JPH05332741A - Surface form measuring device - Google Patents

Surface form measuring device

Info

Publication number
JPH05332741A
JPH05332741A JP13873792A JP13873792A JPH05332741A JP H05332741 A JPH05332741 A JP H05332741A JP 13873792 A JP13873792 A JP 13873792A JP 13873792 A JP13873792 A JP 13873792A JP H05332741 A JPH05332741 A JP H05332741A
Authority
JP
Japan
Prior art keywords
light
measured
phase
measuring
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13873792A
Other languages
Japanese (ja)
Inventor
Yoshitomi Sameda
芳富 鮫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13873792A priority Critical patent/JPH05332741A/en
Publication of JPH05332741A publication Critical patent/JPH05332741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure the irregularity of a surface without deteriorating measuring resolution by providing a beam scanner for scanning a light point, an imaging lens for observing and imaging in a direction different from light emission, a focus member, a light detector, and a phase measuring instrument to measure the phase of the output signal of the light detector. CONSTITUTION:A beam scanner 1 changes the beam emitted from a light source 1a by semiconductor laser into a parallel light by a collimator lens 1b to scan it on a material 2 to be measured by a rotating mirror 1c and a f-theta lens 1d. The beam reflected by the material 2 to be measured is imaged on a focus plate 4 by an imaging lens 3. A light detector 5 detects the light transmitted by the focus plate 4 and outputs a light intensity signal S5. A phase measuring instrument 6 detects the phase of the signal S5 and generates a signal S6. The focus plate 4 has a band light permeable part and non-permeable part alternately formed thereon. When the material 2 to be measured has irregularities. Since the moving speed of a light point on the focus plate 4 is changed, when the material 2 to be measured has irregularities, and the phase of the light intensity signal is also changed, the irregularity information can be provided at high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物の表面形状の
測定を行なうための表面形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring device for measuring the surface shape of an object to be measured.

【0002】[0002]

【従来の技術】従来、光学機器を用いて物体表面の輪郭
あるいは形状を測定する装置として種々のものが提案さ
れている。図8は、光切断法により形状測定を行なう装
置を示した概略図であり、投光器7から扇状に広がる光
が被測定物2の表面のラインABに向けて投光され、受
光器8がその反射光を受光するようになっている。そし
て、受光器8からは画面9内に示すようなラインABに
ついての画像を得ることができる。このラインABの形
状が、被測定物2の凹凸状態を表わしている。
2. Description of the Related Art Conventionally, various devices have been proposed for measuring the contour or shape of the surface of an object using an optical device. FIG. 8 is a schematic view showing an apparatus for performing shape measurement by the light-section method. Light that spreads in a fan shape from the light projector 7 is projected toward the line AB on the surface of the DUT 2, and the light receiver 8 receives the light. It is designed to receive reflected light. Then, an image of the line AB as shown in the screen 9 can be obtained from the light receiver 8. The shape of this line AB represents the uneven state of the DUT 2.

【0003】[0003]

【発明が解決しようとする課題】図9は、図8における
光の経路を示した説明図であり、投光器7から発せられ
被測定物2で反射した光は、受光器8内のレンズ8aを
通って光検出器8bにより検出されるようになってい
る。そして、被測定物2における反射点の位置が、図示
のようにa1 、b1 、c1 であるとすると、それぞれの
点の結像位置は、a2 、b2 、c2 となる。
FIG. 9 is an explanatory view showing the path of the light in FIG. 8, and the light emitted from the projector 7 and reflected by the DUT 2 is reflected by the lens 8a in the light receiver 8. It is designed to be detected by the photodetector 8b. Assuming that the positions of the reflection points on the DUT 2 are a 1 , b 1 and c 1 as shown in the figure, the image forming positions of the respective points are a 2 , b 2 and c 2 .

【0004】すなわち、被測定物2の高さ方向に関する
測定レンジは図7のb1 〜c1 の間の範囲となる。した
がって、被測定物2の点b1 または点c1 付近の位置形
状を測定しようとする場合、これらの形状が傾いている
場合には、もはや光検出器8bでの結像が不可能となる
ことがある。
That is, the measurement range in the height direction of the DUT 2 is a range between b 1 and c 1 in FIG. Therefore, when it is attempted to measure the position shapes of the object to be measured 2 near the point b 1 or the point c 1, if these shapes are tilted, image formation by the photodetector 8b is no longer possible. Sometimes.

