JPH0539640Y2 - - Google Patents

Info

Publication number
JPH0539640Y2
JPH0539640Y2 JP1987112798U JP11279887U JPH0539640Y2 JP H0539640 Y2 JPH0539640 Y2 JP H0539640Y2 JP 1987112798 U JP1987112798 U JP 1987112798U JP 11279887 U JP11279887 U JP 11279887U JP H0539640 Y2 JPH0539640 Y2 JP H0539640Y2
Authority
JP
Japan
Prior art keywords
substrate
light
solar cell
semiconductor substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987112798U
Other languages
Japanese (ja)
Other versions
JPS6418763U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987112798U priority Critical patent/JPH0539640Y2/ja
Publication of JPS6418763U publication Critical patent/JPS6418763U/ja
Application granted granted Critical
Publication of JPH0539640Y2 publication Critical patent/JPH0539640Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は太陽電池素子に関し、特に、人工衛星
用電源等の宇宙環境下で用いて有効な太陽電池素
子の構造に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a solar cell element, and particularly to a structure of a solar cell element that is effective for use in a space environment such as a power source for an artificial satellite.

〈考案の概要〉 本考案は、太陽電池素子を構成する半導体基板
の表面及び裏面に異方性エツチングによる微小五
面体からなる凹凸面を形成することによつて、低
温で動作し、裏面からの光も出力として取り出せ
る高効率の太陽電池素子が得られるものである。
<Summary of the invention> The present invention operates at low temperatures by forming uneven surfaces consisting of micropentahedrons on the front and back surfaces of the semiconductor substrate constituting the solar cell element by anisotropic etching. A highly efficient solar cell element that can also extract light as output can be obtained.

〈従来の技術〉 シリコン単結晶基板を用いた太陽電池素子の表
面反射損失を抑えるために、高橋清他「太陽光発
電」(昭和55.2.20)森北出版、p.153に示されるよ
うに、シリコン単結晶基板の受光面に異方性エツ
チングにより無数のピラミツド状の微小五面体よ
り成る凹凸を形成し、入射光と表面のピラミツド
面の光学的多重反射屈折によつて光の吸収率を改
善するという従来技術があつた。
<Prior art> In order to suppress the surface reflection loss of solar cell elements using silicon single crystal substrates, as shown in Kiyoshi Takahashi et al., "Solar Power Generation" (February 20, 1980), Morikita Publishing, p. 153, Anisotropic etching is performed on the light-receiving surface of a silicon single-crystal substrate to form unevenness consisting of countless pyramid-shaped micropentahedrons, and optical multiple reflection and refraction between the incident light and the pyramid surface on the surface improves the light absorption rate. There is a conventional technique to do this.

第3図はこの種の従来例の太陽電池素子の構造
を示す。
FIG. 3 shows the structure of a conventional solar cell element of this type.

1はシリコン基板、2は基板表面、3は基板裏
面、4はPN接合面、5は表電極、6は裏電極、
7は反射防止膜、8は接着剤、9はカバーグラス
である。
1 is a silicon substrate, 2 is the front surface of the substrate, 3 is the back surface of the substrate, 4 is the PN junction surface, 5 is the front electrode, 6 is the back electrode,
7 is an antireflection film, 8 is an adhesive, and 9 is a cover glass.

〈考案が解決しようとする問題点〉 従来は、その断面図を第3図に示すように、太
陽電池素子の裏面は平滑面であつた。この場合、
入射光10のシリコン基板1の表面及び内部での
反射・屈折の様子は、フレネルの公式から求ま
り、第4図のようになる。ここでは、シリコン基
板1の屈折率を3.8、接着剤8の屈折率を1.43と
している。実際は、反射防止膜7がシリコン基板
1上に存在するが、内部入射光11,12のシリ
コン基板内部での角度は不変である。ここで1次
入射光11及び2次入射光12のシリコン基板裏
面3での反射を考えると、裏電極6が存在する場
合はもとより、基板裏面3が大気に接している場
合でも全反射となる。シリコンの禁制帯幅よりも
エネルギーの小さい約1.2μm以上の波長の光は、
シリコン内部で吸収された場合、熱となるが、従
来例は上述の如く、光の吸収率が大きくなり、素
子温度上昇による発電効率の低下を招きやすいと
いう問題点がある。
<Problem to be solved by the invention> Conventionally, the back surface of a solar cell element is a smooth surface, as shown in the cross-sectional view of FIG.
The state of reflection and refraction of incident light 10 on the surface and inside of silicon substrate 1 is found from Fresnel's formula, as shown in Figure 4. Here, the refractive index of silicon substrate 1 is 3.8, and that of adhesive 8 is 1.43. In reality, anti-reflection film 7 exists on silicon substrate 1, but the angles of internal incident light 11, 12 inside the silicon substrate remain unchanged. Considering the reflection of primary incident light 11 and secondary incident light 12 on the back surface 3 of silicon substrate, total reflection occurs not only when back electrode 6 exists, but also when back surface 3 of substrate is in contact with the air. Light with a wavelength of approximately 1.2 μm or more, which has less energy than the forbidden band width of silicon,
When light is absorbed inside the silicon, it becomes heat, but as described above, the conventional example has a problem in that the light absorption rate becomes large, which tends to lead to a decrease in power generation efficiency due to an increase in element temperature.

