JPH05249520A - Optical second higher harmonic generator - Google Patents

Optical second higher harmonic generator

Info

Publication number
JPH05249520A
JPH05249520A JP4046466A JP4646692A JPH05249520A JP H05249520 A JPH05249520 A JP H05249520A JP 4046466 A JP4046466 A JP 4046466A JP 4646692 A JP4646692 A JP 4646692A JP H05249520 A JPH05249520 A JP H05249520A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
harmonic generator
domain inversion
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4046466A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
光和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4046466A priority Critical patent/JPH05249520A/en
Publication of JPH05249520A publication Critical patent/JPH05249520A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To provide the optical second higher harmonic generator, the output of which fluctuates less with a deviation in incident light wavelength and temp. change. CONSTITUTION:The phase matching conditions of optical second higher harmonic generation are gradually changed in a light transmission direction by periodic changes of nonlinear constant or phase constants, i.e. by a method of forming stripped optical wavelengths 13 on a substrate installed with periodic domain inversion regions 2 and gradually changing the angle theta in the propagation direction of the optical wavelengths or installing thin films on the optical wavelengths and gradually changing the thicknesses of the thin films in the propagation direction., by which the optical second higher harmonic generation is executed in a wide wavelength range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光情報処理分野等に用い
る短波長のレーザ光源を得るための非線形光学効果を利
用した光第2高調波発生器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical second harmonic wave generator utilizing a non-linear optical effect for obtaining a laser light source of short wavelength used in the field of optical information processing.

【0002】[0002]

【従来の技術】光ディスクメモリ装置は磁気メモリ装置
に比べて大容量,小型化が可能であるという特長があ
り、コンピュータの端末やCD等様々な分野で使用され
ている。光ディスクのさらなる高密度化は大容量メモリ
の実現のための重要なテーマであり、検討が続けられて
いる。高密度化の方法として最も現実的な方法は記録ピ
ットのサイズを小さくすることであり、そのためには書
込み及び読出し光ビームを出来るだけ細く絞ることであ
る。光ビームの収束ビーム径はレンズ開口と焦点距離及
び光波長で決まり、レンズ等の部品を同じにした場合は
光の波長を出来るだけ短波長化することが必要となる。
光の短波長化には短波長の半導体レーザの開発が先ず考
えられるが、現在実用されているIII−V族化合物を
使った場合には0.6μmの波長帯の発振が限界であ
り、さらに短波長の緑色,青色のレーザ光源の実現には
他の、例えばII−VI族化合物半導体レーザの実現が
必要となり、現状では実用レベルまで達するのには多く
の課題がある。
2. Description of the Related Art An optical disk memory device has a feature that it can have a larger capacity and a smaller size than a magnetic memory device, and is used in various fields such as a computer terminal and a CD. Further densification of optical discs is an important theme for realization of large-capacity memory, and is being studied. The most practical method for increasing the density is to reduce the size of the recording pit, and for that purpose, the writing and reading light beams are narrowed down as much as possible. The convergent beam diameter of the light beam is determined by the lens aperture, the focal length, and the light wavelength, and it is necessary to shorten the wavelength of light as much as possible when the parts such as the lens are the same.
The development of a short-wavelength semiconductor laser can be considered first for shortening the wavelength of light, but when a currently used III-V group compound is used, oscillation in the wavelength band of 0.6 μm is the limit, and further The realization of short-wavelength green and blue laser light sources requires the realization of other, for example, II-VI group compound semiconductor lasers, and there are many problems in achieving the practical level at present.

【0003】一方、非線形光学効果を使った光第2高調
波発生(以下SHGという)は、比較的容易に波長を1
/2にすることが出来るため、短波長を得るための現実
的な方法として検討されている。SHGを実現するため
には、非線形媒質中を光ビームを通過させ、入射する励
起光と、第2高調波の位相速度を整合させる必要があ
る。
On the other hand, optical second harmonic generation (hereinafter referred to as SHG) using the non-linear optical effect makes it possible to relatively easily adjust the wavelength to 1
Since it can be set to / 2, it is being studied as a practical method for obtaining a short wavelength. In order to realize SHG, it is necessary to pass a light beam through a non-linear medium and match the incident pumping light with the phase velocity of the second harmonic.

