JPH0560783A - Manufacture of piezoelectric acceleration sensor - Google Patents

Manufacture of piezoelectric acceleration sensor

Info

Publication number
JPH0560783A
JPH0560783A JP25040591A JP25040591A JPH0560783A JP H0560783 A JPH0560783 A JP H0560783A JP 25040591 A JP25040591 A JP 25040591A JP 25040591 A JP25040591 A JP 25040591A JP H0560783 A JPH0560783 A JP H0560783A
Authority
JP
Japan
Prior art keywords
piezoelectric
film
acceleration sensor
sensing
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25040591A
Other languages
Japanese (ja)
Inventor
Satoshi Kunimura
智 國村
Shiro Nakayama
四郎 中山
Katsuhiko Takahashi
克彦 高橋
Takayuki Imai
隆之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25040591A priority Critical patent/JPH0560783A/en
Publication of JPH0560783A publication Critical patent/JPH0560783A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To improve the impact resistance of a piezoelectric acceleration sensor. CONSTITUTION:When the film-shaped piezoelectric body of a piezoelectric acceleration sensor is manufactured, plasma etching is performed on both surfaces of the film of the piezoelectric body. Thereafter, electrodes are bonded so as to form a unitary body. The bonding strength is greatly enhanced, and the impact resistance is remarkably improved. Especially, the sensors can be continuously fabricated in-line in manufacturing because the plasma etching is performed. The mass production is easy. Since the dry process is used, post treatment such as used in chemical treatment is not required, and the production efficiency is extremely high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧電型加速度センサ
の製造方法に係わり、特に耐衝撃性に優れるセンサを製
造可能な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric acceleration sensor, and more particularly to a method of manufacturing a sensor having excellent impact resistance.

【0002】[0002]

【従来の技術】圧電型加速度センサに関して既に我々
は、PVDFなどの高分子圧電フィルムを圧縮すること
により発生する電荷を利用し、構造が簡単で、衝撃に強
く、感度の異方性が大きく、焦電出力の小さい圧電型加
速度センサを提案し、特願平1−113255号、特願
平1−251405号、特願平1−318277号等と
して特許出願している。
2. Description of the Related Art Regarding a piezoelectric type acceleration sensor, we have already utilized electric charges generated by compressing a polymeric piezoelectric film such as PVDF, have a simple structure, are strong against impact, and have large sensitivity anisotropy. A piezoelectric acceleration sensor having a small pyroelectric output has been proposed, and patent applications have been filed as Japanese Patent Application Nos. 1-113255, 1-251405, and 1-318277.

【0003】図1は、このような圧電型加速度センサ装
置を例示するものである。この圧電型加速度センサ装置
1は、圧電型加速度センサ2と、この圧電型加速度セン
サ2からの出力をインピーダンス変換するインピーダン
ス変換回路や出力増幅回路などを搭載した回路基板3と
からなる加速度センサユニット4をパッケージ5内に収
容したものである。この加速度センサユニット4は、回
路基板3の一方の面側に圧電型加速度センサ2を取り付
け、他方の面側に回路6を配設して構成されている。
FIG. 1 illustrates such a piezoelectric acceleration sensor device. The piezoelectric acceleration sensor device 1 includes an acceleration sensor unit 4 including a piezoelectric acceleration sensor 2 and a circuit board 3 on which an impedance conversion circuit for converting the output from the piezoelectric acceleration sensor 2 and an output amplification circuit are mounted. Are accommodated in the package 5. The acceleration sensor unit 4 is configured by mounting the piezoelectric acceleration sensor 2 on one surface side of the circuit board 3 and disposing the circuit 6 on the other surface side.