〈問題点を解決するための手段〉 本考案は上記の問題点に鑑みなされたもので、
一導電型の半導体基板の一方の主面にこの基板と
は反対導電型の不純物を拡散して形成されたPN
接合と、前記半導体基板の表面及び裏面それぞれ
に形成された表電極及び裏電極と、を有する太陽
電池素子において、前記半導体基板の表面及び裏
面に異方性エツチングによる無数の微少五面体よ
りなる凹凸を形成するとともに、前記表電極及び
裏電極を、それぞれ共に光が透過するよう前記半
導体基板にくし形または格子形に形成してなるこ
とを特徴とする。
<Means for solving the problems> The present invention was created in view of the above problems.
A PN formed by diffusing impurities of the opposite conductivity type to one main surface of a semiconductor substrate of one conductivity type.
In a solar cell element having a bond, and a front electrode and a back electrode formed on the front and back surfaces of the semiconductor substrate, the front and back surfaces of the semiconductor substrate are unevenly formed by countless minute pentahedrons by anisotropic etching. The semiconductor substrate is characterized in that the front electrode and the back electrode are formed in a comb shape or a lattice shape on the semiconductor substrate so that light can pass therethrough.

〈作用〉 上記の如く構成されたことにより、表面の無数
微小五面体での多重反射屈折によりシリコン基板
内部に入射される光のうち、光電変換に寄与する
ことなく基板裏面に到達した光は、その基板裏面
に対する入射角が小さいことから全反射すること
なく、且つ裏面電極に遮られずに基板外部へ透過
するため、基板内部での熱の発生は抑えられ、素
子温度は従来よりも低くなる。また素子裏面側か
らの光も光電流に変換されるので、例えば低周回
軌道上の人工衛星の電源として用いれば、太陽か
らの直接入射光に加え、地球表面からの反射光も
有効に利用でき、その発電効率は極めて高いもの
となる。
<Function> With the above-mentioned configuration, among the light incident on the silicon substrate due to multiple reflection and refraction at the countless minute pentahedrons on the surface, the light that reaches the back surface of the substrate without contributing to photoelectric conversion does not undergo total reflection because the angle of incidence with respect to the back surface of the substrate is small, and is transmitted to the outside of the substrate without being blocked by the back electrode, so that the generation of heat inside the substrate is suppressed and the element temperature is lower than in the past. In addition, since the light from the back side of the element is also converted into photocurrent, if it is used as a power source for an artificial satellite in a low earth orbit, for example, it can effectively utilize reflected light from the earth's surface in addition to the direct incident light from the sun, and the power generation efficiency is extremely high.

したがつて、従来よりも低い温度で動作し、裏
面からの光も出力として取り出せる高効率の太陽
電池素子が得られる。
Therefore, a highly efficient solar cell element that operates at a lower temperature than conventional solar cells and can extract light from the back side as output can be obtained.

〈実施例〉 以下、図面を参照して本考案の実施例を説明す
る。
<Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本考案に係る太陽電池素子の一実施例
の構造を示す。なお、同図において、第3図と同
一構成部分については同符号を付して示してい
る。
FIG. 1 shows the structure of an embodiment of a solar cell element according to the present invention. In this figure, the same components as those in FIG. 3 are designated by the same reference numerals.

