JPH05340957A - Semiconductor sensor and manufacture thereof - Google Patents

Semiconductor sensor and manufacture thereof

Info

Publication number
JPH05340957A
JPH05340957A JP4147739A JP14773992A JPH05340957A JP H05340957 A JPH05340957 A JP H05340957A JP 4147739 A JP4147739 A JP 4147739A JP 14773992 A JP14773992 A JP 14773992A JP H05340957 A JPH05340957 A JP H05340957A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor substrate
sensor
section
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4147739A
Other languages
Japanese (ja)
Inventor
Satoshi Kunimura
智 國村
Binrin Tei
敏林 程
Hitoshi Nishimura
仁 西村
Katsuhiko Takahashi
克彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Japan Science and Technology Agency
Original Assignee
Fujikura Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Research Development Corp of Japan filed Critical Fujikura Ltd
Priority to JP4147739A priority Critical patent/JPH05340957A/en
Publication of JPH05340957A publication Critical patent/JPH05340957A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PURPOSE:To mass-produce semiconductor sensors without damaging beam parts or diaphragm parts which affect the sensitivity of sensor. CONSTITUTION:The semiconductor sensor comprises a central working section 30, a peripheral beam section 31, a diaphragm section 32, a peripheral fixed frame section 33, and a distortion sensitive sensor disposed at the beam section 31, wherein an annular groove 32a is made in the bottom face of a semiconductor board E thus defining the working section 30 and the thick fixed section 33. An auxiliary board F is then bonded and partially cut off through machining thus forming a weight body 34 to be jointed with the working section 30 and a base 35 to be jointed with the fixed section 33. The thick part is then etched from the top face side of the semiconductor substrate E thus forming a thin diaphragm section 32 and beam section 31. The semiconductor board E is subjected to bonding pressure, cutting load, or impact when it is still thick prior to formation of thin diaphragm section 32 or beam section 31, which thereby protected against damage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、航空機、家電
製品等に用いられる加速度検出用などの半導体センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor sensor for acceleration detection used in automobiles, aircrafts, home appliances and the like.

【0002】[0002]

【従来の技術】従来、加速度検出用のセンサとしては、
圧電セラミックス、有機薄膜、シリコン単結晶板等の種
々の材料を用いた多種多様の加速度センサが開発され、
製品化されている。これらの加速度センサは、ヒステリ
シス、クリープ、疲労などがなく、また、構造が簡単で
電圧感度が極めて大きく、出力が簡単に増幅可能である
など、使い勝手の面でも極めて優れていることから、現
在、多様な分野で広く用いられている。
2. Description of the Related Art Conventionally, as a sensor for detecting acceleration,
A wide variety of acceleration sensors using various materials such as piezoelectric ceramics, organic thin films, and silicon single crystal plates have been developed.
It has been commercialized. These acceleration sensors have no hysteresis, creep, fatigue, etc., have a simple structure, have extremely high voltage sensitivity, and can easily amplify the output. Widely used in various fields.

【0003】中でも、シリコン単結晶を用いた半導体加
速度センサは、シリコン自体の格子欠陥が極めて少ない
ために、理想的な弾性体となること、半導体プロセス技
術をそのまま転用することができる特徴を有することか
ら、近年では特に注目されている加速度センサである。
Above all, a semiconductor acceleration sensor using a silicon single crystal has an ideal elastic body because the lattice defects of silicon itself are extremely small, and has a feature that the semiconductor process technology can be diverted as it is. Therefore, in recent years, it is an acceleration sensor that has received a great deal of attention.

【0004】図8と図9は、特開平3ー2535号公報
に記載された従来一般に知られている半導体加速度セン
サ装置の一構造例を示すものである。この半導体加速度
センサ装置Aの中枢ユニットとなるのは、半導体センサ
Pであり、この半導体センサPの断面構造を図8にその
上面形状を図9にそれぞれ示す。この半導体センサP
は、中央部の作用部1とその周囲の可撓部2とその周囲
の固定部3の3つの領域に分けられている。図8に示す
ように可撓部2の下部には環状の溝2aが形成され、可
撓部2は肉薄構造にされて可撓性を有する。前記作用部
1の下方には重錘体4が固着され、前記固定部3の下方
には重錘体4の周囲を囲む台座5が設けられるととも
に、この台座5は下制御体6に固着され、下制御体6が
パッケージ7の内底部に固定されている。また、前記半
導体センサPの上面には上制御体8が取り付けられてい
る。そして、前記可撓部2の上面には、図9に示すよう
にピエゾ抵抗素子などの感歪ゲージRx1〜Rx4、Ry1〜
Ry4、Rz1〜Rz4が所定の向きに形成され、各感歪ゲー
ジに接続されたボンディングパッド10がボンディング
ワイヤ11を介してパッケージ7の外部に延出されたリ
ード端子12に接続されている。
FIG. 8 and FIG. 9 show an example of the structure of a conventionally known semiconductor acceleration sensor device disclosed in Japanese Patent Application Laid-Open No. 3-2535. A semiconductor sensor P serves as a central unit of the semiconductor acceleration sensor device A, and a sectional structure of the semiconductor sensor P is shown in FIG. 8 and a top view thereof is shown in FIG. This semiconductor sensor P
Is divided into three regions, that is, the action part 1 in the central part, the flexible part 2 around it, and the fixed part 3 around it. As shown in FIG. 8, an annular groove 2a is formed in the lower portion of the flexible portion 2, and the flexible portion 2 has a thin structure and is flexible. A weight body 4 is fixed below the acting portion 1, and a pedestal 5 surrounding the circumference of the weight body 4 is provided below the fixing portion 3, and the pedestal 5 is fixed to the lower control body 6. The lower control body 6 is fixed to the inner bottom portion of the package 7. An upper control body 8 is attached to the upper surface of the semiconductor sensor P. As shown in FIG. 9, strain sensitive gauges Rx1 to Rx4 and Ry1 to Ry1 to Ry1 to piezoresistive elements are provided on the upper surface of the flexible portion 2.
Ry4 and Rz1 to Rz4 are formed in a predetermined direction, and a bonding pad 10 connected to each strain sensitive gauge is connected to a lead terminal 12 extended to the outside of the package 7 via a bonding wire 11.