【0004】この圧電型加速度センサ2は、図2に示す
ように、PVDFなどの高分子フィルムからなる圧電体
フィルム7の両面に、電極として、銅箔などの金属薄板
8,8を接着一体化した膜状圧電体9の両面に、ガラス
エポキシ板などの剛体からなる支持板10,10を接着
一体化して感知部11が形成され、この感知部11の上
に、荷重体12を載置して構成されている。この感知部
11内の各層間の接着には、エポキシ系接着剤などの誘
電性接着剤が使用されている。図中符号13はその接着
層を示している。
In this piezoelectric acceleration sensor 2, as shown in FIG. 2, metal thin plates 8 made of copper foil or the like are bonded and integrated as electrodes on both sides of a piezoelectric film 7 made of a polymer film such as PVDF. On both sides of the film-like piezoelectric body 9, the support plates 10 and 10 made of a rigid body such as a glass epoxy plate are bonded and integrated to form a sensing portion 11, and the load body 12 is placed on the sensing portion 11. Is configured. A dielectric adhesive such as an epoxy adhesive is used for adhesion between the layers in the sensing unit 11. Reference numeral 13 in the figure indicates the adhesive layer.

【0005】この圧電型加速度センサは、このような構
成としたので、小型化が可能となり、製造も容易である
上、圧電体に高分子フィルムを用いているために、従来
問題となっていた圧電体(従来はセラミックス圧電体)
の脆性に起因する圧電体そのものの衝撃時の破損がない
などの数々の利点も有している。
Since the piezoelectric acceleration sensor has such a structure, it can be miniaturized, is easy to manufacture, and has a problem in the prior art because a polymer film is used for the piezoelectric body. Piezoelectric body (previously ceramic piezoelectric body)
It also has a number of advantages such as no damage to the piezoelectric body due to its brittleness during impact.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな圧電型加速度センサにあっては、優れた特性を有す
るものの、特に横方向から衝撃を受けたときに、膜状圧
電体9を構成する圧電体フィルム7とその両面に接着さ
れた金属薄板8,8との間で剥離が生じ、加速度センサ
が破壊されることがあった。実用上は、現状の加速度セ
ンサで十分な強度を有しているものの、衝撃センサとし
ての使用においては必ずしも満足のいくものではなかっ
た。こうした剥離は、圧電体フィルム7には主としてフ
ッ素系が使用されるために、圧電体フィルムと接着剤の
間の接着力が大きくならないことによるものと考えられ
る。
However, although such a piezoelectric acceleration sensor has excellent characteristics, the piezoelectric forming the film-shaped piezoelectric body 9 is particularly affected by a lateral impact. In some cases, peeling occurred between the body film 7 and the metal thin plates 8 and 8 adhered to both surfaces thereof, and the acceleration sensor was destroyed. In practice, the current acceleration sensor has sufficient strength, but it is not always satisfactory when used as an impact sensor. It is considered that such peeling is caused by the fact that the piezoelectric film 7 is mainly made of fluorine, so that the adhesive force between the piezoelectric film and the adhesive does not become large.

【0007】本発明は上記事情に鑑みてなされたもの
で、従来の圧電型加速度センサにおける耐衝撃性を向上
させることを目的としている。
The present invention has been made in view of the above circumstances, and an object thereof is to improve impact resistance of a conventional piezoelectric acceleration sensor.

【0008】[0008]

【課題を解決するための手段】かかる課題は、圧電型加
速度センサの膜状圧電体を製造する際に、圧電体フィル
ムの両面にプラズマエッチング処理を施して電極を接着
一体化する製造方法によって解消される。
This problem is solved by a manufacturing method in which, when a film-shaped piezoelectric body of a piezoelectric acceleration sensor is manufactured, plasma etching is performed on both surfaces of the piezoelectric film to bond and integrate electrodes. To be done.

【0009】[0009]