【0005】このように、測定可能な範囲が実質的に狭
くなるのを防止するために、レンズ8aの焦点距離変更
および光検出器8bの取り付け位置を調整することが考
えられるが、それでは、受光器8の凹凸分解能が悪化す
ることになる。
As described above, in order to prevent the measurable range from being substantially narrowed, it is conceivable to change the focal length of the lens 8a and adjust the mounting position of the photodetector 8b. The unevenness resolution of the container 8 is deteriorated.

【0006】また、図8の画面9を光検出器8bで検出
するためには、2次元の光強度分布を検出できる光検出
素子を用いなければならない。このような光検出素子で
は、一般に1画面の情報を検出するために、数十ミリ秒
オーダの時間がかかり、高速な測定ができない。
In order to detect the screen 9 shown in FIG. 8 by the photodetector 8b, a photodetector capable of detecting a two-dimensional light intensity distribution must be used. In such a photo-detecting element, it generally takes several tens of milliseconds to detect information on one screen, and high-speed measurement cannot be performed.

【0007】本発明は、前述の事情に基づいてなされた
ものであり、測定分解能を悪化させずに高さ方向につい
ての測定可能な範囲を広くとれるとともに、被測定物表
面の凹凸情報を高速に得ることができる表面形状測定装
置を提供することを目的としている。
The present invention has been made based on the above-mentioned circumstances. The measurable range in the height direction can be widened without deteriorating the measurement resolution and the unevenness information on the surface of the object to be measured can be obtained at high speed. An object is to provide a surface profile measuring device that can be obtained.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、被測定物に光点を投光
しその光点を走査する光線走査器と、前記被測定物上の
前記光点からの反射光を投光と異なった方向から観測し
結像する1個の結像レンズと、この結像レンズの結像面
に置かれ、光が透過可能であって、光強度を変調する1
個の焦点部材と、この焦点部材を透過した光を受光する
光検出器と、この光検出器の出力信号の位相を測定する
位相測定器とからなるものである。
In order to achieve the above object, the invention corresponding to claim 1 is a beam scanner for projecting a light spot on an object to be measured and scanning the light spot, and the object to be measured. One reflected light from the above light spot, which is observed from a direction different from that of the projected light to form an image, and one image forming lens, which is placed on the image forming surface of this image forming lens and is capable of transmitting light, Modulate the light intensity 1
Each of the focus members includes a photodetector that receives the light transmitted through the focus member, and a phase measuring device that measures the phase of the output signal of the photodetector.

【0009】また、前記目的を達成するため、請求項2
に対応する発明は、被測定物に光点を投光しその光点を
走査する光線走査器と、前記被測定物上の前記光点から
の反射光を投光と異なった方向から観測し結像する結像
レンズと、この結像レンズからの光を分割するビームス
プリッターと、このビームスプリッターにより分割され
た光を各々透過可能であって、光強度を変調する複数の
焦点部材と、この各焦点部材を透過した光を受光する複
数の光検出器と、この各光検出器の出力信号の位相を測
定する複数の位相測定器とからなるものである。
Further, in order to achieve the above-mentioned object, claim 2
The invention corresponding to, a light beam scanner for projecting a light spot on the object to be measured and scanning the light spot, and observing reflected light from the light spot on the object to be measured from a direction different from the light projection. An imaging lens that forms an image, a beam splitter that splits the light from the imaging lens, a plurality of focus members that can respectively transmit the light split by the beam splitter, and that modulate the light intensity, It comprises a plurality of photodetectors for receiving the light transmitted through each focusing member, and a plurality of phase measuring devices for measuring the phase of the output signal of each photodetector.