【0005】次に前記従来の半導体加速度センサPの製
造方法について説明する。前記加速度センサPを製造す
るには、図10に示すように半導体ウエハ15の上面に
不純物打ち込みなどの手段により所定数の感歪ゲージR
を形成し、半導体ウエハ15の下面に環状の溝16を形
成する。次に図11に示すように、前記溝16の位置に
合うように上面に環状の切溝17を形成したガラス板な
どの補助基板18を用意し、この補助基板18を陽極接
合法などの接合法で半導体ウエハ15の下面に接合す
る。続いて図12に示すように補助基板18の下面から
ダイシング加工により補助基板18を切断することで環
状の切断溝19を前記切溝17に到達するように形成す
る。次いで図12に示す切断ラインLに沿ってダイシン
グ加工により半導体ウエハ15と補助基板18を切断加
工するならば、半導体センサPを複数同時に製造するこ
とができる。
Next, a method of manufacturing the conventional semiconductor acceleration sensor P will be described. In order to manufacture the acceleration sensor P, as shown in FIG. 10, a predetermined number of strain sensitive gauges R are formed on the upper surface of the semiconductor wafer 15 by means such as impurity implantation.
Then, the annular groove 16 is formed on the lower surface of the semiconductor wafer 15. Next, as shown in FIG. 11, an auxiliary substrate 18 such as a glass plate having an annular cut groove 17 formed on the upper surface so as to match the position of the groove 16 is prepared, and this auxiliary substrate 18 is bonded by an anodic bonding method or the like. It is legally bonded to the lower surface of the semiconductor wafer 15. Then, as shown in FIG. 12, the auxiliary substrate 18 is cut from the lower surface of the auxiliary substrate 18 by dicing to form an annular cutting groove 19 so as to reach the cutting groove 17. Next, if the semiconductor wafer 15 and the auxiliary substrate 18 are cut and processed along the cutting line L shown in FIG. 12, a plurality of semiconductor sensors P can be manufactured at the same time.

【0006】以上のように加工することで環状の切断溝
19の内部側に重錘部20を形成し、環状の切断溝19
の周囲に台座部21を形成することができる。これによ
り、前記重錘部20により図8に示すセンサの重錘体4
を形成することができ、台座部21により図8に示すセ
ンサの台座5を形成することができる。以上説明したよ
うな製造方法によれば、1つの半導体ウエハ15や補助
基板18から、複数の半導体センサPを同時に製造する
ことができる。
By processing as described above, the weight portion 20 is formed inside the annular cutting groove 19, and the annular cutting groove 19 is formed.
The pedestal portion 21 can be formed around the. As a result, the weight body 20 of the sensor shown in FIG.
Can be formed, and the pedestal portion 21 can form the pedestal 5 of the sensor shown in FIG. According to the manufacturing method as described above, a plurality of semiconductor sensors P can be manufactured simultaneously from one semiconductor wafer 15 and one auxiliary substrate 18.

【0007】[0007]

【発明が解決しようとする課題】前記構造の半導体セン
サPによれば、重錘体4に力が作用して可撓部2が撓む
と機械的変形が生じて感歪ゲージR…の電気抵抗に変化
が生じ、この電気抵抗変化を電気信号として外部に取り
出すことができる。従って前記構造の半導体センサPの
感度は、可撓部2の可撓性に強く依存する。即ち、この
可撓部2の肉厚が薄いほど可撓性が大きくなり、感度が
向上する。このため一般的に前記可撓部2の肉厚は、3
0μm以下に形成されている。
According to the semiconductor sensor P having the above structure, when a force acts on the weight body 4 and the flexible portion 2 bends, mechanical deformation occurs and the electrical resistance of the strain sensitive gauges R ... Change occurs, and this change in electric resistance can be taken out as an electric signal to the outside. Therefore, the sensitivity of the semiconductor sensor P having the above structure strongly depends on the flexibility of the flexible portion 2. That is, the thinner the thickness of the flexible portion 2, the greater the flexibility and the higher the sensitivity. Therefore, the thickness of the flexible portion 2 is generally 3
It is formed to be 0 μm or less.

【0008】従って前記構造の半導体センサPにおい
て、可撓部2を如何に薄く加工して感度を上げるかにつ
いて種々の検討が行なわれている。このような背景から
本発明者らは先に、平成3年6月27日付けで新規構造
の半導体加速度センサについて特許出願(特願平3ー1
83043号)を行なっている。図13は、前記特許出
願に係る半導体センサの一実施例を示すもので、半導体
ウエハ(半導体基板)の中央部に形成された質量部25
と、その周囲に設けられた梁部26、26と、これらの
周囲に設けられた枠状の固定部27と、前記梁部26、
26の両側を挟むように形成されたダイヤフラム部28
と、梁部26の上面に設けられた感歪センサ29とを主
体として構成されている。
Therefore, in the semiconductor sensor P having the above-mentioned structure, various studies have been made on how to make the flexible portion 2 thinner to increase the sensitivity. Against this background, the present inventors previously applied for a patent for a semiconductor acceleration sensor having a new structure as of June 27, 1991 (Japanese Patent Application No. 3-1
83043). FIG. 13 shows an embodiment of the semiconductor sensor according to the above-mentioned patent application, which is a mass part 25 formed in a central part of a semiconductor wafer (semiconductor substrate).
And beam portions 26, 26 provided around it, a frame-shaped fixing portion 27 provided around these, and the beam portion 26,
Diaphragm portion 28 formed so as to sandwich both sides of 26
And a strain-sensitive sensor 29 provided on the upper surface of the beam portion 26.

【0009】前記構成の半導体センサは、ダイヤフラム
部28を設けることで梁部26に横方向から作用する加
速度の影響を排除することができ、上下方向の加速度検
知の指向性を向上させることができるなどの優れた特徴
を有するものである。
In the semiconductor sensor having the above structure, by providing the diaphragm portion 28, the influence of the acceleration acting on the beam portion 26 from the lateral direction can be eliminated, and the directivity of the vertical acceleration detection can be improved. It has excellent features such as.

【0010】ところが、前述した製造方法を適用して図
13に示す構造の半導体センサを製造しようとすると、
半導体ウエハに補助基板を陽極接合法により接合する場
合、両者間に電圧を印加し、両者の温度を上げ、加圧し
ながら処理する必要があるが、この際に薄肉の梁部26
とダイヤフラム部28に負荷をかけるおそれがあるとと
もに、補助基板をダイシングする際に薄肉の梁部26と
ダイヤフラム部28に衝撃を与えるおそれがあり、これ
らの部分を損傷させてしまうおそれがある。そしてこれ
が、この種の半導体センサを量産する際の歩留まりの低
下の要因となっている問題がある。
However, when an attempt is made to manufacture the semiconductor sensor having the structure shown in FIG. 13 by applying the above-mentioned manufacturing method,
When the auxiliary substrate is bonded to the semiconductor wafer by the anodic bonding method, it is necessary to apply a voltage between them to raise the temperature of both and process them while applying pressure. At this time, the thin beam portion 26 is used.
When the auxiliary substrate is diced, the thin beam portion 26 and the diaphragm portion 28 may be impacted, and these portions may be damaged. Then, there is a problem that this is a factor of lowering the yield when mass-producing this type of semiconductor sensor.