【作用】以下、この発明を詳しく説明する。この方法で
は、まず圧電体フィルムにプラズマエッチングを施す。
この圧電体フィルムとしては、PVDFフィルムなどの
圧電性高分子フィルムが好適に用いられる。スパッタリ
ング装置内において、アルゴン等のプラズマ雰囲気中内
に、試料である圧電体フィルムを入れ、試料に負の直流
電流をかけることで、アルゴンイオンが試料の表面に衝
突し、試料の表面が均一にエッチングされる。この際、
試料のプラズマエッチングによる改質は試料の極表面に
しか及ばないので、圧電体フィルム全体が劣化すること
はない。また、試料の温度上昇もほとんどないので、圧
電体フィルムに、圧電性の低下をきたすこともない。こ
うして圧電体フィルムの表面にプラズマエッチングを施
すことで、圧電体フィルムの表面に微細な凹凸が多く形
成され、この凹凸によって、接着時にはアンカー効果が
生じ、接着力が増大する。そして、このプラズマエッチ
ング処理の施された圧電体フィルムの両面に電極である
金属薄板を接着一体化して膜状圧電体を作製する。尚、
電極としては、通常は銅箔やアルミ箔などが用いられる
が、導電性プラスッチク等を使用することもできる。電
極の接着には接着剤が使用される。接着剤は限定される
ものではないが、誘電性接着剤が好ましい。中でも誘電
性接着剤としては、接着強度の高いエポキシ系接着剤等
が好適に用いられる。そして誘電性接着剤を固化させる
時に、圧電体フィルムと金属薄板との仮接着体をプレス
機によって所定の圧力でプレスしながら一体化する。
尚、この接着時に用いられるプレス機は、特に限定され
るものではなく、プレス圧の調整が比較的精密に調整可
能な一般の中低圧プレス装置が使用可能である。
The present invention will be described in detail below. In this method, first, the piezoelectric film is subjected to plasma etching.
A piezoelectric polymer film such as a PVDF film is preferably used as the piezoelectric film. In the sputtering system, the piezoelectric film, which is the sample, is placed in a plasma atmosphere such as argon, and by applying a negative direct current to the sample, argon ions collide with the surface of the sample and the surface of the sample becomes uniform. Is etched. On this occasion,
Since the modification of the sample by plasma etching extends only to the extreme surface of the sample, the entire piezoelectric film is not deteriorated. Further, since the temperature of the sample hardly rises, the piezoelectric film is not deteriorated in piezoelectricity. By performing plasma etching on the surface of the piezoelectric film in this manner, many fine irregularities are formed on the surface of the piezoelectric film. Due to these irregularities, an anchoring effect occurs at the time of bonding and the adhesive force increases. Then, thin metal plates, which are electrodes, are bonded and integrated on both sides of the piezoelectric film that has been subjected to the plasma etching treatment to produce a film-shaped piezoelectric body. still,
Copper foil, aluminum foil, or the like is usually used as the electrode, but conductive plastic or the like can also be used. An adhesive is used to bond the electrodes. The adhesive is not limited, but a dielectric adhesive is preferred. Above all, as the dielectric adhesive, an epoxy adhesive having a high adhesive strength is preferably used. Then, when the dielectric adhesive is solidified, the temporary adhesive body of the piezoelectric film and the metal thin plate is integrated by pressing with a predetermined pressure by a pressing machine.
The press machine used for this bonding is not particularly limited, and a general medium-and low-pressure press device whose press pressure can be adjusted relatively accurately can be used.

【0010】次に、所定の圧力を加えながら接着一体化
して得られた膜状圧電体の両面に、支持板を接着一体化
する。支持板の材料は剛性の大きな材料、特にガラスエ
ポキシ板材などが好適に用いられる。尚、この接着時に
も圧力を加えながら接着を行なうことができ、従って圧
電体フィルム、2枚の金属薄板および2枚の支持板の各
材料を界面に接着剤を塗布して重ね合わせ、プレス機に
装着して加圧しながら接着一体化して積層体を製造する
ことも可能である。
Next, a support plate is bonded and integrated on both sides of the film-shaped piezoelectric body obtained by bonding and integrating while applying a predetermined pressure. As the material of the support plate, a material having a large rigidity, particularly a glass epoxy plate material, is preferably used. It should be noted that it is possible to carry out the bonding while applying pressure even at the time of this bonding. Therefore, each material of the piezoelectric film, the two metal thin plates and the two support plates is coated with an adhesive at the interface and overlapped with each other. It is also possible to manufacture a laminated body by mounting the laminated body on and adhering to it while applying pressure.

