であ
った。
The Cu exposed surface on the main surface of the obtained composite material had an elliptical shape elongated in the rolling direction, the hole interval was 1.0 dish in the rolling direction, and the ratio of the Cu exposed surface to the Kovar plate was 35%.

得られた材料の厚み方向の熱伝導率は 300w/m−K、及び各主面における熱膨張係数は8
xlO−6/”Cであった。
The thermal conductivity of the obtained material in the thickness direction is 300 w/m-K, and the coefficient of thermal expansion on each principal surface is 8.
xlO-6/''C.

この複合材料を冷間圧延にて板厚0.25 mmに加工
し、その後公知の方法にてリードフレームに加工し、半
導体パッケージを作製したところ、チップとアイランド
との接着界面の剥離や封止樹脂のクラック等が発生する
ことなく、また、従来の銅合金を用いたリードフレーム
に近似する良好な熱放散性が得られた。
This composite material was cold-rolled to a thickness of 0.25 mm, and then processed into a lead frame using a known method to fabricate a semiconductor package. There were no cracks in the resin, and good heat dissipation properties similar to those of conventional lead frames using copper alloys were obtained.

実施例2 実施例1で得られた複合材料(0,7mm)、並びに低
熱膨張金属板に36Ni−Fe合金板、Mo板、高熱膨
張金属板にCu板を用い、実施例1と同様の製造方法で
得られた複合材料の熱膨張特性を測定した。測定結果を
熱膨張率と温度との関係グラフである第10図a、bに
示す。
Example 2 Manufacturing was carried out in the same manner as in Example 1 using the composite material (0.7 mm) obtained in Example 1, a 36Ni-Fe alloy plate and a Mo plate as the low thermal expansion metal plate, and a Cu plate as the high thermal expansion metal plate. The thermal expansion properties of the composite materials obtained by the method were measured. The measurement results are shown in FIGS. 10a and 10b, which are graphs of the relationship between the coefficient of thermal expansion and temperature.

第10図aに示す如く、36Ni−Fe合金とCu板か
らなるこの発明による複合材料は、Siと同様の熱膨張
特性を有することが明らかである。
As shown in FIG. 10a, it is clear that the composite material according to the invention made of 36Ni-Fe alloy and Cu plate has thermal expansion characteristics similar to that of Si.

また、第1O図すに示す如く、29Ni−16Co−F
e合金板とCu板からなるこの発明による複合材料は、
Al2O3と近似した熱膨張特性を有することが明らか
である。さらに、Mo板とCu板からなるこの発明によ
る複合材料は、Mo単体の熱膨張特性と極めて近似して
おり、実施例3で明らかにするがMo単体と比較して熱
伝導率が大幅に向上している。
In addition, as shown in Figure 1O, 29Ni-16Co-F
The composite material according to this invention consisting of an e-alloy plate and a Cu plate is
It is clear that it has thermal expansion characteristics similar to Al2O3. Furthermore, the composite material according to the present invention consisting of a Mo plate and a Cu plate has thermal expansion characteristics very similar to that of Mo alone, and as will be shown in Example 3, the thermal conductivity is significantly improved compared to Mo alone. are doing.

去飾皇瓜 実施例2に示す高熱膨張金属板と低熱膨張金属板の組合
せにおいて、低熱膨張金属板に形成する貫通孔の孔径と
孔間隔を種々変化させ、各複合材料の低熱膨張金属板表
面におけるCu材の面積比率と熱伝導率との関係を測定
した。測定結果を第11図の熱伝導率とCu露出面積比
率との関係グラフに示す。
In the combination of the high thermal expansion metal plate and the low thermal expansion metal plate shown in Example 2, the hole diameter and hole interval of the through holes formed in the low thermal expansion metal plate were varied, and the surface of the low thermal expansion metal plate of each composite material was changed. The relationship between the area ratio of the Cu material and the thermal conductivity was measured. The measurement results are shown in the graph of the relationship between thermal conductivity and Cu exposed area ratio in FIG. 11.

高熱膨張金属の露出面積が広いほど良好な熱伝導率が得
られるが、加工性等を考慮すると該面積比率が20〜8
0%の範囲内が望ましく、36Ni−Fe合金とCu板
からなる複合材料を放熱基板として用いる場合、該面積
比率が35%以上、29Ni−16Co−Fe合金板と
Cu板からなる複合材料では30%以上が望ましい。
The larger the exposed area of the high thermal expansion metal, the better the thermal conductivity can be obtained, but considering workability etc., the area ratio is 20 to 8.
It is desirable that the area ratio is within the range of 0%, and when a composite material made of a 36Ni-Fe alloy and a Cu plate is used as a heat dissipation board, the area ratio is 35% or more, and in a composite material made of a 29Ni-16Co-Fe alloy plate and a Cu plate, it is 30%. % or more is desirable.