この実施例の太陽電池素子は、シリコン基板1
の表面2と裏面3に同様の微小五面体よりなる凹
凸が形成され、表電極5と裏電極6はいづれも、
くし形・格子形など受光面積を減少しない形状を
有している。
The solar cell element of this example has a silicon substrate 1
Similar unevenness made of micropentahedrons is formed on the front surface 2 and back surface 3 of the , and both the front electrode 5 and the back electrode 6 are
It has a shape such as a comb shape or a lattice shape that does not reduce the light receiving area.

上記の如く構成された太陽電池素子は、次のよ
うに作製される。
The solar cell element configured as described above is manufactured as follows.

シリコン基板1は〈100〉面に沿つてスライス
されたものを用いる。またシリコン基板1はP
型、N型のいずれを用いてもよいが、耐放射性を
考慮すればP型基板が望ましい。基板表面2及び
基板裏面3の凹凸は異方性エツチング、例えば、
極度に減速されたアルカリエツチングにより形成
する。ピラミツドの大きさは、エツチング条件に
より異なる数μmの程度である。PN接合面4は基
板表面2から0.1〜0.3μm程度の深さに形成され
る。この他に、基板裏面3から数μmの深さに裏
面電界(Back Surface Field)と呼ばれるP−
P+接合またはN−N+接合が存在してもよい。表
電極5及び裏電極6は、シリコン基板1の受光面
積をできるだけ大きくし、かつ電荷を効率良く収
集するために、くし形・格子形あるいはその類似
形状とする。ただし表電極5と裏電極6が同一形
状である必要はない。また、シリコン基板1の表
面及び裏面には反射防止膜7が形成される。反射
防止膜7は素子への入射光の反射による損失を低
減し、また素子内部から外へ透過していく光の透
過率を高めるために設けられる。反射防止膜とし
ては、屈折率がシリコン基板と接着剤の中間の値
をもつ物質の単層膜、あるいは互いに異なる屈折
率の多層膜であつてもよい。カバーグラス9は放
射線による素子の損傷を防ぐためのものである。
The silicon substrate 1 used is one sliced along the <100> plane. Also, the silicon substrate 1 is P
Although either type or N type substrate may be used, a P type substrate is preferable in consideration of radiation resistance. The irregularities on the front surface 2 and back surface 3 of the substrate are created by anisotropic etching, for example,
Formed by extremely slowed alkaline etching. The size of the pyramid is on the order of several μm, which varies depending on the etching conditions. The PN junction surface 4 is formed at a depth of about 0.1 to 0.3 μm from the substrate surface 2. In addition to this, there is a P-
A P + junction or an N-N + junction may be present. The front electrode 5 and the back electrode 6 are formed into a comb shape, a lattice shape, or a similar shape in order to maximize the light-receiving area of the silicon substrate 1 and collect charges efficiently. However, it is not necessary that the front electrode 5 and the back electrode 6 have the same shape. Further, an antireflection film 7 is formed on the front and back surfaces of the silicon substrate 1. The antireflection film 7 is provided to reduce the loss of light incident on the element due to reflection, and to increase the transmittance of light transmitted from the inside of the element to the outside. The anti-reflection film may be a single layer film of a substance with a refractive index intermediate between that of the silicon substrate and the adhesive, or a multilayer film with mutually different refractive indexes. The cover glass 9 is for preventing damage to the element due to radiation.

次に、上記の如く構成された太陽電池素子につ
いて、動作、作用を説明する。
Next, the operation and effect of the solar cell element configured as described above will be explained.

入射光の反射・屈折の様子は第2図のようにな
る。
Figure 2 shows how the incident light is reflected and refracted.