【0011】次に、得られた積層体をダイシングソーな
どの切断機を用いて適宜な形状に切断し、センサの感知
部となるチップとする。この切断では、膜状圧電体の平
面形状が、センサを取り付ける測定面に平行な面におい
て、感知軸を対称の中心とする点対称形状となるように
切断される。切断されたチップは、回路基板上に接着固
定されるとともに、チップ上側に荷重体を接着固定す
る。
Next, the obtained laminated body is cut into an appropriate shape by using a cutting machine such as a dicing saw to obtain a chip which becomes a sensing portion of the sensor. In this cutting, the planar shape of the film-shaped piezoelectric body is cut into a point-symmetrical shape with the sensing axis as the center of symmetry on a plane parallel to the measurement surface on which the sensor is mounted. The cut chip is adhesively fixed on the circuit board and the load body is adhesively fixed on the upper side of the chip.

【0012】この荷重体は、それの感知部に接する面の
平面形状が感知軸を対称の中心とする点対称であり、か
つ感知軸を通り前記測定面に垂直な無数の平面で断面と
したときに全ての断面について感知軸を対称軸とする線
対称である形状とされ、またその材質は特に限定されな
いが、真鍮(黄銅)などの金属材料が好適に用いられ
る。このようにして、耐衝撃性に優れた圧電型加速度セ
ンサが製造される。
This load body has a plane shape of a plane in contact with the sensing portion which is point-symmetrical with the sensing axis as a center of symmetry, and has a cross section of an infinite number of planes passing through the sensing axis and perpendicular to the measurement surface. Sometimes, all the cross-sections have a line-symmetrical shape with the sensing axis as the axis of symmetry, and the material thereof is not particularly limited, but a metal material such as brass (brass) is preferably used. In this way, a piezoelectric acceleration sensor having excellent impact resistance is manufactured.

【0013】[0013]

【実施例】厚さ100μmのPVDF圧電体フィルムを
5mm×5mmの正方形状に切断し、この両面にプラズ
マエッチング処理を施した。スパッタ装置は、RF式
で、放電電力は200W、気体にはアルゴンガスを使用
した。プラズマエッチング処理時間は下記表1に示す。
プラズマエッチング処理の済んだ圧電体フィルムにエポ
キシ系接着剤を塗布し、同一形状(5mm×5mmの正
方形状)で30μm厚の銅箔を接着した。その後、この
両面に1.5mm厚、5mm×5mmのガラスエポキシ
板をエポキシ系接着剤で接着した。この膜状圧電体を重
さ1kgのアルミブロック上に接着し、他方の面に重さ
5gの真鍮製の荷重体をエポキシ系接着剤で接着し、耐
衝撃性試験に供した。耐衝撃性試験は、膜状圧電体の固
着されたアルミブロックを加速度センサの検知軸と垂直
な方向に、1mの高さからコンクリートブロック上に落
下させ、破壊されるまでの回数で評価した。また、比較
例として、プラズマエッチングを施さないこと以外は同
様な方法で作成した試料を、同じ試験に供した。結果を
表1に示す。
Example A PVDF piezoelectric film having a thickness of 100 μm was cut into a square shape of 5 mm × 5 mm, and both surfaces thereof were subjected to plasma etching treatment. The sputtering apparatus was an RF type, the discharge power was 200 W, and argon gas was used as the gas. The plasma etching treatment time is shown in Table 1 below.
An epoxy adhesive was applied to the piezoelectric film that had been subjected to the plasma etching treatment, and a 30 μm thick copper foil having the same shape (5 mm × 5 mm square shape) was bonded. After that, a glass epoxy plate having a thickness of 1.5 mm and a size of 5 mm × 5 mm was adhered to both surfaces with an epoxy adhesive. This film-shaped piezoelectric body was bonded onto an aluminum block having a weight of 1 kg, and a brass load body having a weight of 5 g was bonded to the other surface with an epoxy adhesive and subjected to an impact resistance test. In the impact resistance test, the aluminum block to which the film-shaped piezoelectric material was fixed was dropped on a concrete block from a height of 1 m in a direction perpendicular to the detection axis of the acceleration sensor, and evaluated by the number of times until it was destroyed. As a comparative example, a sample prepared by the same method except that plasma etching was not performed was subjected to the same test. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、圧電体フィルム
にプラズマエッチング処理を施した本実施例のものは耐
衝撃性が大幅に改善されていることがわかる。また、プ
ラズマエッチング処理による圧電性の低下は極めて僅か
であり、加速度センサとして、その使用にはなんら支障
がないことが判明している。
As can be seen from Table 1, the impact resistance of the piezoelectric film of the present example, which was subjected to the plasma etching treatment, was significantly improved. Further, it has been found that the decrease in piezoelectricity due to the plasma etching treatment is extremely slight, and that there is no problem in using the acceleration sensor.

