JPH0534747A - Waveguide type wavelength conversion element - Google Patents

Waveguide type wavelength conversion element

Info

Publication number
JPH0534747A
JPH0534747A JP19435691A JP19435691A JPH0534747A JP H0534747 A JPH0534747 A JP H0534747A JP 19435691 A JP19435691 A JP 19435691A JP 19435691 A JP19435691 A JP 19435691A JP H0534747 A JPH0534747 A JP H0534747A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
harmonic
diffraction grating
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19435691A
Other languages
Japanese (ja)
Inventor
Hiroaki Fukuda
浩章 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19435691A priority Critical patent/JPH0534747A/en
Publication of JPH0534747A publication Critical patent/JPH0534747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the control of the equiv. refractive index of a waveguide necessary for executing phase matching and to stably generate second harmonic waves. CONSTITUTION:The waveguide 2 consisting of a nonlinear medium is formed on a substrate 1. This element has a diffraction grating 3 affording a change in refractive index in the light propagation direction of this waveguide 2. The waveguide 2 is constituted of a ridge type three-dimensional waveguide. A basic wave laser beam having a prescribed wavelength is passed in the waveguide 2, by which a higher harmonic laser beam is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第2高調波を発生させ
る素子に関するものである。本発明は第2高調波を発生
させることにより、レーザ光源を小型化でき、光ディス
ク、レーザプリンタに応用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for generating a second harmonic. INDUSTRIAL APPLICABILITY The present invention can reduce the size of the laser light source by generating the second harmonic, and can be applied to an optical disk and a laser printer.

【0002】[0002]

【従来の技術】波長変換素子特に第2高調波発生(SH
G)素子は、非線形効果を持つ光学結晶材料を用いて波
長λのレーザ光を1/2・λの波長に変換する素子であ
る。従来、SHG素子には高出力のコヒーレント光源と
非線形結晶のバルク型素子が用いられてきた。しかし現
在、光ディスク装置、レーザプリンタ装置等を小型化す
る要求が強いため、光源として半導体レーザが、ガスレ
ーザに代わり用いられるようになってきた。半導体レー
ザを光源とする場合、その出力が数mW〜数10mWで
あるため、高い変換効率を得る必要上、薄膜導波路型の
SHG素子が用いられている。そこで変換効率を上げる
ため位相整合条件を満たすことが重要になっているが、
通常は入射光線の角度調整や、非線形媒質の温度制御に
より位相整合をとっている。
2. Description of the Related Art Wavelength conversion elements, especially second harmonic generation (SH
The element G) is an element that uses an optical crystal material having a non-linear effect to convert a laser beam having a wavelength λ into a wavelength of ½ · λ. Conventionally, a high output coherent light source and a non-linear crystal bulk type element have been used for SHG elements. However, at present, there is a strong demand for miniaturization of optical disk devices, laser printer devices, etc., so that a semiconductor laser has been used as a light source instead of a gas laser. When a semiconductor laser is used as a light source, the output thereof is several mW to several tens mW, and therefore, a thin film waveguide type SHG element is used in order to obtain high conversion efficiency. Therefore, it is important to meet the phase matching condition in order to increase the conversion efficiency.
Normally, phase matching is achieved by adjusting the angle of the incident light and controlling the temperature of the nonlinear medium.