また、実施例2で述べたが、Mo板とCu板からなるこ
の発明による複合材料は、Mo単体の熱膨張特性と極め
て近似するが、熱伝導率が大幅に向上している。
Furthermore, as described in Example 2, the composite material according to the present invention consisting of a Mo plate and a Cu plate has thermal expansion characteristics very similar to that of Mo alone, but has significantly improved thermal conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6図はこの発明による複合材料の実施例を
示す斜視説明図である。 第7図、第8図はこの発明による複合材料の製造方法の
一実施例を示す斜視説明図である。 第9図はこの発明による複合材料を用いて製造した放熱
基板の放熱効果を説明する断面説明図である。 第10図a、bはこの発明による複合材料の熱膨張率と
温度との関係を示すグラフである。 第11図はこの発明による複合材料の熱伝導率とCu露
出面積比率との関係を示すグラフである。 第12図a、bは従来の放熱基板を示すパッケージの縦
断説明図である。 第13図は半導体パッケージの概略図である。 1・・・チップ、2・・・Mo材、3・・・アルミナ材
、4・・・コバール材、5・・・放熱フィン、6・・・
複合体基板、7・・・7ランジ部、10,20,30,
40,50.60・・・複合材料、11.21,31,
41,51,61・・・銅板、12.22,32,42
,52a、52b、62.82−コバール板、13.2
3,33,43,53,63,83・・・貫通孔、14
.24,34,44,54,64,84・・・露出面、
70・・・圧延ロール、80・・・放熱基板、81・・
・銅、90・・・リードフレーム、91・・・アイラン
ド、 92・・・ステッチ、 93・・・リード部、 94・・・チップ、 95・・・ボンディングワイヤ、 96・・・樹脂。
1 to 6 are perspective explanatory views showing examples of the composite material according to the present invention. FIGS. 7 and 8 are perspective explanatory views showing one embodiment of the method for manufacturing a composite material according to the present invention. FIG. 9 is a cross-sectional explanatory diagram illustrating the heat dissipation effect of the heat dissipation board manufactured using the composite material according to the present invention. FIGS. 10a and 10b are graphs showing the relationship between the coefficient of thermal expansion and temperature of the composite material according to the present invention. FIG. 11 is a graph showing the relationship between the thermal conductivity and the Cu exposed area ratio of the composite material according to the present invention. FIGS. 12a and 12b are longitudinal sectional views of a package showing a conventional heat dissipation board. FIG. 13 is a schematic diagram of a semiconductor package. 1... Chip, 2... Mo material, 3... Alumina material, 4... Kovar material, 5... Radiation fin, 6...
Composite substrate, 7...7 langouse, 10, 20, 30,
40,50.60...Composite material, 11.21,31,
41,51,61...Copper plate, 12.22,32,42
, 52a, 52b, 62.82-Kovar plate, 13.2
3, 33, 43, 53, 63, 83... through hole, 14
.. 24, 34, 44, 54, 64, 84...exposed surface,
70... Rolling roll, 80... Heat dissipation board, 81...
- Copper, 90... Lead frame, 91... Island, 92... Stitch, 93... Lead part, 94... Chip, 95... Bonding wire, 96... Resin.

Claims (1)

【特許請求の範囲】 1 高熱膨張金属板の少なくとも一方主面に、厚み方向に多
数の貫通孔を有する低熱膨張金属板が一体化されて、前
記貫通孔から高熱膨張金属が低熱膨張金属板表面に露出
した構成からなり、これら金属板の厚さ比および/また
は露出した高熱膨張金属と低熱膨張金属との表面積比を
選定し、熱膨張係数および/または熱伝導率を所要値に
変化させることを特徴とする熱膨張係数及び熱伝導率可
変複合材料。
[Scope of Claims] 1. A low thermal expansion metal plate having a large number of through holes in the thickness direction is integrated into at least one principal surface of a high thermal expansion metal plate, and the high thermal expansion metal flows from the through holes to the surface of the low thermal expansion metal plate. The thickness ratio of these metal plates and/or the surface area ratio of exposed high thermal expansion metal and low thermal expansion metal are selected to change the thermal expansion coefficient and/or thermal conductivity to a required value. A composite material with variable thermal expansion coefficient and thermal conductivity.
JP14757289A 1989-06-10 1989-06-10 Composite material variable in coefficient of thermal expansion and heat conductivity Pending JPH0313331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14757289A JPH0313331A (en) 1989-06-10 1989-06-10 Composite material variable in coefficient of thermal expansion and heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14757289A JPH0313331A (en) 1989-06-10 1989-06-10 Composite material variable in coefficient of thermal expansion and heat conductivity