【0016】[0016]

【発明の効果】以上説明したように、本発明では、圧電
型加速度センサにおける膜状圧電体を製造する際に、圧
電体フィルムにプラズマエッチング処理を施した上で電
極を貼り付けるもので、接着力が非常に高められ、耐衝
撃性が飛躍的に向上したものである。特に、プラズマエ
ッチング処理を使用するものなので、製造する際、連続
的にインラインで製造でき、大量生産が容易あり、しか
もドライプロセスであるから、薬品処理時のような後処
理(例えば、リンス等)が不要で極めて生産効率が高い
ものである。さらに、プラズマエッチング処理において
は、圧電体フィルムに圧電性の低下をきたすことがな
い。
As described above, according to the present invention, when the film-shaped piezoelectric body of the piezoelectric acceleration sensor is manufactured, the piezoelectric film is subjected to the plasma etching treatment and the electrodes are attached thereto. The strength is greatly increased and the impact resistance is dramatically improved. In particular, since it uses a plasma etching process, it can be continuously manufactured in-line during manufacturing, mass production is easy, and since it is a dry process, post-processing such as chemical treatment (for example, rinse) Is unnecessary and the production efficiency is extremely high. Further, in the plasma etching process, the piezoelectric film is not deteriorated in piezoelectricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 圧電型加速度センサ装置の一例を示す側断面
図である。
FIG. 1 is a side sectional view showing an example of a piezoelectric acceleration sensor device.

【図2】 圧電型加速度センサの要部拡大側断面図であ
る。
FIG. 2 is an enlarged side sectional view of a main part of a piezoelectric acceleration sensor.

【符号の説明】[Explanation of symbols]

2…圧電型加速度センサ、3…回路基板(台座)、7…
圧電体フィルム、8…金属薄板(電極)、9…膜状圧電
体、10…支持板、11…感知部、12…荷重体、13
…接着層
2 ... Piezoelectric acceleration sensor, 3 ... Circuit board (pedestal), 7 ...
Piezoelectric film, 8 ... Metal thin plate (electrode), 9 ... Membrane piezoelectric material, 10 ... Support plate, 11 ... Sensing part, 12 ... Load body, 13
... Adhesive layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 隆之 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Imai 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に剛に取り付けられる台座と、
この台座の感知軸に垂直な測定面に固定された感知部
と、この感知部上に固着され、慣性質量部として作用す
る剛体からなる荷重体を有し、 前記感知部は、圧電体フィルムの両面に電極を接着一体
化した膜状圧電体と、この膜状圧電体の両面に固着され
た板状の剛体からなる2枚の支持板とからなり、かつ膜
状圧電体の平面形状が前記測定面に平行な面において感
知軸を対称の中心とする点対称であり、 前記荷重体は、それの感知部に接する面の平面形状が感
知軸を対称の中心とする点対称であり、かつ感知軸を通
り前記測定面に垂直な無数の平面で断面した時、すべて
の断面について感知軸を対称軸とする線対称である圧電
型加速度センサの製造方法において、 前記膜状圧電体を製造する際に、圧電体フィルムの両面
にプラズマエッチング処理を施してから電極を接着一体
化することを特徴とする圧電型加速度センサの製造方
法。
1. A pedestal rigidly attached to an object to be measured,
The pedestal has a sensing unit fixed to a measurement surface perpendicular to the sensing axis, and a load body made of a rigid body fixed to the sensing unit and acting as an inertial mass unit. The sensing unit is a piezoelectric film. It is composed of a film-shaped piezoelectric body in which electrodes are bonded and integrated on both surfaces, and two supporting plates made of plate-shaped rigid bodies fixed to both surfaces of the film-shaped piezoelectric body, and the planar shape of the film-shaped piezoelectric body is the above-mentioned. It is point-symmetrical with the sensing axis being the center of symmetry in a plane parallel to the measurement plane, and the load body is point-symmetrical with the planar shape of the surface in contact with the sensing section being the center of symmetry of the sensing axis, and In a method of manufacturing a piezoelectric acceleration sensor, which is line-symmetrical with respect to all cross-sections when it is sectioned in a myriad of planes passing through a sensing axis and perpendicular to the measurement surface, the film-shaped piezoelectric body is manufactured. At the time of plasma etching on both sides of the piezoelectric film. Method for manufacturing a piezoelectric type acceleration sensor, which comprises bonding and integrating the electrode after subjected to a treatment.
JP25040591A 1991-09-03 1991-09-03 Manufacture of piezoelectric acceleration sensor Withdrawn JPH0560783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25040591A JPH0560783A (en) 1991-09-03 1991-09-03 Manufacture of piezoelectric acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25040591A JPH0560783A (en) 1991-09-03 1991-09-03 Manufacture of piezoelectric acceleration sensor