【0003】この方法の一つとして、特開昭63−44
781号に開示されている方法がある。この方法は、図
4に示すように、導波路52に非線形媒質の波長分散に
よる基本波と、高調波の屈折率差を相殺するような屈折
率分散手段である回折格子54を設けるものである。こ
こで、図4において、符号50は非線形媒質を示し、例
えばLiNbO3の単結晶で構成され、直方体形状をし
ている。この基板50上にTiを拡散して形成される導
波路52が非線形媒質50の結晶軸と同一方向に延長さ
れて形成されている。導波路52の上面には所定のピッ
チで凸部53が設けられて、回折格子54が構成されて
いる。この回折格子54のピッチは、導波路52に入射
される基本波の波長と同一であり、ブラック条件を満足
するようになっている。このように、導波路52に非線
形媒質の波長分散による基本波と高調波の屈折率差を、
相殺するような屈折率分散手段(この場合は回折格子5
4)を設けたことにより、簡単に位相整合をとることが
できる。
As one of the methods, Japanese Patent Laid-Open No. 63-44
There is a method disclosed in Japanese Patent No. 781. In this method, as shown in FIG. 4, the waveguide 52 is provided with a diffraction grating 54 which is a refractive index dispersion means for canceling out the refractive index difference between the fundamental wave due to the wavelength dispersion of the nonlinear medium and the harmonic. . Here, in FIG. 4, reference numeral 50 indicates a nonlinear medium, which is made of, for example, a single crystal of LiNbO 3 and has a rectangular parallelepiped shape. A waveguide 52 formed by diffusing Ti on the substrate 50 is formed to extend in the same direction as the crystal axis of the nonlinear medium 50. Protrusions 53 are provided on the upper surface of the waveguide 52 at a predetermined pitch to form a diffraction grating 54. The pitch of the diffraction grating 54 is the same as the wavelength of the fundamental wave incident on the waveguide 52, and satisfies the black condition. In this way, the refractive index difference between the fundamental wave and the harmonic wave due to the wavelength dispersion of the nonlinear medium in the waveguide 52,
Refractive index dispersion means for canceling (in this case, the diffraction grating 5
By providing 4), phase matching can be easily achieved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記、
従来の方法では、熱拡散(Ti等)によって作成された
三次元分布屈折率導波路を用いているため、第2高調波
発生に必要な位相整合をとるために、導波路に与える屈
折率の均一性や、屈折率の深さ方向の分布を正確に制御
するのは困難である。このため位相整合が正確にとりに
くく、第2高調波の発生効率にもばらつきが大きくなる
問題点があった。
However, the above
In the conventional method, since the three-dimensional distributed refractive index waveguide created by thermal diffusion (Ti or the like) is used, in order to achieve the phase matching required for the second harmonic generation, It is difficult to accurately control the uniformity and the distribution of the refractive index in the depth direction. For this reason, there is a problem that it is difficult to achieve accurate phase matching, and the generation efficiency of the second harmonic also greatly varies.

【0005】本発明の目的は、位相整合を行うのに必要
な導波路の等価屈折率の制御が容易で、安定して第2高
調波を発生させられる構造を有する導波路型波長変換素
子を提供することにある。
An object of the present invention is to provide a waveguide type wavelength conversion element having a structure in which the equivalent refractive index of the waveguide required for phase matching can be easily controlled and the second harmonic can be stably generated. To provide.

【0006】[0006]

【課題を解決するための手段】この発明は、所定波長を
有する基本波レーザ光を非線形媒質からなる導波路内を
通過させて高調波レーザ光を発生させる導波路型波長変
換素子において、前記導波路の光の伝搬方向に屈折率変
化を与える周期構造を持ち、前記導波路がリッジ型三次
元導波路で構成されている。
The present invention relates to a waveguide type wavelength conversion element for generating a harmonic laser light by passing a fundamental laser light having a predetermined wavelength through a waveguide made of a non-linear medium. The waveguide has a periodic structure that changes the refractive index in the light propagation direction of the waveguide, and the waveguide is a ridge-type three-dimensional waveguide.

【0007】[0007]

【作用】この発明では、前記導波路が光の伝搬方向に屈
折率変化を与える周期構造を持っていることにより、波
長分散による屈折率差を容易に相殺することができ、簡
単に位相整合が取れる。また、前記三次元導波路が分布
屈折率型ではなく、リッジ型で構成されていることによ
り、導波路内における屈折率、膜厚と、幅の制御が精密
に行なえるため、三次元導波路の等価屈折率が精密に制
御できる。
In the present invention, since the waveguide has a periodic structure that changes the refractive index in the light propagation direction, it is possible to easily cancel the difference in refractive index due to wavelength dispersion and to easily perform phase matching. Can be taken. In addition, since the three-dimensional waveguide is not of the distributed index type but of the ridge type, it is possible to precisely control the refractive index, the film thickness and the width in the waveguide. The equivalent refractive index of can be precisely controlled.