【0010】さらに、前記目的を達成するため、請求項
3に対応する発明は、被測定物に光点を投光しその光点
を走査する光線走査器と、被測定物上の前記光点からの
反射光を投光と異なった方向から観測し結像する複数の
結像レンズと、この各結像レンズの結像面に置かれ光が
透過可能であって、光強度を変調する複数の焦点部材
と、この各焦点部材を透過した光を受光する複数の光検
出器と、この各光検出器の出力信号の位相を測定する複
数の位相測定器とからなるものである。
Further, in order to achieve the above object, the invention according to claim 3 is a beam scanner for projecting a light spot on an object to be measured and scanning the light spot, and the light spot on the object to be measured. A plurality of imaging lenses for observing the reflected light from a different direction from the projected light and forming an image, and a plurality of imaging lenses that are placed on the imaging surface of each of the imaging lenses and can transmit light and modulate the light intensity. Of the focus members, a plurality of photodetectors for receiving the light transmitted through the focus members, and a plurality of phase measuring devices for measuring the phases of the output signals of the photodetectors.

【0011】[0011]

【作用】請求項1,2,3に対応する発明によれば、光
線走査器は光点を被測定物に投光し、一定速度で走査
し、結像レンズは、被測定物で反射した光点を焦点部材
上に結像し、被測定物上を光点は走査し、焦点部材上に
結像した光点も移動し、光線走査器による投光の方向と
結像レンズによる受光の方向が異なっているので、被測
定物の表面凹凸によって焦点部材上の光点の移動速度が
変化する。焦点部材には、格子縞などのように光の透過
部分と光の非透過部分が交互に形成されているので、光
検出器が受ける光強度は、焦点部材によって変調され、
また、被測定物の凹凸によってその位相が変化する。そ
こで、光検出器の出力信号の位相を測定することにより
被測定物の表面凹凸の測定を行なうことができる。
According to the inventions according to claims 1, 2 and 3, the light beam projector projects the light spot onto the object to be measured and scans at a constant speed, and the imaging lens reflects the object to be measured. The light spot is imaged on the focus member, the light spot is scanned on the object to be measured, the light spot imaged on the focus member also moves, and the direction of light projection by the light beam scanner and the light reception by the imaging lens Since the directions are different, the moving speed of the light spot on the focusing member changes depending on the surface roughness of the object to be measured. Since the light transmissive portions and the light non-transmissive portions such as lattice stripes are alternately formed on the focusing member, the light intensity received by the photodetector is modulated by the focusing member.
Moreover, the phase changes due to the unevenness of the object to be measured. Therefore, the surface roughness of the object to be measured can be measured by measuring the phase of the output signal of the photodetector.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1(a)は、本発明の第1の実施例の構
成を示すブロック図であり、図1(b)は焦点板であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a block diagram showing the configuration of the first embodiment of the present invention, and FIG. 1B is a focusing screen.

【0013】光線走査器1は、半導体レーザによる光源
1aより発した光線を、コリメータレンズ1bよって平
行光にして、回転ミラー1c、および、f−θレンズ1
dにより、被測定物2上を走査する。被測定物2で反射
した光線は、結像レンズ3により焦点部材例えば焦点板
4に結像される。光検出器5は、焦点板4を透過した光
を検出し、光強度信号S5を発生する。位相測定器6
は、光強度信号S5の位相を検出して、位相信号S6を
出力する。焦点板4は、図1(b)に示すように、帯状
の光透過部分および光非透過部分が等間隔に交互に形成
されたものである。
The light beam scanner 1 collimates a light beam emitted from a light source 1a of a semiconductor laser by a collimator lens 1b to make it a parallel light beam, and a rotary mirror 1c and an f-θ lens 1
The object 2 to be measured is scanned by d. The light beam reflected by the DUT 2 is imaged on the focusing member, for example, the focusing screen 4 by the imaging lens 3. The photodetector 5 detects the light transmitted through the focusing screen 4 and generates a light intensity signal S5. Phase measuring device 6
Detects the phase of the light intensity signal S5 and outputs the phase signal S6. As shown in FIG. 1B, the focusing screen 4 has strip-shaped light transmitting portions and light non-transmitting portions alternately formed at equal intervals.