基板表面2から基板内部への入射光10の反
射・屈折の様子は従来の第4図に示すものと変わ
らない。1次入射光11及び2次入射光12が基
板裏面3に到達すると、基板裏面3と基板表面2
に同様の凹凸が形成されていることにより、入射
光11,12の基板裏面3への入射角が小さいた
め、第4図に示す全反射とはならず、一部透過、
一部反射となる。また裏電極6が基板裏面3全面
に形成されていると上記作用が期待できないた
め、裏電極6が表電極5と同様のくし形・格子形
など受光面積を減少しない形状を有することが不
可欠である。
The manner of reflection and refraction of the incident light 10 from the substrate surface 2 into the substrate is the same as the conventional one shown in FIG. 4. When the primary incident light 11 and the secondary incident light 12 reach the substrate back surface 3, the substrate back surface 3 and the substrate surface 2
Since similar unevenness is formed on the substrate, the angle of incidence of the incident light beams 11 and 12 on the back surface 3 of the substrate is small, so the total reflection as shown in FIG. 4 does not occur, but only partial transmission,
Part of it is a reflection. Furthermore, if the back electrode 6 is formed on the entire back surface 3 of the substrate, the above effect cannot be expected, so it is essential that the back electrode 6 has a shape similar to the front electrode 5, such as a comb shape or a lattice shape, that does not reduce the light receiving area. be.

更に、上記構造により、従来例では得がたい次
の作用が生じる。すなわち、裏電極6が表電極5
と同様の形状を有するため、素子裏側から基板裏
面3へ入射する光は、表側からの入射光10と全
く同じように基板内部へ入射される。したがつて
本考案による太陽電池素子は、素子表面からの入
射光のみならず、裏面からの入射光によつても光
起電力効果を生じる。
Furthermore, the above structure provides the following effect that is difficult to obtain in the conventional example. That is, the back electrode 6 is the front electrode 5.
Since the element has a similar shape, light that enters the back surface 3 of the substrate from the back side of the element enters into the inside of the substrate in exactly the same way as light 10 that enters from the front side. Therefore, the solar cell element according to the present invention produces a photovoltaic effect not only by incident light from the front surface of the element but also by incident light from the back surface.

なお、P型シリコン基板を用い、BSF構造を
有する素子を試作した結果、裏側からの入射光に
対しても、表側からの入射光の場合の約7割に相
当する光電流が得られた。また太陽光吸収率は従
来よりも低くなることが確認できた。
In addition, as a result of fabricating a prototype device with a BSF structure using a P-type silicon substrate, a photocurrent equivalent to about 70% of that for light incident from the front side was obtained even for light incident from the back side. It was also confirmed that the solar absorption rate was lower than before.

〈考案の効果〉 以上述べてきたように本考案によれば、表面の
無数微小五面体での多重反射屈折により基板内部
に入射された光のうち、光電変換に寄与すること
なく基板裏面に到達した光は基板外部へと透過す
るため、基板内部での熱の発生は抑えられ、太陽
電池素子の温度は従来より低くできる。また素子
裏面側からの光も光電流に変換されるので、特
に、低周回軌導上の人工衛星の電源として用いれ
ば、太陽からの直接入射光に加え、地球表面から
の反射光も有効に利用でき、その発電効率は極め
て高いものとなる。
<Effects of the invention> As described above, according to the invention, among the light incident on the inside of the substrate due to multiple reflection and refraction at the countless minute pentahedrons on the surface, it reaches the back surface of the substrate without contributing to photoelectric conversion. Since the emitted light is transmitted to the outside of the substrate, heat generation inside the substrate is suppressed, and the temperature of the solar cell element can be lowered than before. In addition, since light from the back side of the element is also converted into photocurrent, especially when used as a power source for artificial satellites in low orbit, in addition to direct incident light from the sun, reflected light from the earth's surface can also be effectively used. The power generation efficiency is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る太陽電池素子の一実施例
の断面図、第2図は同実施例における入射光の反
射・屈折の様子を示す図、第3図は従来例の太陽
電池素子の断面図、第4図は従来例における入射
光の反射・屈折の様子を示す図である。 1……シリコン基板、2……基板表面、3……
基板裏面、4……PN接合面、5……表電極、6
……裏電極、7……反射防止膜、8……接着剤、
9……カバーグラス。
Fig. 1 is a cross-sectional view of one embodiment of the solar cell element according to the present invention, Fig. 2 is a diagram showing how incident light is reflected and refracted in the same embodiment, and Fig. 3 is a diagram of a conventional solar cell element. The cross-sectional view, FIG. 4, is a diagram showing how incident light is reflected and refracted in a conventional example. 1...Silicon substrate, 2...Substrate surface, 3...
Back side of substrate, 4...PN junction surface, 5... Front electrode, 6
... Back electrode, 7 ... Antireflection film, 8 ... Adhesive,
9...Cover glass.