【0008】[0008]

【実施例】以下、本発明の実施例を説明する。図1は本
発明に係る導波路型波長変換素子の一実施例である三次
元光導波路型SHG素子の構造を示す斜視図、図2は図
1のA−A断面図である。両図において、符号1はLi
TaO3よりなる単結晶基板を示し、基板方位はz板で
構成される。この他には、基板方位がy板であるLiT
aO3単結晶基板や、LiTaxNb1-xO3(ただし、0
≦X≦1)、MgOドープしたLiNbO3基板などで
も実現できる。この単結晶基板層1の上にはLiNbO
3からなる導波層2がリッジ状に形成され、その上面に
は導波光の透過屈折率の周期的変化を与える回折格子3
が形成されている。導波路2は結晶基板1上に形成され
た結晶基板1よりも高い屈折率を持っている。導波層2
は基板表面にエピタキシャル成長等によって2次元導波
路を作成し、これをドライまたは化学エッチングで不要
な部分を除去することにより作成する。導波層2の上面
に設けられた回折格子3は、所定の周期Λで屈折率変化
を与える為に設けられている。回折格子3は、二光束干
渉法や電子ビーム描画法等によってパターニングされ
や、レジストを用いてエッチングを行なった後、リフト
オフ法やエッチング法による転写によって作製されるレ
リーフ型グレーティングや、不純物拡散、イオン交換、
イオン注入等の加工を行なって作製される屈折率分布型
グレーティングあるいは体積位相型グレーティングで構
成されている。図1及び図2に示されている回折格子3
はレリーフ型グレーティングであり、図3に示されてい
る回折格子3は屈折率分布型グレーティングである。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a perspective view showing the structure of a three-dimensional optical waveguide type SHG element which is an example of a waveguide type wavelength conversion element according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. In both figures, reference numeral 1 is Li
A single crystal substrate made of TaO 3 is shown, and the substrate orientation is a z-plate. Besides this, LiT whose substrate orientation is the y-plate
aO 3 single crystal substrate, LiTa x Nb 1- xO 3 (however, 0
≦ X ≦ 1), a MgO-doped LiNbO 3 substrate or the like can also be used. LiNbO is formed on the single crystal substrate layer 1.
A waveguide layer 2 made of 3 is formed in a ridge shape, and a diffraction grating 3 for providing a periodic change in the transmission refractive index of the guided light is formed on the upper surface thereof.
Are formed. The waveguide 2 has a higher refractive index than the crystal substrate 1 formed on the crystal substrate 1. Waveguide layer 2
Is formed by forming a two-dimensional waveguide on the surface of the substrate by epitaxial growth or the like, and removing unnecessary portions by dry or chemical etching. The diffraction grating 3 provided on the upper surface of the waveguide layer 2 is provided to change the refractive index with a predetermined period Λ. The diffraction grating 3 is patterned by a two-beam interference method, an electron beam drawing method, or the like, or is formed by etching using a resist and then transferred by a lift-off method or an etching method. Exchange,
It is composed of a gradient index grating or a volume phase grating manufactured by performing processing such as ion implantation. The diffraction grating 3 shown in FIGS. 1 and 2.
Is a relief type grating, and the diffraction grating 3 shown in FIG. 3 is a gradient index grating.