【0014】ここで、回転ミラー1cについては、走査
時間が数十マイクロ秒の高速なものが使用できる。ま
た、光検出器5は、単一素子により光の強弱を検出すれ
ばよいので、応答時間が数十ナノ秒の非常に高速なもの
を使用できる。次に、図2を用いて、被測定物に凹凸が
あった場合に、焦点板4上の光点移動速度が変化する様
子を説明する。
Here, as the rotating mirror 1c, a high-speed one having a scanning time of several tens of microseconds can be used. Further, since the photodetector 5 only needs to detect the intensity of light with a single element, a very high-speed photodetector with a response time of several tens of nanoseconds can be used. Next, with reference to FIG. 2, the manner in which the moving speed of the light spot on the focusing screen 4 changes when the object to be measured has irregularities will be described.

【0015】図2(a)は被測定物2が平面の場合、走
査によって被測定物2上の光点は、A1 、B1 、C1
1 と移動する。これらは、結像レンズ3によって焦点
板4上のA2 、B2 、C2 、D2 に結像される。ここで
は、被測定物2は平面なので、焦点板4上の光点は、等
速に移動する。
FIG. 2A shows that, when the object 2 to be measured is a plane, the light spots on the object 2 to be measured are A 1 , B 1 , C 1 , and
Move to D 1 . These are imaged by the imaging lens 3 on A 2 , B 2 , C 2 and D 2 on the focusing screen 4. Here, since the DUT 2 is a flat surface, the light spot on the focusing screen 4 moves at a constant speed.

【0016】図2(b)は被測定物2に凹凸がある場
合、走査によって被測定物2上の光点は、E1 、F1
1 、H1 と移動する。これらは、結像レンズ3によっ
て焦点板4上のE2 、F2 、G2 、H2 に結像される。
ここでは、被測定物2はF1 からG1 にかけて高くなっ
ているので、焦点板4上の光点はF2 からG2 の間で、
速度が遅くなる。
In FIG. 2B, when the object 2 to be measured has irregularities, the light spots on the object 2 to be measured are E 1 , F 1 ,
Move to G 1 and H 1 . These are imaged by the imaging lens 3 on E 2 , F 2 , G 2 and H 2 on the focusing screen 4.
Here, since the DUT 2 is higher from F 1 to G 1 , the light spot on the focusing screen 4 is between F 2 and G 2 ,
Slow down.

【0017】図3は、被測定物2の形状、光強度信号、
位相信号を示したものである。(a)のように被測定物
2の形状が平面の場合には、光強度信号の位相は一定で
あり、位相信号も一定となる。また、(b)のように凹
凸がある場合には、被測定物の凸部分で光強度信号の位
相が遅れる。すなわち、位相信号が被測定物2の凹凸形
状を示すことになる。さらに、走査速度、格子のピッ
チ、投受光角、測定する高さと光強度信号の位相の関係
を図4によって示す。光線Bは走査する光線であり、z
軸(高さ方向)に平行に投光する。走査速度をvとする
と、光線Bは、 x=vt …(1) で表わせられる。格子像Gは、結像レンズによって形成
できる格子の像である。実際には、格子像は形成してい
ないが、説明の都合上格子の像位置を示す。ここで、受
光角θ、格子像のピッチをpとすると、格子像Gは、 z=(x−np)tanθ (ただしnは整数) …(2) で表わされる。
FIG. 3 shows the shape of the DUT 2, the light intensity signal,
It shows a phase signal. When the DUT 2 is flat as in (a), the phase of the light intensity signal is constant and the phase signal is also constant. Further, when there is unevenness as in (b), the phase of the light intensity signal is delayed at the convex portion of the measured object. That is, the phase signal indicates the uneven shape of the DUT 2. Further, FIG. 4 shows the relationship between the scanning speed, the pitch of the grating, the projection / reception angle, the measured height and the phase of the light intensity signal. Ray B is the scanning ray, z
Light is projected parallel to the axis (height direction). When the scanning speed is v, the light beam B is represented by x = vt (1). The lattice image G is an image of a lattice that can be formed by an imaging lens. Although the lattice image is not actually formed, the image position of the lattice is shown for convenience of explanation. Here, when the light receiving angle θ and the pitch of the lattice image are p, the lattice image G is expressed by z = (x−np) tan θ (where n is an integer) (2).