【0011】本発明は前記事情に鑑みてなされたもので
あり、センサの感度を左右する梁部あるいはダイヤフラ
ム部を損傷させることなく半導体センサを大量に製造す
ることができる製造方法、および、梁部とダイヤフラム
部を損傷させることなく製造することができて指向性の
優れた半導体センサを提供することを目的とする。
The present invention has been made in view of the above circumstances, and a manufacturing method capable of mass-producing semiconductor sensors without damaging a beam portion or a diaphragm portion that influences the sensitivity of the sensor, and a beam portion. Another object of the present invention is to provide a semiconductor sensor having excellent directivity that can be manufactured without damaging the diaphragm part.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、半導体基板からなる中央部の
作用部とその周囲の梁部とその周囲の枠状の固定部とを
具備し、前記梁部に感歪センサを設けた半導体センサの
製造方法において、半導体基板の下面に環状の溝を形成
して、前記溝の内側に作用部を前記溝の上方に肉厚部を
前記溝の周囲に固定部を形成し、次いで半導体基板の下
面に、補助基板を接合し、続いてこの補助基板の一部を
機械加工で切断して前記作用部に接続する重錘体と前記
固定部に接続する台座とを形成し、次に、エッチング法
により半導体基板の上面側から前記肉厚部を蝕刻して薄
肉化を行ない、前記溝の上方に肉薄のダイヤフラム部と
梁部を形成するものである。
In order to solve the above-mentioned problems, the present invention has a central operating portion made of a semiconductor substrate, a beam portion around the central operating portion, and a frame-shaped fixing portion around the operating portion. In the method of manufacturing a semiconductor sensor having a strain sensitive sensor on the beam portion, an annular groove is formed on the lower surface of the semiconductor substrate, and an action portion is provided inside the groove and a thick portion is provided above the groove. A fixing portion is formed around the groove, an auxiliary substrate is bonded to the lower surface of the semiconductor substrate, and then a part of the auxiliary substrate is machined to connect to the acting portion and the weight body. A pedestal connected to the fixed portion is formed, and then the thick portion is etched from the upper surface side of the semiconductor substrate by etching to reduce the thickness, and a thin diaphragm portion and a beam portion are formed above the groove. To do.

【0013】請求項2記載の発明は前記課題を解決する
ために、半導体基板からなる中央部の作用部とその周囲
の梁部およびダイヤフラム部とそれらの周囲の枠状の固
定部とを具備し、前記梁部に感歪センサを設けた半導体
センサの製造方法において、半導体基板の下面に環状の
溝を形成して、前記溝の内側に作用部を前記溝の上方に
肉厚部を前記溝の周囲に固定部を形成し、次いで半導体
基板の下面に、補助基板を接合し、続いてこの補助基板
の一部を機械加工で切断して前記作用部に接続する重錘
体と前記固定部に接続する台座とを形成し、次に、エッ
チング法により半導体基板の上面側から前記肉厚部の一
部を蝕刻して肉厚部の一部を完全に除去して貫通させ、
この貫通部分を除いた部分に梁部を形成するものであ
る。
In order to solve the above-mentioned problems, the invention according to claim 2 is provided with a central operating portion made of a semiconductor substrate, a beam portion and a diaphragm portion around the central operating portion, and a frame-shaped fixing portion around them. In the method for manufacturing a semiconductor sensor in which a strain sensitive sensor is provided on the beam portion, an annular groove is formed on a lower surface of a semiconductor substrate, an operating portion is provided inside the groove, and a thick portion is provided above the groove. A fixing portion is formed around the periphery of the semiconductor substrate, an auxiliary substrate is bonded to the lower surface of the semiconductor substrate, and then a part of the auxiliary substrate is machined to connect to the acting portion and the fixing portion. And a pedestal to be connected to, then, by etching a part of the thick portion from the upper surface side of the semiconductor substrate by etching to completely remove a part of the thick portion, to penetrate
The beam portion is formed in the portion excluding this penetrating portion.

【0014】請求項3記載の発明は前記課題を解決する
ために、半導体基板からなる中央部の作用部とその周囲
の梁部とその周囲の枠状の固定部とを具備し、前記梁部
に感歪センサを設けた半導体センサにおいて、前記作用
部と梁部と固定部とに囲まれた部分に、作用部と梁部と
固定部とに連続し、梁部よりも薄いダイヤフラム部を形
成してなるものである。
According to a third aspect of the present invention, in order to solve the above-mentioned problems, the present invention is provided with a central action portion made of a semiconductor substrate, a beam portion around the action portion, and a frame-shaped fixing portion around the action portion. In a semiconductor sensor provided with a strain sensitive sensor, a diaphragm portion thinner than the beam portion is formed in a portion surrounded by the action portion, the beam portion and the fixed portion, which is continuous with the action portion, the beam portion and the fixed portion. It will be done.

【0015】[0015]

【作用】半導体基板の下面に溝を形成して肉厚部を形成
し、この状態で補助基板を接合してから補助基板を切断
し、その後に半導体基板の上面をエッチングにより蝕刻
して必要部分を更に薄肉化して梁部とダイヤフラム部を
形成するので、薄いダイヤフラム部と梁部を形成する以
前に、厚肉部の状態で接合時の圧力や切断時の負荷ある
いは衝撃が半導体基板に作用する。よって薄いダイヤフ
ラムや梁部が損傷することはない。また、半導体基板と
補助基板の接合時の圧力や切断時の負荷あるいは衝撃を
避けてダイヤフラム部と梁部を形成できるので、前記圧
力や負荷あるいは衝撃をかけた後にこれらの部分を薄型
に加工することが容易にでき、センサの感度が向上す
る。
[Function] A groove is formed on the lower surface of the semiconductor substrate to form a thick portion, the auxiliary substrate is bonded in this state, the auxiliary substrate is cut, and then the upper surface of the semiconductor substrate is etched to form a necessary portion. Since the beam portion and the diaphragm portion are formed by further thinning, the pressure at the time of bonding and the load or shock at the time of cutting act on the semiconductor substrate in the state of the thick portion before forming the thin diaphragm portion and the beam portion. .. Therefore, the thin diaphragm and the beam are not damaged. Further, since the diaphragm portion and the beam portion can be formed while avoiding the pressure at the time of joining the semiconductor substrate and the auxiliary substrate and the load or impact at the time of cutting, these parts are thinly processed after applying the pressure, load or impact. This can be easily done and the sensitivity of the sensor is improved.

【0016】一方、半導体センサの作用部と梁部と固定
部とに囲まれた部分に、作用部と梁部と固定部とに連続
し、梁部よりも薄いダイヤフラム部を形成してなるもの
は、梁部に横方向から作用する力の影響をダイヤフラム
部が排除するので、梁部の上下方向に作用する力を確実
に検出することができ、センサとしての検出指向性と感
度が向上する。
On the other hand, in the portion surrounded by the acting portion, the beam portion and the fixing portion of the semiconductor sensor, a diaphragm portion which is continuous with the acting portion, the beam portion and the fixing portion and is thinner than the beam portion is formed. Since the diaphragm part eliminates the influence of the force acting on the beam part from the lateral direction, the force acting on the beam part in the vertical direction can be reliably detected, and the detection directivity and sensitivity as a sensor are improved. ..