【0009】次に、回折格子3に要求される、屈折率変
化を与える所定の周期Λについて説明する。三次元光導
波路の基本波周波数をω、前記基本波に対する伝搬定数
をβ(ω)、前記基本波の第2高調波に対する伝搬定数
をβ(2ω)とすると、β(2ω)−2β(ω)=2π
/Λなる関係を満たすように、三次元光導波路の光透過
方向に屈折率変化の周期Λを設ける。上記実施例におい
て、導波層2は非線形媒質LiNbO3であるので、発
振波長0.83μmの光源を考えた場合、その三次元光
導波路の等価屈折率の波長分散は、波長0.83μmの
基本波では常光に相当するEY00モードを用いた場合で
2.22、異常光に相当するEX00モードで2.17、
波長0.415μmの第2高調波では、常光に相当する
Y00モードを用いた場合で2.39、異常光に相当す
るEX00モードで2.28である。上記三次元光導波路
で基本波に対する等価屈折率をn(ω)、前記基本波の
第2高調波に対する等価屈折率をn(2ω)とすると、 β(2ω)−2β(ω)=2π/Λから n(2ω)−n(ω)=λ/2Λ の関係を満たす周期Λμmの屈折率変化の周期があれ
ば、効率のよい第2高調波発生が得られる。結晶基板上
の導波層上面に形成された回折格子3はこの役割を果た
す。
Next, the predetermined period Λ required to change the refractive index of the diffraction grating 3 will be described. When the fundamental wave frequency of the three-dimensional optical waveguide is ω, the propagation constant for the fundamental wave is β (ω), and the propagation constant for the second harmonic of the fundamental wave is β (2ω), β (2ω) -2β (ω ) = 2π
A period Λ of refractive index change is provided in the light transmission direction of the three-dimensional optical waveguide so as to satisfy the relationship of / Λ. In the above embodiment, since the waveguide layer 2 is the non-linear medium LiNbO 3 , when considering a light source with an oscillation wavelength of 0.83 μm, the wavelength dispersion of the equivalent refractive index of the three-dimensional optical waveguide is basically 0.83 μm. For waves, 2.22 when using the E Y00 mode, which corresponds to ordinary light, and 2.17 when using the E X00 mode, which corresponds to abnormal light,
The second harmonic having a wavelength of 0.415 μm is 2.39 when the E Y00 mode corresponding to ordinary light is used and 2.28 in the E X00 mode corresponding to extraordinary light. In the three-dimensional optical waveguide, if the equivalent refractive index for the fundamental wave is n (ω) and the equivalent refractive index for the second harmonic of the fundamental wave is n (2ω), β (2ω) -2β (ω) = 2π / Efficient second harmonic generation can be obtained if there is a refractive index change period of period Λμm that satisfies the relationship of n (2ω) -n (ω) = λ / 2Λ from Λ. The diffraction grating 3 formed on the upper surface of the waveguide layer on the crystal substrate plays this role.

【0010】上記等価屈折率分布の場合において、基本
波に常光に相当するEY00モード、第2高調波に常光に
相当するEY00モードを用いた場合、回折格子の周期は
約3μmとなり、基本波に常光に相当するEY00モー
ド、第2高調波に異常光に相当するEX00モードを用い
た場合、回折格子の周期は約7μmとなる。また、基本
波に異常光に相当するEX00モード、第2高調波に常光
に相当するEY00モードを用いた場合、回折格子の周期
は約2μmとなり、基本波に異常光に相当するEX0 0
ード、第2高調波に常光に相当するEX00モードを用い
た場合、回折格子の周期は約4μmとなり、それぞれの
場合において通常の回折格子作製技術を用いて容易に形
成することが可能である。また、導波路層2にMgOを
ドープすることにより、光導波層における光損傷が起こ
る入力光のしきい値レベルを高くする事も実現できる。
なお、上の説明においてEX00,EY00等の記載において
成分を表すX,Y等は通常の表記ではEの肩の部分に書
かれるものであるが、表示の都合上、上記の如き表記と
したことを付記しておく。
In the case of the above-mentioned equivalent refractive index distribution, when the E Y00 mode corresponding to ordinary light is used for the fundamental wave and the E Y00 mode corresponding to ordinary light is used for the second harmonic, the period of the diffraction grating is about 3 μm. When the E Y00 mode corresponding to ordinary light is used for the wave and the E X00 mode corresponding to extraordinary light is used for the second harmonic, the period of the diffraction grating is about 7 μm. Further, when the E X00 mode corresponding to the extraordinary light is used for the fundamental wave and the E Y00 mode corresponding to the ordinary light is used for the second harmonic, the period of the diffraction grating is about 2 μm, and E X0 corresponding to the extraordinary light is the fundamental wave. When the 0 mode and the EX00 mode corresponding to ordinary light are used for the second harmonic, the period of the diffraction grating is about 4 μm, and in each case, it can be easily formed by using a normal diffraction grating manufacturing technique. is there. Further, by doping the waveguide layer 2 with MgO, it is possible to increase the threshold level of the input light that causes optical damage in the optical waveguide layer.
In addition, in the above description, X, Y, etc. representing components in the description of E X00 , E Y00 , etc. are written on the shoulder portion of E in the usual notation, but for convenience of display, they are referred to as the above notation. I will add a note.