【0004】従来、この種の光第2高調波発生器の位相
整合方法は、ニオブ酸リチウム(LiNbO3 )結晶や
ニオブ酸カリウム(KNbO3 )結晶等のバルク中に光
ビームを通過させ温度を調整して上記位相整合を得る方
法と、結晶基板上に光導波路を設けその光導波路中に入
射光を伝搬させて、チェレンコフ放射する第2高調波を
得る方法、および同様に光導波路中に入射光を伝搬さ
せ、光導波路中に非線形光学定数又は伝搬定数の周期構
造を設けて位相整合を得る方法が報告されている。これ
らの方法の中で、入射光エネルギーを最も集中させて光
効率化でき、また、微小な集光スポットが得られ、小型
の光源を得るのに適しているのは光導波路の周期構造を
利用する方法である。
Conventionally, the phase matching method of this kind of optical second harmonic generator is to pass a light beam through a bulk of lithium niobate (LiNbO 3 ) crystal, potassium niobate (KNbO 3 ) crystal or the like to control the temperature. A method of adjusting the phase matching, a method of providing an optical waveguide on a crystal substrate and propagating incident light in the optical waveguide to obtain a second harmonic wave radiated by Cherenkov radiation, and a method of entering the same into the optical waveguide. A method of propagating light and providing a periodic structure of a nonlinear optical constant or a propagation constant in an optical waveguide to obtain phase matching has been reported. Of these methods, it is possible to concentrate the incident light energy most to improve the light efficiency, and to obtain a minute focused spot, which is suitable for obtaining a small light source because the periodic structure of the optical waveguide is used. Is the way to do it.

【0005】この位相整合方法による従来の光第2高調
波発生器の一例を図3の斜視図に示す。図3において、
ニオブ酸リチウム(LiNbO3 )結晶基板1の+Z面
上にx軸方向の幅がほぼΩ0 /2でy軸方向にストライ
プ状のドメイン反転領域2がx軸方向に周期Ω0 で配置
されている。さらに基板表面にプロトン交換により形成
されたx軸方向に伝搬させるストライプ状の光導波路3
が形成されている。ドメイン反転領域2とストライプ状
の光導波路3の深さはほぼ同程度である。ここで波長λ
1 の入射光4は光導波路3に入射し、その中で波長が半
分の第2高調波5に変換される。ドメイン反転領域2の
周期Ω0 はSHGが加算され効率的に行われるように下
式の位相整合条件を満たす値に設定される。
An example of a conventional optical second harmonic generator based on this phase matching method is shown in the perspective view of FIG. In FIG.
Lithium niobate (LiNbO 3) are arranged domain inversion region 2 + width of the x-axis direction on the Z plane is almost Omega 0/2 in the y-axis direction striped crystal substrate 1 is the period Omega 0 in the x-axis direction There is. Further, a stripe-shaped optical waveguide 3 which is formed on the surface of the substrate by proton exchange and propagates in the x-axis direction
Are formed. The domain inversion region 2 and the stripe-shaped optical waveguide 3 have almost the same depth. Where wavelength λ
The incident light 4 of 1 is incident on the optical waveguide 3 and is converted into a second harmonic wave 5 having a half wavelength. The period Ω 0 of the domain inversion region 2 is set to a value that satisfies the phase matching condition of the following equation so that SHG is added and the operation is performed efficiently.

【0006】 2π/Ω0 =|k2 −k1 | …(1) ここでk1 ,k2 はそれぞれ入射光4及び第2高調波5
の光導波路3中での伝搬定数である。
2π / Ω 0 = | k 2 −k 1 | (1) where k 1 and k 2 are the incident light 4 and the second harmonic wave 5, respectively.
Is a propagation constant in the optical waveguide 3.

【0007】[0007]

【発明が解決しようとする課題】図3の従来の第2高調
波発生器は(1)式の位相整合条件に対して非常に敏感
であり、波長のずれや温度変化による伝搬特性のずれに
よって(1)式が満たされなくなると効率は急激に低下
してしまう。特に入射光である半導体レーザの発振波長
が温度等で変動した場合、第2高調波出力も低下してし
まうという実用上の問題がある。
The conventional second harmonic generator of FIG. 3 is very sensitive to the phase matching condition of the equation (1), and it may be caused by the wavelength shift or the shift of the propagation characteristic due to the temperature change. If the equation (1) is not satisfied, the efficiency will drop sharply. In particular, when the oscillation wavelength of the semiconductor laser, which is incident light, changes due to temperature or the like, there is a practical problem that the second harmonic output also decreases.