【0018】いま、x軸が被測定物の表面であるとする
と、走査している光線Bは、x軸上で反射するが、この
反射位置が格子像と交わるとき(例えばA位置)では、
焦点板を透過する光が最小になる。すなわち、式
(1)、(2)より、 z=(vt−np)tanθ …(3) のときに、光信号強度は最小となる。光強度信号は時間
tの周期関数であるので、光強度信号を acos(ωt−φ)+b (a,bは任意の定数) …(4) と近似すると、その角速度ωおよび位相φは、 ω=(2π)×v÷p …(5) φ=(2π)×z÷ptanθ …(6) となる。よって、位相φから高さzを z=(ptanθ÷2π)×φ+nptanθ …(7) によって、求めることができる。
Now, assuming that the x-axis is the surface of the object to be measured, the scanning light beam B is reflected on the x-axis, but when this reflection position intersects the lattice image (for example, position A),
The light transmitted through the reticle is minimized. That is, according to the equations (1) and (2), the optical signal intensity becomes the minimum when z = (vt-np) tan θ (3). Since the light intensity signal is a periodic function of time t, when the light intensity signal is approximated by acos (ωt−φ) + b (a and b are arbitrary constants) (4), the angular velocity ω and the phase φ are = (2π) × v ÷ p (5) φ = (2π) × z ÷ ptan θ (6) Therefore, the height z can be obtained from the phase φ by z = (ptan θ / 2π) × φ + nptan θ (7).

【0019】ただし、zの値にはptanθの測定周期
があり、ptanθの整数倍の値については不確定であ
る。そこで、測定物の表面の凹凸に、測定周期ptan
θの1/2以上の段差がない場合には、隣接するデータ
からの連続性により不確定要素を取り除き、形状測定を
行なうことができる。
However, the value of z has a measurement period of ptan θ, and the value of an integral multiple of ptan θ is uncertain. Therefore, the measurement cycle ptan is
When there is no step difference of ½ or more of θ, the uncertainty can be removed by the continuity from the adjacent data, and the shape measurement can be performed.

【0020】次に、本発明の第2の実施例を説明する。
図5は、被測定物の段差が大きい場合でも、前述の第1
の実施例と同等の測定精度を保って測定できる実施例で
ある。
Next, a second embodiment of the present invention will be described.
FIG. 5 shows that even if the step of the measured object is large,
This is an example in which measurement can be performed with the same measurement accuracy as that of the example.

【0021】図5に示すように、前述の第1の実施例
に、ビームスプリッター3Aと、図1の格子縞のピッチ
とは異なるピッチのパターンを描いた焦点板4a、光検
出器5aおよび位相測定器6aをそれぞれ一組追加した
ものである。ここでは、結像レンズ3と焦点板4の間
に、ビームスプリッター3Aを置いて、2つの焦点板
4,4aに結像する。2つの焦点板4,4aの透過光
は、対応する光検出器5,5aで検出し、それぞれの位
相を測定する。この2つの位相出力によって、測定周期
ptanθの値を大きくする。合成される測定周期p0
tanθは、格子のピッチをp1 、p2 (p1 <p2
とすると、 1/p0 tanθ=1/p1 tanθ−1/p2 tanθ …(8) である。式(8)は、合成ピッチp0 が2つの格子の位
相が一致する間隔であることを示す。よって、凹凸が合
成測定周期p0 tanθの1/2以内であれば不確定要
素なく、測定が可能である。
As shown in FIG. 5, in the first embodiment described above, a beam splitter 3A, a focusing screen 4a having a pattern with a pitch different from the pitch of the lattice fringes in FIG. 1, a photodetector 5a, and a phase measurement. One set is added to each of the containers 6a. Here, a beam splitter 3A is placed between the imaging lens 3 and the focusing screen 4 to form an image on the two focusing plates 4 and 4a. The transmitted light from the two focusing screens 4 and 4a is detected by the corresponding photodetectors 5 and 5a, and the respective phases are measured. The value of the measurement period ptan θ is increased by these two phase outputs. Combined measurement period p 0
tan θ is the grating pitch p 1 , p 2 (p 1 <p 2 )
Then, 1 / p 0 tan θ = 1 / p 1 tan θ−1 / p 2 tan θ (8) Expression (8) indicates that the synthetic pitch p 0 is an interval in which the phases of the two gratings match. Therefore, if the unevenness is within 1/2 of the combined measurement cycle p 0 tan θ, measurement can be performed without any uncertainties.