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1(a)と図1(b)は本発明に係る半
導体センサの一実施例を示すものである。この実施例の
半導体センサHは、基本的には図8と図9を基に先に説
明した従来の半導体センサ装置Aに設けられるものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B show an embodiment of a semiconductor sensor according to the present invention. The semiconductor sensor H of this embodiment is basically provided in the conventional semiconductor sensor device A described above with reference to FIGS. 8 and 9.

【0018】この例の半導体センサHは、半導体ウエハ
からなる半導体基板Eと、この半導体基板Eの下面に接
合されたガラスあるいはセラミックスなどからなる補助
基板Fとからなるもので、中央部の作用部30とその周
囲の梁部31およびダイヤフラム部32とそれらの周囲
の固定部33の各領域に分けられて構成されている。
The semiconductor sensor H of this example comprises a semiconductor substrate E made of a semiconductor wafer and an auxiliary substrate F made of glass or ceramics bonded to the lower surface of the semiconductor substrate E. 30 and the beam portion 31 and the diaphragm portion 32 around it, and the fixing portion 33 around them are divided into respective regions.

【0019】まず、半導体センサHにおいて、図1
(b)の断面構造に示すように、半導体基板Eの下面中
央部側には下向きの凸部状の接続部30aを残して環状
の溝32aが形成され、この溝32aの上方の梁部31
は肉薄構造にされて可撓性を有する。前記作用部30の
下方には接続部30aを介して重錘体34が固着され、
固定部33の下方には重錘体34の周囲を囲む台座35
が固着されている。前記重錘体34は、その周囲に形成
された環状の溝部35aと切断溝35bとにより台座3
5から分離されている。前記溝部35aと切断溝35b
は両者が連続されて補助基板Fを貫通するもので、溝部
35aは補助基板Fの上面側に形成されて半導体基板E
の溝32aに開口し、切断溝35bは補助基板Fの下面
側に形成されて補助基板Fの下面に開口している。
First, in the semiconductor sensor H, FIG.
As shown in the sectional structure of (b), an annular groove 32a is formed in the central portion of the lower surface of the semiconductor substrate E, leaving a downwardly projecting connecting portion 30a, and the beam portion 31 above this groove 32a.
Has a thin structure and has flexibility. A weight body 34 is fixed below the acting portion 30 via a connecting portion 30a,
Below the fixed portion 33, a pedestal 35 surrounding the weight body 34 is provided.
Is stuck. The weight body 34 has a pedestal 3 formed by an annular groove portion 35a and a cutting groove 35b formed around the weight body 34.
Separated from 5. The groove portion 35a and the cutting groove 35b
Are continuous with each other and penetrate through the auxiliary substrate F, and the groove portion 35a is formed on the upper surface side of the auxiliary substrate F and the semiconductor substrate E
Of the auxiliary substrate F and the cutting groove 35b is formed on the lower surface side of the auxiliary substrate F and opens on the lower surface of the auxiliary substrate F.

【0020】そして、前記半導体基板Eの梁部31の上
面には、ピエゾ抵抗素子などの感歪ゲージRx1〜Rx4、
Ry1〜Ry4、Rz1〜Rz4が所定の向きに形成されてい
る。また、前記梁部31は、固定部33の上面と面一に
平面十字状に形成されるとともに、梁部31の周囲であ
って、固定部33との間の部分には、梁部31よりも薄
く、梁部31と固定部33に連続する肉薄のダイヤフラ
ム部32が形成されている。
On the upper surface of the beam portion 31 of the semiconductor substrate E, strain sensitive gauges Rx1 to Rx4 such as piezoresistive elements,
Ry1 to Ry4 and Rz1 to Rz4 are formed in predetermined directions. In addition, the beam portion 31 is formed in a plane cross shape so as to be flush with the upper surface of the fixed portion 33, and at the portion around the beam portion 31 between the fixed portion 33 and the beam portion 31, Also, a thin diaphragm portion 32 that is continuous with the beam portion 31 and the fixed portion 33 is formed.

【0021】図1に示す構造の半導体センサHは、図1
の上下方向に加速度が作用すると重錘体34が梁部31
を撓ませるので、この歪量を感歪ゲージRx1〜Rx4、R
y1〜Ry4、Rz1〜Rz4で検出し、歪量を電気的に検出す
ることで半導体センサHに作用する加速度を測定するこ
とができる。また、ダイヤフラム部32を設けることで
梁部31に横方向から加速度が作用しても梁部31が横
方向に撓むことがないので、横方向に作用する加速度の
影響を排除することができ、上下方向に作用する加速度
のみを効率良く検知できるので、加速度検知の指向性を
向上させることができる。
The semiconductor sensor H having the structure shown in FIG.
When acceleration acts in the vertical direction of the
The strain gauges Rx1 to Rx4, R
The acceleration acting on the semiconductor sensor H can be measured by detecting y1 to Ry4 and Rz1 to Rz4 and electrically detecting the amount of strain. Further, by providing the diaphragm portion 32, the beam portion 31 does not bend in the lateral direction even when the beam portion 31 is subjected to the acceleration in the lateral direction. Therefore, the influence of the acceleration acting in the lateral direction can be eliminated. Since only the acceleration acting in the vertical direction can be efficiently detected, the directivity of acceleration detection can be improved.

【0022】次に前記のように構成された加速度センサ
Hの製造方法について説明する。加速度センサHを製造
するには、まず、半導体プロセスで用いる半導体基板
(半導体ウエハ)を用い、この半導体基板の上に複数の
単位領域を定義する。この半導体基板は、後のダイシン
グ工程において各単位ごとに別個に切り出され、それぞ
れが独立して半導体センサとなる。例えば、円盤状の半
導体基板の上面に正方形などの多数の単位領域を整列状
態で定義するが、ここでは説明の簡略化のために1つの
正方形状の単位領域を例にとって説明する。
Next, a method of manufacturing the acceleration sensor H configured as described above will be described. To manufacture the acceleration sensor H, first, a semiconductor substrate (semiconductor wafer) used in a semiconductor process is used, and a plurality of unit regions are defined on the semiconductor substrate. This semiconductor substrate is cut out separately for each unit in the subsequent dicing process, and each becomes an independent semiconductor sensor. For example, a large number of unit areas such as squares are defined in an aligned state on the upper surface of a disk-shaped semiconductor substrate, but here, for the sake of simplification of description, one square unit area will be described as an example.