【0008】本発明の目的は、入射光波長のずれや温度
変化に対して変動の小さい第2高調波発生器を提供する
ことにある。
It is an object of the present invention to provide a second harmonic wave generator which has a small fluctuation with respect to the shift of the incident light wavelength and the temperature change.

【0009】[0009]

【課題を解決するための手段】本発明の光第2高調波発
生器は、非線形光学効果を有する基板上のY軸方向に周
期的に形成された複数の帯状のドメイン反転領域と、前
記ドメイン反転領域と交叉するX軸方向に形成されたス
トライプ状光導波路とを備える光第2高調波発生器にお
いて、前記ストライプ状光導波路は光伝搬軸の方向がX
軸方向に対し徐々に変化する変化率で変化するようにし
て形成する。また、前記ストライプ状光導波路は入出射
端で前記変化率を急変させるようにして形成しても良
い。
An optical second harmonic generator of the present invention comprises a plurality of band-shaped domain inversion regions periodically formed in the Y-axis direction on a substrate having a nonlinear optical effect, and the domains. In a second optical harmonic generator comprising a striped optical waveguide formed in the X-axis direction crossing the inversion region, the striped optical waveguide has a light propagation axis in the X direction.
It is formed so as to change at a changing rate that gradually changes in the axial direction. Further, the stripe-shaped optical waveguide may be formed so that the rate of change is abruptly changed at the entrance and exit ends.

【0010】および非線形光学効果を有する基板上のY
軸方向に周期的に形成された複数の溝状のドメイン反転
領域と、前記ドメイン反転領域と交叉するX軸方向に形
成されたストライプ状光導波路とを備える光第2高調波
発生器において、前記ストライプ状光導波路上に光進行
方向に対し厚さが徐々に厚くなる薄膜を形成する。ま
た、前記ストライプ状光導波路上に形成された前記薄膜
は前記ストライプ状光導波路の入出力端付近で厚さを急
激に変化させ形成しても良い。
And Y on a substrate having a nonlinear optical effect
An optical second harmonic generator comprising a plurality of groove-shaped domain inversion regions periodically formed in the axial direction and a stripe-shaped optical waveguide formed in the X-axis direction crossing the domain inversion regions, A thin film whose thickness gradually increases in the light traveling direction is formed on the striped optical waveguide. The thin film formed on the striped optical waveguide may be formed by abruptly changing the thickness in the vicinity of the input / output end of the striped optical waveguide.

【0011】[0011]

【作用】本発明の光第2高調波発生器は、光導波路中を
入射光が伝搬するに従って満足する位相整合条件が徐々
に変化するように構成される。すなわち、ストライプ状
光導波路の進行方向を徐々に変化させる第1の発明で
は、光導波路中の入射光が感ずるドメイン反転領域の周
期Ω0 を徐々に変化させて、例えば入射光の波長変化に
より位相整合条件(1)式がある領域で満たされなくな
っても光導波路中の他の領域で(1)式が満たされるよ
うに設定される。
The optical second harmonic generator of the present invention is constructed so that the phase matching condition that is satisfied gradually changes as the incident light propagates through the optical waveguide. That is, in the first invention in which the traveling direction of the striped optical waveguide is gradually changed, the period Ω 0 of the domain inversion region sensed by the incident light in the optical waveguide is gradually changed and, for example, the phase is changed by changing the wavelength of the incident light. Even if the matching condition (1) is not satisfied in one region, the matching condition is set to be satisfied in another region in the optical waveguide.

【0012】光導波路上に光吸収の小さい薄膜を設置し
た第2の発明では、その薄膜の厚さに依存して光導波路
中を伝搬する光の伝搬定数が変化することを利用し、上
述のストライプ状光導波路上に薄膜を形成し、その厚さ
を光進行方向に対し厚くすることにより光進行方向に伝
搬定数が変化して(1)式の位相整合条件をいずれかの
領域で満たすようにする。
In the second invention in which a thin film having small light absorption is provided on the optical waveguide, the fact that the propagation constant of light propagating in the optical waveguide changes depending on the thickness of the thin film is utilized, and By forming a thin film on the striped optical waveguide and increasing its thickness with respect to the light traveling direction, the propagation constant changes in the light traveling direction so that the phase matching condition of equation (1) is satisfied in any region. To

【0013】[0013]