Publications (1)

Publication Number Publication Date
JPH0560783A true JPH0560783A (en) 1993-03-12

Family

ID=17207413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25040591A Withdrawn JPH0560783A (en) 1991-09-03 1991-09-03 Manufacture of piezoelectric acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0560783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506858A (en) * 1999-07-20 2003-02-18 エスアールアイ インターナショナル Electroactive polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506858A (en) * 1999-07-20 2003-02-18 エスアールアイ インターナショナル Electroactive polymer
JP2009267429A (en) * 1999-07-20 2009-11-12 Sri Internatl Transducer using polymer
JP2012095527A (en) * 1999-07-20 2012-05-17 Sri Internatl Electrode and optical modulation device

Similar Documents

Publication Publication Date Title
US7386136B2 (en) Sound detecting mechanism
EP2147470B1 (en) Acoustic stack for ultrasonic transucers and method for manufacturing same
US7003125B2 (en) Micromachined piezoelectric microspeaker and fabricating method thereof
US20130329920A1 (en) Piezoelectric mems microphone
WO1999013343A1 (en) Acceleration sensor and method of producing the same
JP3183177B2 (en) Acceleration sensor
JP2002027595A (en) Pressure sensor and method for manufacturing the same
WO2012140936A1 (en) Electronic component and method for manufacturing electronic component
US7412892B1 (en) Method of making pressure transducer and apparatus
US7288878B1 (en) Piezoelectric transducer assembly
US9711707B2 (en) Method for manufacturing an electronic device
KR20010007382A (en) Piezoelectric acoustic device and a method for manufacture thereof
JPH0560783A (en) Manufacture of piezoelectric acceleration sensor
Yi et al. Micromachined piezoelectric microspeaker
JP3445262B2 (en) Piezoelectric body manufacturing method, piezoelectric body, ultrasonic probe, ultrasonic diagnostic apparatus, and nondestructive inspection apparatus
US20200171544A1 (en) High Frequency Ultrasonic Transducer and Method of Fabrication
WO2019171475A1 (en) Method for evaluating flowability of resin composition, method for identifying resin composition, and method for producing semiconductor device
JPH05249135A (en) Manufacture of piezoelectric acceleration sensor
JPH05126626A (en) Manufacture of piezoelectric vibration sensor
Feiertag et al. Packaging of MEMS microphones
CN115342901B (en) Piezoelectric device and preparation method thereof
JP2007107990A (en) Acceleration sensor
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same
SU836821A1 (en) Method of manufacturing electret element of electroacoustic transducer
JPH05172624A (en) Piezoelectric type vibration sensor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203