【0023】図2は、この単位領域を構成するn型のS
i基板などからなる半導体基板50の平面図であり、以
後この半導体基板50に工程順に順次加工を加えてゆく
場合、図2のAーA’線に沿う断面を工程順に図3
(a)と図4(a)と図5(a)に示し、図2のBー
B’線に沿う断面を工程順に図3(b)と図4(b)と
図5(b)に示す。まず、各単位領域を示す図2の正方
形状の半導体基板50の上面に、不純物打ち込みなどを
行なって抵抗素子などの感歪ゲージRx1〜Rx4、Ry1〜
Ry4、Rz1〜Rz4を所定の向きに形成する。また、半導
体基板50の下面に、図10を基に先に説明した従来の
製造方法の場合と同様な方法を用い、図2の鎖線、また
は、図3と図4の断面構造に示すような矩形環状型の溝
51を形成して半導体基板50の上面部に肉厚部52を
形成する。この溝51の形成には、エッチング液を用い
て行なうケミカルエッチングあるいは機械切削などを行
なう。
FIG. 2 shows the n-type S which constitutes this unit area.
FIG. 3 is a plan view of a semiconductor substrate 50 made of an i substrate or the like. When the semiconductor substrate 50 is sequentially processed in the order of steps thereafter, a cross section taken along the line AA ′ of FIG.
3A, FIG. 4A, and FIG. 5A, and the cross section taken along the line BB ′ of FIG. 2 is shown in FIG. 3B, FIG. 4B, and FIG. Show. First, strain sensing gauges Rx1 to Rx4, Ry1 to Ry1 to Rx1 to Rx1 to Rx1 to Rx1 to Rx1 are formed on the upper surface of the square semiconductor substrate 50 shown in FIG.
Ry4 and Rz1 to Rz4 are formed in a predetermined direction. On the lower surface of the semiconductor substrate 50, a method similar to the case of the conventional manufacturing method described above with reference to FIG. 10 is used, and as shown in the chain line in FIG. 2 or the cross-sectional structure in FIGS. 3 and 4. A rectangular annular groove 51 is formed and a thick portion 52 is formed on the upper surface of the semiconductor substrate 50. The groove 51 is formed by chemical etching using an etching solution or mechanical cutting.

【0024】次に、半導体基板50の下面に従来の方法
と同等の陽極接合法を用いて補助基板53を図3と図4
に示すように接合する。なお、前記補助基板53の上面
に、半導体基板50の下面の環状の溝51に位置合わせ
できるような環状の溝部53aをダイシングなどにより
形成しておき、この環状の溝部53aと前記環状の溝5
1を図3(b)に示すように位置合わせしてから接合す
るものとする。なお、この接合には、半導体基板50と
補助基板53に電圧を印加して加熱したまま両者を加圧
することで接合する。ここで、肉厚部52には、後の工
程で形成する梁部やダイヤフラム部を形成していないの
で、前記加圧に十分に耐えることができる。次いで前記
補助基板53の下面からダイシング加工により図4に示
すような環状の切断溝53bを前記溝部53aに連通す
るように形成する。また、この溝加工の際に、肉厚部5
2には、後の工程で形成する梁部やダイヤフラム部を形
成していないので、肉厚部52は溝加工の衝撃や圧力に
十分に耐えることができる。
Next, the auxiliary substrate 53 is formed on the lower surface of the semiconductor substrate 50 by using an anodic bonding method similar to the conventional method and the auxiliary substrate 53 is formed as shown in FIGS.
Join as shown in. An annular groove portion 53a that can be aligned with the annular groove 51 on the lower surface of the semiconductor substrate 50 is formed on the upper surface of the auxiliary substrate 53 by dicing or the like, and the annular groove portion 53a and the annular groove 5 are formed.
1 is positioned as shown in FIG. 3 (b) and then bonded. In addition, in this bonding, a voltage is applied to the semiconductor substrate 50 and the auxiliary substrate 53 to press them while heating them, thereby bonding them. Here, since the beam portion and the diaphragm portion which will be formed in a later step are not formed in the thick portion 52, it is possible to sufficiently withstand the pressurization. Next, an annular cutting groove 53b as shown in FIG. 4 is formed from the lower surface of the auxiliary substrate 53 by dicing so as to communicate with the groove portion 53a. In addition, during the groove processing, the thick portion 5
Since the beam portion and the diaphragm portion which will be formed in a later step are not formed in the second portion 2, the thick portion 52 can sufficiently withstand the impact and pressure of the groove processing.

【0025】次に、リソク゛ラフィ法により半導体基板
50の上面をレジスト55で覆う。この場合、半導体基
板50の上面において後の工程で感歪ゲージの形成や配
線を行なう部分は、レジスト55を被せないようにして
おく。
Next, the upper surface of the semiconductor substrate 50 is covered with a resist 55 by the lithography method. In this case, the resist 55 is not covered on the upper surface of the semiconductor substrate 50 where the strain sensitive gauge is formed and wiring is performed in a later step.

【0026】次に反応性ガスイオンエッチング法(RI
法)やCF4ーO2プラズマエッチング法などのいわゆる
ドライエッチング法により、肉厚部52のレジストで覆
われていない部分をその上方からドライエッチングして
肉厚部52の一部を更に薄く加工してダイヤフラム部3
2を形成する。なお、このドライエッチングで薄く加工
するのは、半導体基板50の上面において後の工程で感
歪ゲージや配線を行なわない部分のみである。よって図
2に示す半導体基板50の上面において、上面の中央部
と、感歪ゲージRx1〜Rx4、Ry1〜Ry4、Rz1〜Rz4を
形成した範囲と、上面の周辺部を除く部分をドライエッ
チングして梁部31とそれよりも薄い薄肉のダイヤフラ
ム部32を形成する。前記ダイヤフラム部32を形成す
る際に、ドライエッチングによれば、梁部31よりも薄
い均一な厚さのダイヤフラム部32を形成することがで
きる。
Next, the reactive gas ion etching method (RI
Method) or a so-called dry etching method such as CF 4 -O 2 plasma etching method to dry-etch a portion of the thick portion 52 which is not covered with the resist from above to process a part of the thick portion 52 further thinly. And diaphragm part 3
Form 2. The dry etching is thinly processed only on the upper surface of the semiconductor substrate 50 where the strain sensitive gauge and wiring are not performed in the subsequent steps. Therefore, on the upper surface of the semiconductor substrate 50 shown in FIG. 2, the central portion of the upper surface, the range where the strain sensitive gauges Rx1 to Rx4, Ry1 to Ry4, Rz1 to Rz4 are formed, and the peripheral portion of the upper surface are dry-etched. The beam portion 31 and the thin diaphragm portion 32 thinner than the beam portion 31 are formed. When the diaphragm portion 32 is formed, the diaphragm portion 32 having a uniform thickness thinner than the beam portion 31 can be formed by dry etching.