【0022】次に、本発明の第3の実施例について図6
を参照して説明する。前述の第2の実施例では、1つの
結像レンズ3を用いて測定周期の合成を行なったが、こ
の実施例は2つの結像レンズ3,3aを用いた場合であ
る。この場合には、異なる2つの受光角θ1 ,θ2 を作
っても合成測定周期が得られる。この合成測定周期P0
は、受光角θ1 、θ2 、格子ピッチp1 、p2 によっ
て、次のように得られる。 1/p0 =1/p1 tanθ1 −1/p2 tanθ2 …(9)
Next, a third embodiment of the present invention will be described with reference to FIG.
Will be described. In the second embodiment described above, one imaging lens 3 is used to combine the measurement cycles, but this embodiment is a case where two imaging lenses 3 and 3a are used. In this case, a synthetic measurement cycle can be obtained even if two different light receiving angles θ 1 and θ 2 are created. This combined measurement period P 0
Is obtained as follows by the light receiving angles θ 1 , θ 2 , and the grating pitches p 1 , p 2 . 1 / p 0 = 1 / p 1 tan θ 1 −1 / p 2 tan θ 2 (9)

【0023】この第3の実施例では、レンズの数が3,
3aと増えるが、第1の実施例のようにビームスプリッ
ター3Aを用いないために、光検出器5,5aで受光す
る光量が増える。なお、第3の実施例において、p1
anθ1 <p2 tanθ2 、p1 とp2 は等しくても、
前述と同様な効果が得られる。
In the third embodiment, the number of lenses is three.
However, since the beam splitter 3A is not used as in the first embodiment, the amount of light received by the photodetectors 5 and 5a increases. In the third embodiment, p 1 t
an θ 1 <p 2 tan θ 2 , even if p 1 and p 2 are equal,
The same effect as described above can be obtained.

【0024】さらに、第3の実施例の焦点板、光検出
器、位相検出器をそれぞれ3組以上用いる構成とすれ
ば、より大きな合成周期を得ることができるので、測定
精度を悪化させずに広い測定レンジが得られる。
Further, if a structure using three or more sets of the focusing screen, the photodetector, and the phase detector of the third embodiment, a larger synthetic period can be obtained, so that the measurement accuracy is not deteriorated. Wide measurement range can be obtained.

【0025】次に、第4の実施例を図7を用いて説明す
る。図7では、受光する方向が図1、、図5、図6とは
異なっている。すなわち、被測定物2上を光線走査器1
により走査する光点は、結像レンズ3によって焦点板4
上に結像する。この場合、焦点板4上の光点は、走査に
よってx方向に移動し、被測定物2の表面凹凸によっ
て、図7(c)に示すようにy方向に移動する。そこ
で、焦点板4の格子縞を、図7(a)の平面図および図
7(b)の正面図に示すように斜めに配置することで、
周期的な光強度変動と、被測定物2の表面凹凸による位
相変調を行なう。よって、光強度信号S5の位相を測定
することで、被測定物2の表面凹凸情報を得ることがで
きる。
Next, a fourth embodiment will be described with reference to FIG. In FIG. 7, the light receiving direction is different from that in FIGS. 1, 5, and 6. That is, the beam scanner 1 is placed on the DUT 2.
The light spot scanned by the focusing lens 4 is focused by the imaging lens 3.
Image on top. In this case, the light spot on the focusing screen 4 moves in the x direction by scanning, and moves in the y direction as shown in FIG. 7C due to the surface unevenness of the DUT 2. Therefore, by arranging the lattice stripes of the focusing screen 4 obliquely as shown in the plan view of FIG. 7A and the front view of FIG. 7B,
Phase modulation is performed by periodic fluctuations in light intensity and surface irregularities of the DUT 2. Therefore, by measuring the phase of the light intensity signal S5, the surface unevenness information of the DUT 2 can be obtained.

【0026】前述の実施例の焦点板4,4aの格子縞の
パターンは、それぞれの格子ピッチが等間隔の場合であ
るが、これを焦点板4,4a毎の格子ピッチを任意に変
化させたり、徐々に変化させたりするなど種々変形して
実施できる。
The lattice fringe pattern of the focusing screens 4 and 4a in the above-mentioned embodiment is a case where the respective grating pitches are equal, but this can be changed by arbitrarily changing the grating pitch of each focusing screen 4 or 4a. Various modifications such as gradually changing can be implemented.