【実施例】図1は本発明による第1の発明である第2高
調波発生器の一実施例を示す斜視図である。図1におい
て、LiNbO3 結晶基板1上に図3に示す従来の第2
高調波発生器と同様な形状のドメイン反転領域2が形成
されている。ここで周期Ω0 は入射光波長が0.7〜
1.0μmのときは数〜十数μm程度の値である。ま
た、ドメイン反転領域2の形成方法は例えば、ドメイン
を反転させたい領域の上にSiO2 膜を設置して105
0〜1100℃で1〜数時間熱アニール処理を行う方法
がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing an embodiment of a second harmonic generator according to the first invention of the present invention. In FIG. 1, a conventional second substrate shown in FIG. 3 is formed on a LiNbO 3 crystal substrate 1.
A domain inversion region 2 having the same shape as the harmonic generator is formed. Here, the period Ω 0 has an incident light wavelength of 0.7 to
When it is 1.0 μm, the value is about several to several tens of μm. The domain inversion region 2 may be formed by, for example, installing a SiO 2 film on the region where the domain is to be inverted, and
There is a method of performing thermal annealing treatment at 0 to 1100 ° C. for 1 to several hours.

【0014】LiNbO3 結晶基板1上にはさらにスト
ライプ状光導波路13が形成されており、その伝搬方向
はx軸に対してθだけ傾いており、θの値は光導波路の
入口から出口までの間で0°からθm まで徐々に変化し
ている。ストライプ状光導波路13中を伝搬する入射光
に対する実効的なドメイン反転周期Ωは Ω=Ω0 /cosθ …(2) となるので、例えばθm =2.5°とすればΩ≒1.0
01Ω0 となり0.1%周期を変化させることができ、
同程度オーダーの入射光波長の変動に対しても位相整合
条件を満たすことが可能となる。
A striped optical waveguide 13 is further formed on the LiNbO 3 crystal substrate 1, and its propagation direction is inclined by θ with respect to the x axis, and the value of θ is from the entrance to the exit of the optical waveguide. It gradually changes from 0 ° to θ m . The effective domain inversion period Ω with respect to the incident light propagating through the stripe-shaped optical waveguide 13 is Ω = Ω 0 / cos θ (2), so that if θ m = 2.5 °, then Ω≈1.0
It becomes 01Ω 0 and the 0.1% cycle can be changed,
It is possible to satisfy the phase matching condition even if the incident light wavelength varies to the same degree.

【0015】なお、上述のようなドメイン反転周期の変
化を直接的にドメイン反転領域の位置を徐々に変えるこ
とにより得ることも可能であるが、この場合、0.1%
の変化を得るためには例えばΩ0 =10μmとすると周
期の変化幅は0.01μmとなりこのような高精度微細
加工は困難である。上述の周期の変化幅に反比例してS
HGが生ずる実効的な長さが決まるので、従来の加工法
により若し周期の変化幅を大きくしすぎると変換効率は
大幅に低下してしまう。これに対し本実施例は周期の変
化幅を容易に高精度に調整できる。
The change of the domain inversion period as described above can be obtained by directly gradually changing the position of the domain inversion region, but in this case, it is 0.1%.
For example, if Ω 0 = 10 μm, the change width of the period becomes 0.01 μm to obtain such a change, and such high precision micromachining is difficult. S is inversely proportional to the change width of the above cycle
Since the effective length of HG is determined, the conversion efficiency will be significantly reduced if the variation width of the cycle is too large by the conventional processing method. On the other hand, in the present embodiment, the variation width of the cycle can be easily adjusted with high accuracy.

【0016】なお、本実施例のストライプ状光導波路1
3の製作方法は、基板上に光導波路形状の開口をもつ金
属板マスクを設置し、安息香酸等の溶液中に200℃〜
300℃で数分〜数十分浸してその後200〜300℃
でアニール処理するプロトン交換法等を用いる。
Incidentally, the stripe-shaped optical waveguide 1 of this embodiment
The manufacturing method of 3 is to install a metal plate mask having an optical waveguide-shaped opening on a substrate, and place it in a solution of benzoic acid or the like at 200 ° C.
Soak at 300 ℃ for several minutes to tens of minutes, then 200-300 ℃
A proton exchange method or the like in which annealing treatment is performed is used.