【0027】続いて前記レジスト55を図6に示すよう
に除去すると、半導体基板50から形成される半導体基
板Eと、補助基板53から形成される補助基板Fとが接
合され、上面中央部に作用部30を有し、その周囲に可
撓部31を有し、その周囲に固定部33を有するととも
に、作用部31の下方に接続部31aを介して重錘部3
4を有し、固定部33の下方に台座35を有し、梁部3
1とダイヤフラム部32を備えた図1の半導体センサH
と同等の半導体センサHが得られる。
Subsequently, when the resist 55 is removed as shown in FIG. 6, the semiconductor substrate E formed of the semiconductor substrate 50 and the auxiliary substrate F formed of the auxiliary substrate 53 are bonded to each other and act on the central portion of the upper surface. It has a part 30, a flexible part 31 around it, a fixing part 33 around it, and a weight part 3 below the acting part 31 via a connecting part 31a.
4 and the pedestal 35 below the fixed portion 33,
1 and the diaphragm 32, the semiconductor sensor H of FIG.
A semiconductor sensor H equivalent to is obtained.

【0028】以上説明の製造方法によれば、補助基板5
3を半導体基板50に陽極接合する際と、補助基板53
を切断する際に、いずれも肉厚部52に圧力や衝撃をか
けることになるが、ダイヤフラム部32と梁部31を形
成する以前の肉厚部52の状態で補助基板53の接合と
切断とを行なうために、いずれの場合もダイヤフラム部
32と梁部31の損傷につながることはない。
According to the manufacturing method described above, the auxiliary substrate 5
3 is anodically bonded to the semiconductor substrate 50 and the auxiliary substrate 53.
Although any pressure or impact is applied to the thick portion 52 when cutting, the auxiliary substrate 53 is joined and cut in the state of the thick portion 52 before the diaphragm portion 32 and the beam portion 31 are formed. In either case, the diaphragm portion 32 and the beam portion 31 are not damaged.

【0029】ところで、前記エッチングの際にレジスト
で覆われていない肉厚部52の全部を除去してダイヤフ
ラム部32を無くするならば、図7に示すような貫通孔
32’が形成された半導体センサH’が得られる。この
構成のセンサH’においても先に説明した構造の半導体
センサHと同様に加速度の検出を行なうことができる。
By the way, if the diaphragm portion 32 is eliminated by removing the entire thick portion 52 not covered with the resist during the etching, the semiconductor having the through hole 32 'as shown in FIG. 7 is formed. A sensor H'is obtained. Also in the sensor H'having this structure, acceleration can be detected similarly to the semiconductor sensor H having the structure described above.

【0030】なお、前記の各実施例において、感歪ゲー
ジRの配置や配線部分などのパターンは自由に変更して
も良いものであり、用いる半導体基板Eの形状や大き
さ、センサ各部の大きさや形状は特に限定されるもので
はない。更に、半導体基板Eの表面から行なうドライエ
ッチングの深さも任意であるし、その方法もドライエッ
チングでれば、特に限定されない。
In each of the above-mentioned embodiments, the arrangement of the strain sensitive gauge R and the pattern of the wiring portion may be freely changed, and the shape and size of the semiconductor substrate E to be used and the size of each part of the sensor. The pod shape is not particularly limited. Further, the depth of dry etching performed from the surface of the semiconductor substrate E is arbitrary, and the method is not particularly limited as long as it is dry etching.

【0031】[0031]

【発明の効果】以上説明したように本発明の方法は、半
導体基板の下面に溝を形成して肉厚部を形成し、この状
態で補助基板を接合してから補助基板を切断し、その後
に半導体基板の上面をエッチングにより蝕刻して必要部
分を更に薄肉化して梁部とダイヤフラム部を形成するの
で、薄いダイヤフラム部と梁部を形成する以前に、肉厚
部の状態で接合時の圧力や切断時の負荷あるいは衝撃を
半導体基板に負荷することができる。よってその後に形
成される薄いダイヤフラムや梁部に損傷を生じさせるこ
とがない。また、接合時の圧力や切断時の負荷あるいは
衝撃を避けてダイヤフラム部と梁部を形成できるので、
これらの部分を薄型化することが容易にでき、センサの
感度が向上する。さらに、ダイヤフラム部をエッチング
で形成すると、ダイヤフラム部の厚さを自由に調節する
ことができ、所定厚さのダイヤフラム部をエッチングに
より容易に得ることができる。また、エッチングにより
半導体基板の一部分を薄肉化する際に、貫通させて梁部
を形成する方法においても前記の場合と同様に、肉厚部
の状態で接合時の圧力や切断時の負荷あるいは衝撃を半
導体基板に負荷することができる。よってその後に形成
される薄いダイヤフラムや梁部に損傷を生じさせること
がない。
As described above, according to the method of the present invention, a groove is formed in the lower surface of a semiconductor substrate to form a thick portion, the auxiliary substrate is bonded in this state, and then the auxiliary substrate is cut, Since the beam and the diaphragm are formed by etching the upper surface of the semiconductor substrate by etching and thinning the necessary parts further, the pressure at the time of joining in the thick part before the thin diaphragm and the beam is formed. It is possible to apply a load or impact at the time of cutting or to the semiconductor substrate. Therefore, the thin diaphragm and the beam portion formed thereafter are not damaged. Also, since the diaphragm part and the beam part can be formed while avoiding the pressure at the time of joining and the load or impact at the time of cutting,
These portions can be easily made thin, and the sensitivity of the sensor is improved. Further, when the diaphragm portion is formed by etching, the thickness of the diaphragm portion can be freely adjusted, and the diaphragm portion having a predetermined thickness can be easily obtained by etching. Also, in the method of forming the beam portion by penetrating it when thinning a part of the semiconductor substrate by etching, similarly to the above case, the pressure at the time of joining in the state of the thick portion and the load or impact at the time of cutting Can be loaded on the semiconductor substrate. Therefore, the thin diaphragm and the beam portion formed thereafter are not damaged.