【0011】[0011]

【発明の効果】本発明によれば、光導波路に光の伝搬方
向に屈折率変化を与える周期構造を持たせたリッジ型三
次元導波路を用いることにより、分布屈折率型三次元光
導波路よりも、第2高調波発生における位相整合が正確
に行なえる。このため安定して第2高調波の発生を行う
ことができる。
According to the present invention, by using a ridge-type three-dimensional waveguide in which the optical waveguide has a periodic structure that changes the refractive index in the light propagation direction, Also, the phase matching in the second harmonic generation can be accurately performed. Therefore, the second harmonic can be stably generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る導波路型波長変換素子
の斜視図である。
FIG. 1 is a perspective view of a waveguide type wavelength conversion element according to an embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】屈折率分布型グレーティングによる回折格子で
構成された導波路型波長変換素子の断面図である。
FIG. 3 is a cross-sectional view of a waveguide type wavelength conversion element composed of a diffraction grating using a gradient index grating.

【図4】従来の第2高調波発生(SHG)素子を説明す
るための図である。
FIG. 4 is a diagram for explaining a conventional second harmonic generation (SHG) element.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 リッジ状導波層 3 回折格子 1 Single crystal substrate 2 Ridge-shaped waveguide layer 3 Diffraction grating

Claims (1)

【特許請求の範囲】 【請求項1】所定波長を有する基本波レーザ光を非線形
媒質からなる導波路内を通過させて高調波レーザ光を発
生させる導波路型波長変換素子において、前記導波路の
光の伝搬方向に屈折率変化を与える周期構造を持つこと
と、前記導波路がリッジ型三次元導波路で構成されてい
ること、とを特徴とする導波路型波長変換素子。
Claim: What is claimed is: 1. A waveguide type wavelength conversion element for generating a harmonic laser light by passing a fundamental wave laser light having a predetermined wavelength through a waveguide made of a non-linear medium. A waveguide-type wavelength conversion element, comprising: a periodic structure that changes the refractive index in the light propagation direction; and that the waveguide is a ridge-type three-dimensional waveguide.
JP19435691A 1991-05-17 1991-08-02 Waveguide type wavelength conversion element Pending JPH0534747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19435691A JPH0534747A (en) 1991-05-17 1991-08-02 Waveguide type wavelength conversion element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-113268 1991-05-17
JP11326891 1991-05-17
JP19435691A JPH0534747A (en) 1991-05-17 1991-08-02 Waveguide type wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH0534747A true JPH0534747A (en) 1993-02-12

Family

ID=26452262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19435691A Pending JPH0534747A (en) 1991-05-17 1991-08-02 Waveguide type wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH0534747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739779A (en) * 1995-08-23 1998-04-14 Sanyo Electric Co., Ltd. Encoding circuit and decoding circuit
US6079041A (en) * 1995-08-04 2000-06-20 Sanyo Electric Co., Ltd. Digital modulation circuit and digital demodulation circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079041A (en) * 1995-08-04 2000-06-20 Sanyo Electric Co., Ltd. Digital modulation circuit and digital demodulation circuit
US5739779A (en) * 1995-08-23 1998-04-14 Sanyo Electric Co., Ltd. Encoding circuit and decoding circuit

Similar Documents

Publication Publication Date Title
JP2783047B2 (en) Optical wavelength conversion element and laser light source using the same
JPH0669582A (en) Short wavelength light source
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
JP3036255B2 (en) Optical wavelength conversion element, short wavelength laser light source using the same, optical information processing apparatus using the short wavelength laser light source, and method of manufacturing optical wavelength conversion element
JP2685969B2 (en) Second harmonic generator
US6952307B2 (en) Electric field poling of ferroelectric materials
Pierno et al. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography
JPH0534747A (en) Waveguide type wavelength conversion element
JP2822778B2 (en) Wavelength conversion element
JP3296500B2 (en) Wavelength conversion element and method of manufacturing the same
JPH0263026A (en) Waveguide type wavelength converting element
JPH0566440A (en) Laser light source
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JPH02187735A (en) Domain control method for nonlinear ferroelectric optical material
JP2906615B2 (en) Waveguide type wavelength conversion element
JP2010078639A (en) Wavelength conversion element and manufacturing method thereof
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH0667235A (en) Wavelength conversion device
JP2833392B2 (en) Wavelength conversion element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP3552135B2 (en) Waveguide and wavelength conversion element using the same
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH05249520A (en) Optical second higher harmonic generator
JPH07122809A (en) Second harmonic optical wave generation device
JP2982366B2 (en) Waveguide type wavelength conversion element