【0017】図2は本発明の第2の発明である第2高調
波発生器の一実施例を示す斜視図である。図2におい
て、図3に示す従来の第2高調波発生器と同様な形状の
ドメイン反転領域2、及びストライプ状光導波路3がL
iNbO3 結晶基板1上に形成されている。更にストラ
イプ状光導波路3の上には光透過方向にテーパ形状とな
っている二酸化ケイ素(SiO2 )薄膜10が形成され
ている。
FIG. 2 is a perspective view showing an embodiment of the second harmonic generator which is the second invention of the present invention. In FIG. 2, a domain inversion region 2 having the same shape as that of the conventional second harmonic generator shown in FIG.
It is formed on the iNbO 3 crystal substrate 1. Further, a silicon dioxide (SiO 2 ) thin film 10 having a taper shape in the light transmitting direction is formed on the striped optical waveguide 3.

【0018】光導波路の上が空気である場合と他の物質
がコーティングされている場合では光導波路の伝搬定数
は異なり、またその値はコーティングされた物質の厚さ
にも依存する。更に、その変化の割合は伝搬光の波長に
大きく依存する。ここでSiO2 薄膜10の厚さを光透
過方向に0から数千オングストロームの範囲で変化させ
ることにより、前記(1)式のk1 ,k2 の値を変化さ
せ、通常k1 に対する変化の方が大きいので、|k1
2 |の値が光透過方向に従って変化し、位相整合条件
を満たす波長が光透過方向に変化し、入射光波長の変動
をカバーすることができる。また、図1の実施例と同様
に、伝搬定数に対する変化を小さく設定できるので、高
精度な調整が可能である。
The propagation constant of the optical waveguide is different when the air is above the optical waveguide and when it is coated with another substance, and its value also depends on the thickness of the coated substance. Furthermore, the rate of change greatly depends on the wavelength of the propagating light. Here, by changing the thickness of the SiO 2 thin film 10 in the range of 0 to several thousand angstroms in the light transmission direction, the values of k 1 and k 2 in the above equation (1) are changed, and the change with respect to normal k 1 is changed. Since it is larger, | k 1
The value of k 2 | changes according to the light transmission direction, the wavelength satisfying the phase matching condition changes in the light transmission direction, and the fluctuation of the incident light wavelength can be covered. Further, similarly to the embodiment of FIG. 1, since the change with respect to the propagation constant can be set small, highly accurate adjustment is possible.

【0019】なお、本発明において、ストライプ状光導
空路3又は13の入射端及び入射端に近い領域で、変換
効率が徐々に低下するような重み付けを行うことによっ
て波長や温度に対する変換効率の変動をさらに小さくす
ることができる。上記重み付けは例えば、入出射端で光
導波路への光の閉込めを弱くしてエネルギー密度を下げ
るとか、入出射端で図1のθの値や図2のSiO2 膜の
膜厚を急激に変化させる等の方法により得られる。
In the present invention, the conversion efficiency with respect to wavelength and temperature is changed by performing weighting so that the conversion efficiency gradually decreases in the incident end of the stripe-shaped optical path 3 or 13 and in the region near the incident end. It can be further reduced. The weighting is performed, for example, by weakening the confinement of light into the optical waveguide at the entrance / exit end to lower the energy density, or by rapidly changing the value of θ in FIG. 1 or the thickness of the SiO 2 film in FIG. 2 at the entrance / exit end. It is obtained by a method such as changing.

【0020】[0020]

【発明の効果】以上述べたように本発明は、入射光波長
のずれや温度変化に対して出力変動の小さい第2高調波
発生器が得られる効果がある。
As described above, the present invention has an effect of obtaining the second harmonic generator having a small output fluctuation with respect to the deviation of the incident light wavelength and the temperature change.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明による第1の実施例の斜視図であ
る。
FIG. 1 is a perspective view of a first embodiment according to the first invention.

【図2】第2の発明による第1の実施例の斜視図であ
る。
FIG. 2 is a perspective view of a first embodiment according to the second invention.

【図3】従来例の斜視図である。FIG. 3 is a perspective view of a conventional example.