【0032】一方、半導体センサの作用部と梁部と固定
部とに囲まれた部分に、作用部と梁部と固定部とに連続
し、梁部よりも薄いダイヤフラム部を形成してなるもの
は、梁部に横方向から作用する力の影響をダイヤフラム
部が排除するので、梁部で上下方向に作用する力を確実
に検出することができ、センサとしての検出指向性と感
度が向上する。また、前記の構造を採用するならば、半
導体基板の下面に溝を形成して肉厚部を形成し、この状
態で補助基板を接合してから補助基板を切断し、その後
に半導体基板の上面をエッチングにより蝕刻して必要部
分を更に薄肉化して梁部とダイヤフラム部を形成する方
法により製造することができるので、薄いダイヤフラム
部と梁部を形成する以前に、肉厚部の状態で接合時の圧
力や切断時の負荷あるいは衝撃を半導体基板に負荷させ
ることができ、よってその後に形成される薄いダイヤフ
ラムや梁部に損傷を生じさせることなく半導体センサを
製造することができる。
On the other hand, in the portion surrounded by the operating portion, the beam portion and the fixed portion of the semiconductor sensor, a diaphragm portion which is continuous with the operating portion, the beam portion and the fixed portion and is thinner than the beam portion is formed. Since the diaphragm part eliminates the influence of the force acting on the beam part from the lateral direction, the force acting in the up-down direction on the beam part can be reliably detected, and the detection directivity and sensitivity as a sensor are improved. .. Further, if the above structure is adopted, a groove is formed in the lower surface of the semiconductor substrate to form a thick portion, the auxiliary substrate is bonded in this state, the auxiliary substrate is cut, and then the upper surface of the semiconductor substrate is cut. Since it can be manufactured by the method of forming a beam part and a diaphragm part by etching the part by etching to make the necessary part thinner, before joining the thin diaphragm part and the beam part, when joining in the thick part The semiconductor substrate can be manufactured without damaging the thin diaphragm and the beam portion formed thereafter, because the pressure or the load or impact at the time of cutting can be applied to the semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明に係る半導体センサの一実
施例の要部を示す斜視図、図1(b)は図1(a)のC
ーC線に沿う断面図である。
FIG. 1 (a) is a perspective view showing a main part of an embodiment of a semiconductor sensor according to the present invention, and FIG. 1 (b) is a C of FIG. 1 (a).
It is a sectional view taken along the line C.

【図2】図2は本発明方法を説明するために使用する半
導体基板の加工前の状態を示す上面図である。
FIG. 2 is a top view showing a state before processing of a semiconductor substrate used for explaining the method of the present invention.

【図3】図3は図2に示す半導体基板の下面に補助基板
を接合した状態を示すもので、図3(a)は図2のAー
A’線に沿う断面図、図3(b)は図2のBーB’線に
沿う断面図である。
3 shows a state in which an auxiliary substrate is bonded to the lower surface of the semiconductor substrate shown in FIG. 2. FIG. 3 (a) is a cross-sectional view taken along the line AA ′ of FIG. ) Is a sectional view taken along the line BB ′ of FIG. 2.

【図4】図4は図2に示す半導体基板上にフォトレジス
トを形成した状態を示すもので、 図4(a)は図2の
AーA’線に沿う断面図、図4(b)は図2のBーB’
線に沿う断面図である。
4 shows a state in which a photoresist is formed on the semiconductor substrate shown in FIG. 2, FIG. 4 (a) is a cross-sectional view taken along the line AA ′ of FIG. 2, and FIG. 4 (b). Is BB 'in Figure 2
It is sectional drawing which follows the line.

【図5】図5は図2に示す半導体基板をエッチングした
状態を示すもので、図5(a)は図2のAーA’線に沿
う断面図、図5(b)は図2のBーB’線に沿う断面図
である。
5 shows a state in which the semiconductor substrate shown in FIG. 2 is etched. FIG. 5 (a) is a sectional view taken along the line AA 'in FIG. 2, and FIG. 5 (b) is shown in FIG. It is sectional drawing which follows the BB 'line.

【図6】図6は図5に示す状態からフォトレジストを除
去した状態を示すもので、図6(a)は図2のAーA’
線に沿う断面図、図6(b)は図2のBーB’線に沿う
断面図である。
6 shows a state in which the photoresist is removed from the state shown in FIG. 5, and FIG. 6 (a) is AA ′ of FIG.
6 is a sectional view taken along the line BB ′, and FIG. 6B is a sectional view taken along the line BB ′ in FIG. 2.

【図7】図7は本発明方法によって製造される半導体セ
ンサの他の例を示す斜視図である。
FIG. 7 is a perspective view showing another example of a semiconductor sensor manufactured by the method of the present invention.

【図8】図8は従来の半導体センサの一構造例を示す断
面図である。
FIG. 8 is a cross-sectional view showing one structural example of a conventional semiconductor sensor.

【図9】図9は図8に示す半導体センサの上面図であ
る。
FIG. 9 is a top view of the semiconductor sensor shown in FIG.

【図10】図10は図8に示す従来構造の半導体センサ
の製造方法を説明するためのもので、半導体基板に溝を
形成した状態を示す断面図である。
10 is a cross-sectional view showing a state in which a groove is formed in a semiconductor substrate, for explaining a method for manufacturing the semiconductor sensor having the conventional structure shown in FIG.

【図11】図11は図10に示す半導体基板に補助基板
を接合した状態を示す断面図である。
11 is a cross-sectional view showing a state in which an auxiliary substrate is bonded to the semiconductor substrate shown in FIG.

【図12】図12は図10に示す補助基板に切溝を入れ
た状態を示す断面図である。
12 is a cross-sectional view showing a state where the auxiliary substrate shown in FIG. 10 has a kerf.

【図13】図13は本発明者らが先に特許出願している
半導体センサの一例を示す斜視図である。
FIG. 13 is a perspective view showing an example of a semiconductor sensor for which the present inventors have previously applied for a patent.

【符号の説明】[Explanation of symbols]