【0027】[0027]

【発明の効果】本発明によれば、被測定物上で光点を走
査し、その反射光を格子上に結像して、その透過光の強
度変化の位相を定め、この位相から被測定物表面の凹凸
精度を演算する構成としたので、測定精度を悪化させず
に高さ方向についての測定可能な範囲を広くとれると共
に、高速な測定ができる表面形状測定装置を提供するこ
とができる。
According to the present invention, the light spot is scanned on the object to be measured, the reflected light is imaged on the grating, the phase of the intensity change of the transmitted light is determined, and the measured object is determined from this phase. Since the unevenness accuracy of the object surface is calculated, it is possible to provide a surface shape measuring device capable of widening the measurable range in the height direction without deteriorating the measuring accuracy and performing high-speed measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面形状測定装置の第1の実施例を示
すブロック図および焦点板を示す図。
FIG. 1 is a block diagram showing a first embodiment of a surface profile measuring apparatus of the present invention and a diagram showing a focusing screen.

【図2】図1の被測定物形状と焦点板上の光点の速度変
動を表わす図。
FIG. 2 is a diagram showing the shape of the DUT of FIG. 1 and velocity fluctuations of a light spot on a focusing screen.

【図3】図1の被測定物形状と光強度信号および位相信
号の関係を表わす図。
FIG. 3 is a diagram showing the relationship between the shape of the DUT of FIG. 1 and a light intensity signal and a phase signal.

【図4】本発明の測定原理を説明するための図。FIG. 4 is a diagram for explaining the measurement principle of the present invention.

【図5】本発明の表面形状測定装置の第2の実施例を示
すブロック図。
FIG. 5 is a block diagram showing a second embodiment of the surface profile measuring apparatus of the present invention.

【図6】本発明の表面形状測定装置の第3の実施例を示
すブロック図。
FIG. 6 is a block diagram showing a third embodiment of the surface profile measuring apparatus of the present invention.

【図7】本発明の表面形状測定装置の第4の実施例を示
すブロック図。
FIG. 7 is a block diagram showing a fourth embodiment of the surface profile measuring apparatus of the present invention.

【図8】従来例の表面形状測定装置の一例を説明するた
めの図。
FIG. 8 is a diagram for explaining an example of a conventional surface profile measuring apparatus.

【図9】図8の問題点を説明するための図。FIG. 9 is a diagram for explaining the problem of FIG. 8;

【符号の説明】[Explanation of symbols]