Publications (1)

Publication Number Publication Date
JPH0313331A true JPH0313331A (en) 1991-01-22

Family

ID=15433393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14757289A Pending JPH0313331A (en) 1989-06-10 1989-06-10 Composite material variable in coefficient of thermal expansion and heat conductivity

Country Status (1)

Country Link
JP (1) JPH0313331A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082413C (en) * 1997-06-25 2002-04-10 北京有色金属研究总院 Composite positioning method for making micro-special-shaped contact web
JP2007088030A (en) * 2005-09-20 2007-04-05 Fuji Electric Holdings Co Ltd Semiconductor device
JP2009203441A (en) * 2008-02-29 2009-09-10 Denso Corp Composite material, manufacturing method therefor, and composite structure
WO2009129123A1 (en) * 2008-04-18 2009-10-22 Apple Inc. Perforated substrates for forming housings
US8367304B2 (en) 2008-06-08 2013-02-05 Apple Inc. Techniques for marking product housings
US8489158B2 (en) 2010-04-19 2013-07-16 Apple Inc. Techniques for marking translucent product housings
WO2013136360A1 (en) * 2012-03-13 2013-09-19 新神戸電機株式会社 Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet
US8628836B2 (en) 2010-03-02 2014-01-14 Apple Inc. Method and apparatus for bonding metals and composites
US8663806B2 (en) 2009-08-25 2014-03-04 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
US8667661B2 (en) 2008-12-24 2014-03-11 Apple Inc. Method and apparatus for forming a layered metal structure with an anodized surface
US8879266B2 (en) 2012-05-24 2014-11-04 Apple Inc. Thin multi-layered structures providing rigidity and conductivity
JP2015015274A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Semiconductor device for electric power
US9173336B2 (en) 2009-05-19 2015-10-27 Apple Inc. Techniques for marking product housings
US9280183B2 (en) 2011-04-01 2016-03-08 Apple Inc. Advanced techniques for bonding metal to plastic
US9314871B2 (en) 2013-06-18 2016-04-19 Apple Inc. Method for laser engraved reflective surface structures
US9387612B2 (en) 2007-07-13 2016-07-12 Apple Inc. Methods and systems for forming a dual layer housing
US9434197B2 (en) 2013-06-18 2016-09-06 Apple Inc. Laser engraved reflective surface structures
US9845546B2 (en) 2009-10-16 2017-12-19 Apple Inc. Sub-surface marking of product housings
US9884342B2 (en) 2009-05-19 2018-02-06 Apple Inc. Techniques for marking product housings
JP6304670B1 (en) * 2017-04-14 2018-04-04 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
US9962788B2 (en) 2009-10-16 2018-05-08 Apple Inc. Sub-surface marking of product housings
US10071583B2 (en) 2009-10-16 2018-09-11 Apple Inc. Marking of product housings
US10071584B2 (en) 2012-07-09 2018-09-11 Apple Inc. Process for creating sub-surface marking on plastic parts
JP2018182287A (en) * 2017-11-20 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, semiconductor module, and manufacturing method of heat dissipating substrate
US10220602B2 (en) 2011-03-29 2019-03-05 Apple Inc. Marking of fabric carrying case for a portable electronic device
US10999917B2 (en) 2018-09-20 2021-05-04 Apple Inc. Sparse laser etch anodized surface for cosmetic grounding
WO2024029311A1 (en) * 2022-08-04 2024-02-08 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082413C (en) * 1997-06-25 2002-04-10 北京有色金属研究总院 Composite positioning method for making micro-special-shaped contact web
JP2007088030A (en) * 2005-09-20 2007-04-05 Fuji Electric Holdings Co Ltd Semiconductor device
US11077593B2 (en) 2007-07-13 2021-08-03 Apple Inc. Housings for electronic devices
US9387612B2 (en) 2007-07-13 2016-07-12 Apple Inc. Methods and systems for forming a dual layer housing
JP2009203441A (en) * 2008-02-29 2009-09-10 Denso Corp Composite material, manufacturing method therefor, and composite structure
US8646637B2 (en) 2008-04-18 2014-02-11 Apple Inc. Perforated substrates for forming housings
WO2009129123A1 (en) * 2008-04-18 2009-10-22 Apple Inc. Perforated substrates for forming housings
US8367304B2 (en) 2008-06-08 2013-02-05 Apple Inc. Techniques for marking product housings
US9185835B2 (en) 2008-06-08 2015-11-10 Apple Inc. Techniques for marking product housings
US8667661B2 (en) 2008-12-24 2014-03-11 Apple Inc. Method and apparatus for forming a layered metal structure with an anodized surface
US9884342B2 (en) 2009-05-19 2018-02-06 Apple Inc. Techniques for marking product housings
US9173336B2 (en) 2009-05-19 2015-10-27 Apple Inc. Techniques for marking product housings
US8663806B2 (en) 2009-08-25 2014-03-04 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
US9849650B2 (en) 2009-08-25 2017-12-26 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
US10773494B2 (en) 2009-08-25 2020-09-15 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
US10071583B2 (en) 2009-10-16 2018-09-11 Apple Inc. Marking of product housings
US9962788B2 (en) 2009-10-16 2018-05-08 Apple Inc. Sub-surface marking of product housings
US9845546B2 (en) 2009-10-16 2017-12-19 Apple Inc. Sub-surface marking of product housings
US9409379B2 (en) 2010-03-02 2016-08-09 Apple Inc. Method and apparatus for bonding metals and composites
US8628836B2 (en) 2010-03-02 2014-01-14 Apple Inc. Method and apparatus for bonding metals and composites
US8489158B2 (en) 2010-04-19 2013-07-16 Apple Inc. Techniques for marking translucent product housings
US10220602B2 (en) 2011-03-29 2019-03-05 Apple Inc. Marking of fabric carrying case for a portable electronic device
US9280183B2 (en) 2011-04-01 2016-03-08 Apple Inc. Advanced techniques for bonding metal to plastic
WO2013136360A1 (en) * 2012-03-13 2013-09-19 新神戸電機株式会社 Method for manufacturing lead alloy sheet for expanded grid, and method for manufacturing expanded grid for lead battery using lead alloy sheet
US8879266B2 (en) 2012-05-24 2014-11-04 Apple Inc. Thin multi-layered structures providing rigidity and conductivity
US10071584B2 (en) 2012-07-09 2018-09-11 Apple Inc. Process for creating sub-surface marking on plastic parts
US11597226B2 (en) 2012-07-09 2023-03-07 Apple Inc. Process for creating sub-surface marking on plastic parts
US9314871B2 (en) 2013-06-18 2016-04-19 Apple Inc. Method for laser engraved reflective surface structures
US9434197B2 (en) 2013-06-18 2016-09-06 Apple Inc. Laser engraved reflective surface structures
JP2015015274A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Semiconductor device for electric power
JP6304670B1 (en) * 2017-04-14 2018-04-04 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
JP2018182088A (en) * 2017-04-14 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, and semiconductor module
WO2018190023A1 (en) * 2017-04-14 2018-10-18 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
JP2018182287A (en) * 2017-11-20 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, semiconductor module, and manufacturing method of heat dissipating substrate
US10999917B2 (en) 2018-09-20 2021-05-04 Apple Inc. Sparse laser etch anodized surface for cosmetic grounding
WO2024029311A1 (en) * 2022-08-04 2024-02-08 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Similar Documents