【符号の説明】[Explanation of symbols]

1 LiNbO3 結晶基板 2 ドメイン反転領域 3 ストライプ状光導波路 10 SiO2 薄膜1 LiNbO 3 crystal substrate 2 domain inversion region 3 striped optical waveguide 10 SiO 2 thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学効果を有する基板上のY軸方
向に周期的に形成された複数の帯状のドメイン反転領域
と、前記ドメイン反転領域と交叉するX軸方向に形成さ
れたストライプ状光導波路とを備える光第2高調波発生
器において、前記ストライプ状光導波路は光伝搬軸の方
向がX軸方向に対し徐々に変化する変化率で変化するよ
うにして形成することを特徴とする光第2高調波発生
器。
1. A plurality of strip-shaped domain inversion regions periodically formed in the Y-axis direction on a substrate having a non-linear optical effect, and a striped optical waveguide formed in the X-axis direction intersecting the domain inversion regions. In the optical second harmonic generator, the stripe-shaped optical waveguide is formed such that the direction of the light propagation axis changes at a rate of change that gradually changes in the X-axis direction. 2 harmonic generator.
【請求項2】 前記ストライプ状光導波路は入出射端で
前記変化率を急激に変化させ形成することを特徴とする
請求項1記載の光第2高調波発生器。
2. The optical second harmonic wave generator according to claim 1, wherein the striped optical waveguide is formed by abruptly changing the rate of change at the entrance and exit ends.
【請求項3】 非線形光学効果を有する基板上のY軸方
向に周期的に形成された複数の溝状のドメイン反転領域
と、前記ドメイン反転領域と交叉するX軸方向に形成さ
れたストライプ状光導波路とを備える光第2高調波発生
器において、前記ストライプ状光導波路上に光進行方向
に対し厚さが徐々に厚くなる薄膜を形成することを特徴
とする光第2高調波発生器。
3. A plurality of groove-shaped domain inversion regions periodically formed in the Y-axis direction on a substrate having a nonlinear optical effect, and stripe-shaped optical waveguides formed in the X-axis direction intersecting the domain inversion regions. An optical second harmonic generator including a waveguide, wherein a thin film having a thickness gradually increasing in a light traveling direction is formed on the stripe-shaped optical waveguide.
【請求項4】 前記ストライプ状光導波路上に形成され
た前記薄膜は前記ストライプ状光導波路の入出力端付近
で厚さを急激に変化させ形成することを特徴とする請求
項3記載の光第2高調波発生器。
4. The optical film according to claim 3, wherein the thin film formed on the striped optical waveguide is formed by abruptly changing the thickness in the vicinity of the input / output end of the striped optical waveguide. 2 harmonic generator.
JP4046466A 1992-03-04 1992-03-04 Optical second higher harmonic generator Withdrawn JPH05249520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046466A JPH05249520A (en) 1992-03-04 1992-03-04 Optical second higher harmonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046466A JPH05249520A (en) 1992-03-04 1992-03-04 Optical second higher harmonic generator

Publications (1)

Publication Number Publication Date
JPH05249520A true JPH05249520A (en) 1993-09-28

Family

ID=12747949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046466A Withdrawn JPH05249520A (en) 1992-03-04 1992-03-04 Optical second higher harmonic generator

Country Status (1)

Country Link
JP (1) JPH05249520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JP2003043537A (en) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, and optical device
JP2011186180A (en) * 2010-03-09 2011-09-22 Shimadzu Corp Optical waveguide element for wavelength conversion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JP2003043537A (en) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, and optical device
JP4660999B2 (en) * 2001-08-01 2011-03-30 パナソニック株式会社 Optical waveguide device, coherent light source and optical apparatus
JP2011186180A (en) * 2010-03-09 2011-09-22 Shimadzu Corp Optical waveguide element for wavelength conversion

Similar Documents

Publication Publication Date Title
EP0753768B1 (en) Wavelength changing device and laser beam generating apparatus
US5991490A (en) Optical waveguide and optical wavelength conversion device
US5836073A (en) Method of making optical wavelength converting device
US5373575A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
JP3129028B2 (en) Short wavelength laser light source
JP2753118B2 (en) Optical wavelength converter
US6785457B2 (en) Optical waveguide device and coherent light source and optical apparatus using the same
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JPH05249520A (en) Optical second higher harmonic generator
US5205904A (en) Method to fabricate frequency doubler devices
JPH05341344A (en) Wavelength conversion element
JPH1172810A (en) Optical waveguide and its production, optical wavelength conversion element using this optical waveguide, short wavelength light emitting device and optical pickup
JP2658381B2 (en) Waveguide type wavelength conversion element
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
US20240152025A1 (en) Optical Wavelength Conversion Device
JP2004020571A (en) Wavelength transformation device
JPH0820655B2 (en) Optical wavelength conversion element
JP3230301B2 (en) Laser light generator
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH05297428A (en) Wavelength conversion method
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH0247610A (en) Grating coupler and optical head device using such coupler
JPH032734A (en) Production of second harmonic wave generating element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518