Claims (1)

【実用新案登録請求の範囲】 一導電型の半導体基板の一方の主面にこの基板
とは反対導電型の不純物を拡散して形成された
PN接合と、前記半導体基板の表面及び裏面それ
ぞれに形成された表電極及び裏電極と、を有する
太陽電池素子において、 前記半導体基板の表面及び裏面に異方性エツチ
ングによる無数の微少五面体よりなる凹凸を形成
するとともに、 前記表電極及び裏電極を、それぞれ共に光が透
過するよう前記半導体基板にくし形または格子形
に形成してなることを特徴とする太陽電池素子。
[Claim for Utility Model Registration] Formed by diffusing impurities of the opposite conductivity type to one main surface of a semiconductor substrate of one conductivity type.
In a solar cell element having a PN junction and a front electrode and a back electrode formed on the front and back surfaces of the semiconductor substrate, the front and back surfaces of the semiconductor substrate are made of countless minute pentahedrons formed by anisotropic etching. What is claimed is: 1. A solar cell element characterized in that the semiconductor substrate is formed with unevenness, and the front electrode and the back electrode are formed in a comb shape or a lattice shape so that light can pass through the semiconductor substrate.
JP1987112798U 1987-07-22 1987-07-22 Expired - Lifetime JPH0539640Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987112798U JPH0539640Y2 (en) 1987-07-22 1987-07-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987112798U JPH0539640Y2 (en) 1987-07-22 1987-07-22

Publications (2)

Publication Number Publication Date
JPS6418763U JPS6418763U (en) 1989-01-30
JPH0539640Y2 true JPH0539640Y2 (en) 1993-10-07

Family

ID=31352066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987112798U Expired - Lifetime JPH0539640Y2 (en) 1987-07-22 1987-07-22

Country Status (1)

Country Link
JP (1) JPH0539640Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766979B2 (en) * 1990-10-01 1995-07-19 株式会社日立製作所 Method for manufacturing corrugated solar cell
US9409763B2 (en) * 2012-04-04 2016-08-09 Infineon Technologies Ag MEMS device and method of making a MEMS device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS49119591A (en) * 1973-02-21 1974-11-15
JPS53121494A (en) * 1978-03-10 1978-10-23 Agency Of Ind Science & Technol Photo electric converter having sensitivity to light of long wave lenght
JPS5473587A (en) * 1977-11-24 1979-06-12 Sharp Corp Thin film solar battery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS49119591A (en) * 1973-02-21 1974-11-15
JPS5473587A (en) * 1977-11-24 1979-06-12 Sharp Corp Thin film solar battery device
JPS53121494A (en) * 1978-03-10 1978-10-23 Agency Of Ind Science & Technol Photo electric converter having sensitivity to light of long wave lenght

Also Published As

Publication number Publication date
JPS6418763U (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US4444992A (en) Photovoltaic-thermal collectors
US5261970A (en) Optoelectronic and photovoltaic devices with low-reflectance surfaces
US6294723B2 (en) Photovoltaic device, photovoltaic module and establishing method of photovoltaic system
US4395582A (en) Combined solar conversion
US9123849B2 (en) Photovoltaic device
US20030029497A1 (en) Solar energy converter using optical concentration through a liquid
US20070227582A1 (en) Low aspect ratio concentrator photovoltaic module with improved light transmission and reflective properties
JP3006266B2 (en) Solar cell element
US20100059108A1 (en) Optical system for bifacial solar cell
TW201705508A (en) High power solar cell module
US4151005A (en) Radiation hardened semiconductor photovoltaic generator
CN201029095Y (en) Light-collecting type photovoltaic battery component
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
Zhengshan et al. Evaluation of spectrum-splitting dichroic mirrors for PV mirror tandem solar cells
JPH0539640Y2 (en)
CN109150090A (en) A kind of condensation photovoltaic cogeneration system based on light splitting principle
JP2775543B2 (en) Photoelectric conversion device
CN106952977B (en) A kind of solar cell encapsulation structure
TW201349520A (en) Solar cell and module using the same
US20110259421A1 (en) Photovoltaic module having concentrator
JP2004095669A (en) Photoelectric conversion element
WO2016127285A1 (en) Solar cell with surface nanostructure
CN2901583Y (en) Light focusing type solar cell
JP3091755B1 (en) Concentrating solar power generator
JPS62101084A (en) Optical confinement solar battery