Publication Publication Date Title
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
US5106433A (en) Heat-conductive composite material
US5844310A (en) Heat spreader semiconductor device with heat spreader and method for producing same
JPH0837257A (en) Laminated body and manufacture thereof
JP2004507073A (en) High rigidity, multi-layer semiconductor package and manufacturing method thereof
US5300809A (en) Heat-conductive composite material
JP3462308B2 (en) Manufacturing method of heat conductive composite material
EP0392109A2 (en) Heat-conductive composite material
JPH02275657A (en) Composite material, thermal diffusion member in circuit system employing the material, circuit system and their manufacture
JP3505704B2 (en) Heat dissipating substrate and manufacturing method thereof
JPH05109947A (en) Heat conducting material and its manufacture
JPH03227621A (en) Thermally conductive composing material
KR940010910B1 (en) Semiconductor package
JP2602161B2 (en) High heat dissipation integrated circuit package
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
JPH0924500A (en) Production of thermally conductive composite material
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JPH04230063A (en) Multilayer heat sink
US5355017A (en) Lead frame having a die pad with metal foil layers attached to the surfaces
JPH01290245A (en) Heat dissipating substrate
JPH0575008A (en) Thermally conductive material and manufacture thereof
JPH04137552A (en) Lead frame
JPH056949A (en) Heat sink
JPH03290956A (en) Lead frame material for plastic package
JPH03290957A (en) Lead frame material for plastic package