H 半導体センサ、 E 半導体基板、 F 補助基板、 30 作用部、 31 梁部、 32 ダイヤフラム部、 32a 溝、 33 固定部、 34 重錘体、 35 台座、 35a 溝部、 35b 切断溝、 Rx1〜Rx4、Ry1〜Ry4、Rz1〜Rz4 感歪ゲージ、 H semiconductor sensor, E semiconductor substrate, F auxiliary substrate, 30 working part, 31 beam part, 32 diaphragm part, 32a groove, 33 fixing part, 34 weight body, 35 pedestal, 35a groove part, 35b cutting groove, Rx1 to Rx4, Ry1 ~ Ry4, Rz1 ~ Rz4 strain gauge,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 仁 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 高橋 克彦 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hitoshi Nishimura 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Katsuhiko Takahashi 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板からなり、中央部の作用部と
その周囲の梁部およびダイヤフラム部とそれらの周囲の
枠状の固定部とを具備し、前記梁部に感歪センサを設け
た半導体センサの製造方法において、 半導体基板の下面に環状の溝を形成して、前記溝の内側
に作用部を前記溝の上方に肉厚部を前記溝の周囲に固定
部を形成し、次いで半導体基板の下面に、補助基板を接
合し、続いてこの補助基板の一部を機械加工で切断して
前記作用部に接続する重錘体と前記固定部に接続する台
座とを形成し、次に、エッチングにより半導体基板の上
面側から前記肉厚部を蝕刻して薄肉化を行ない、前記溝
の上方に肉薄のダイヤフラム部と梁部とを形成すること
を特徴とする半導体センサの製造方法。
1. A semiconductor comprising a semiconductor substrate, comprising a central action portion, a beam portion and a diaphragm portion around the action portion, and a frame-shaped fixing portion around them, and a strain sensitive sensor provided on the beam portion. In the method of manufacturing a sensor, an annular groove is formed on a lower surface of a semiconductor substrate, an action portion is formed inside the groove, a thick portion is formed above the groove, and a fixing portion is formed around the groove, and then the semiconductor substrate is formed. On the lower surface of the auxiliary substrate, and subsequently, a part of the auxiliary substrate is cut by machining to form a weight body connected to the working portion and a pedestal connected to the fixed portion, and then, A method of manufacturing a semiconductor sensor, wherein the thick portion is etched from the upper surface side of the semiconductor substrate by etching to reduce the thickness, and a thin diaphragm portion and a beam portion are formed above the groove.
【請求項2】 半導体基板からなり、中央部の作用部と
その周囲の梁部とその周囲の枠状の固定部とを具備し、
前記梁部に感歪センサを設けた半導体センサの製造方法
において、 半導体基板の下面に環状の溝を形成して、前記溝の内側
に作用部を前記溝の上方に肉厚部を前記溝の周囲に固定
部を形成し、次いで半導体基板の下面に、補助基板を接
合し、続いてこの補助基板の一部を機械加工で切断して
前記作用部に接続する重錘体と前記固定部に接続する台
座とを形成し、次に、エッチング法により半導体基板の
上面側から前記肉厚部の一部を蝕刻して肉厚部の一部を
完全に除去して貫通させ、この貫通部分を除いた部分を
梁部とすることを特徴とする半導体センサの製造方法。
2. A semiconductor substrate, comprising a central action part, a beam part around it, and a frame-shaped fixing part around it.
In the method for manufacturing a semiconductor sensor in which a strain sensitive sensor is provided on the beam portion, an annular groove is formed on a lower surface of a semiconductor substrate, an operating portion is provided inside the groove, and a thick portion is provided above the groove. A fixing portion is formed on the periphery, then an auxiliary substrate is bonded to the lower surface of the semiconductor substrate, and then a part of the auxiliary substrate is cut by machining to connect the weight body and the fixing portion to the acting portion. A pedestal to be connected is formed, and then a part of the thick portion is etched from the upper surface side of the semiconductor substrate by an etching method to completely remove a part of the thick portion to penetrate the through portion. A method of manufacturing a semiconductor sensor, characterized in that the removed portion is a beam portion.
【請求項3】 半導体基板からなり、中央部の作用部と
その周囲の梁部とその周囲の枠状の固定部とを具備し、
前記梁部に感歪センサを設けた半導体センサにおいて、 前記作用部と梁部と固定部とに囲まれた部分に、作用部
と梁部と固定部に連続し、梁部よりも薄いダイヤフラム
部を形成してなることを特徴とする半導体センサ。
3. A semiconductor substrate, comprising a central action part, a beam part around it, and a frame-shaped fixing part around it.
In a semiconductor sensor in which a strain sensitive sensor is provided on the beam portion, a diaphragm portion that is continuous with the action portion, the beam portion, and the fixed portion and is thinner than the beam portion in a portion surrounded by the action portion, the beam portion, and the fixed portion. A semiconductor sensor comprising:
JP4147739A 1992-06-08 1992-06-08 Semiconductor sensor and manufacture thereof Pending JPH05340957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147739A JPH05340957A (en) 1992-06-08 1992-06-08 Semiconductor sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147739A JPH05340957A (en) 1992-06-08 1992-06-08 Semiconductor sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05340957A true JPH05340957A (en) 1993-12-24

Family

ID=15437052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147739A Pending JPH05340957A (en) 1992-06-08 1992-06-08 Semiconductor sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05340957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263735B1 (en) 1997-09-10 2001-07-24 Matsushita Electric Industrial Co., Ltd. Acceleration sensor
US6293149B1 (en) 1997-02-21 2001-09-25 Matsushita Electric Works, Ltd. Acceleration sensor element and method of its manufacture
EP1431764A2 (en) * 2002-12-19 2004-06-23 Hitachi Metals, Ltd. Acceleration sensor
JP2006075981A (en) * 2004-09-08 2006-03-23 Robert Bosch Gmbh Sensor element with trenched cavity
JP2009524211A (en) * 2005-12-22 2009-06-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromachining sensor element
WO2023037832A1 (en) * 2021-09-08 2023-03-16 ミネベアミツミ株式会社 Pulse wave sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293149B1 (en) 1997-02-21 2001-09-25 Matsushita Electric Works, Ltd. Acceleration sensor element and method of its manufacture
US6263735B1 (en) 1997-09-10 2001-07-24 Matsushita Electric Industrial Co., Ltd. Acceleration sensor
EP1431764A2 (en) * 2002-12-19 2004-06-23 Hitachi Metals, Ltd. Acceleration sensor
EP1431764A3 (en) * 2002-12-19 2005-12-07 Hitachi Metals, Ltd. Acceleration sensor
KR100715644B1 (en) * 2002-12-19 2007-05-08 히타치 긴조쿠 가부시키가이샤 Acceleration sensor
CN100347863C (en) * 2002-12-19 2007-11-07 日立金属株式会社 Acceleration sensor
JP2006075981A (en) * 2004-09-08 2006-03-23 Robert Bosch Gmbh Sensor element with trenched cavity
JP2009524211A (en) * 2005-12-22 2009-06-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromachining sensor element
WO2023037832A1 (en) * 2021-09-08 2023-03-16 ミネベアミツミ株式会社 Pulse wave sensor

Similar Documents

Publication Publication Date Title
EP0401635B1 (en) Manufacturing method of a detector using resistance elements
US4071838A (en) Solid state force transducer and method of making same
EP3249371B1 (en) Differential pressure sensor full overpressure protection device
US5202281A (en) Method of manufacturing silicon semiconductor acceleration sensor devices
JPH05340957A (en) Semiconductor sensor and manufacture thereof
US8276449B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
US20070126072A1 (en) Surface acoustic wave pressure sensors
JP3938199B1 (en) Wafer level package structure and sensor device
JP2892788B2 (en) Method of manufacturing sensor for detecting physical quantity
JPH0945935A (en) Acceleration sensor and its manufacture
JP4396009B2 (en) Integrated sensor
JPH05281251A (en) Acceleration sensor and manufacture thereof
JP3399164B2 (en) Acceleration sensor and method of manufacturing the same
JP3392069B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
JPH0835982A (en) Manufacture of semiconductor acceleration sensor
JPH07128365A (en) Semiconductor acceleration sensor and fabrication thereof
JPH03110478A (en) Manufacture of semiconductor acceleration sensor
JPH05322566A (en) Production of semiconductor inclination sensor
JP2844116B2 (en) Method of manufacturing sensor for detecting physical quantity
JP2670048B2 (en) Force detection device
JP2001044449A (en) Force detection sensor and manufacture of force detection sensor
JP6773437B2 (en) Stress sensor
JPH11190746A (en) Semiconductor physical quantity sensor and fabrication thereof
JPH10253657A (en) Semiconductor accelerometer