1…光線走査器、1a…光源、1b…コリメータレン
ズ、1c…回転ミラー、1d…f−θレンズ、2…被測
定物、3,3a…結像レンズ、3A…ビームスプリッタ
ー、4,4a…焦点板、5,5a…光検出器、S5,S
5a…光強度信号、6,6a…位相測定器、S6,S6
a…位相信号、7…投光器、8…受光器、9…得られる
画像。
DESCRIPTION OF SYMBOLS 1 ... Ray-scanner, 1a ... Light source, 1b ... Collimator lens, 1c ... Rotating mirror, 1d ... f-theta lens, 2 ... DUT, 3, 3a ... Imaging lens, 3A ... Beam splitter, 4, 4a ... Focus plate, 5, 5a ... Photodetector, S5, S
5a ... Light intensity signal, 6, 6a ... Phase measuring device, S6, S6
a ... Phase signal, 7 ... Emitter, 8 ... Photoreceiver, 9 ... Image obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に光点を投光しその光点を走査
する光線走査器と、 前記被測定物上の前記光点からの反射光を投光と異なっ
た方向から観測し結像する1個の結像レンズと、 この結像レンズの結像面に置かれ、光が透過可能であっ
て、光強度を変調する1個の焦点部材と、 この焦点部材を透過した光を受光する光検出器と、 この光検出器の出力信号の位相を測定する位相測定器
と、 からなり、前記焦点部材上に結像された光点の透過光の
光強度変化の位相を測定することで前記被測定物の凹凸
情報を得ることを特徴とする表面形状測定装置。
1. A light beam scanning device for projecting a light spot on an object to be measured and scanning the light spot, and observing reflected light from the light spot on the object to be measured from a direction different from the projection direction. One image-forming lens that forms an image, one focus member that is placed on the image-forming surface of this image-forming lens and that can transmit light, and that modulates the light intensity, and the light that passes through this focus member A photodetector for receiving light, and a phase measuring device for measuring the phase of the output signal of the photodetector, for measuring the phase of change in light intensity of the transmitted light of the light spot imaged on the focusing member. The surface profile measuring apparatus is characterized in that the unevenness information of the object to be measured is obtained.
【請求項2】 被測定物に光点を投光しその光点を走査
する光線走査器と、 前記被測定物上の前記光点からの反射光を投光と異なっ
た方向から観測し結像する結像レンズと、 この結像レンズからの光を分割するビームスプリッター
と、 このビームスプリッターにより分割された光を各々透過
可能であって、光強度を変調する複数の焦点部材と、 この各焦点部材を透過した光を受光する複数の光検出器
と、 この各光検出器の出力信号の位相を測定する複数の位相
測定器と、 からなり、前記各焦点部材上に結像された光点の透過光
の光強度変化の位相を測定することで前記被測定物の凹
凸情報を得ることを特徴とする表面形状測定装置。
2. A light beam scanner for projecting a light spot on the object to be measured and scanning the light spot; and a reflected light from the light spot on the object to be measured being observed from a direction different from that of the light projection. An imaging lens for forming an image, a beam splitter for splitting the light from the imaging lens, a plurality of focus members each capable of transmitting the light split by the beam splitter, and modulating the light intensity, A plurality of photodetectors for receiving the light transmitted through the focusing member, and a plurality of phase measuring devices for measuring the phase of the output signal of each photodetector. A surface profile measuring device, characterized in that the profile information of the object to be measured is obtained by measuring the phase of the change in the light intensity of the transmitted light at the point.
【請求項3】 被測定物に光点を投光しその光点を走査
する光線走査器と、 被測定物上の前記光点からの反射光を投光と異なった方
向から観測し結像する複数の結像レンズと、 この各結像レンズの結像面に置かれ光が透過可能であっ
て、光強度を変調する複数の焦点部材と、 この各焦点部材を透過した光を受光する複数の光検出器
と、 この各光検出器の出力信号の位相を測定する複数の位相
測定器と、 からなり、前記各焦点部材上に結像された光点の透過光
の光強度変化の位相を測定することで前記被測定物の凹
凸情報を得ることを特徴とする表面形状測定装置。
3. A light beam scanner for projecting a light spot on the object to be measured and scanning the light spot, and an image formed by observing reflected light from the light spot on the object to be measured from a direction different from that of the light projection. A plurality of image forming lenses, a plurality of focus members that are placed on the image forming surfaces of the respective image forming lenses and can transmit light, and that modulate the light intensity, and a light beam that has passed through the respective focus members. A plurality of photodetectors, and a plurality of phase detectors for measuring the phase of the output signal of each photodetector, and of the change of the light intensity of the transmitted light of the light spot imaged on each of the focusing members. A surface profile measuring apparatus, characterized in that the profile information of the object to be measured is obtained by measuring the phase.
JP13873792A 1992-05-29 1992-05-29 Surface form measuring device Pending JPH05332741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13873792A JPH05332741A (en) 1992-05-29 1992-05-29 Surface form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13873792A JPH05332741A (en) 1992-05-29 1992-05-29 Surface form measuring device

Publications (1)

Publication Number Publication Date
JPH05332741A true JPH05332741A (en) 1993-12-14

Family

ID=15228999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13873792A Pending JPH05332741A (en) 1992-05-29 1992-05-29 Surface form measuring device

Country Status (1)

Country Link
JP (1) JPH05332741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737758A (en) * 2016-02-24 2016-07-06 中国科学院上海应用物理研究所 Long trace profile
CN105737759A (en) * 2016-02-24 2016-07-06 中国科学院上海应用物理研究所 Long trace profile measurement device
CN105758333A (en) * 2016-02-24 2016-07-13 中国科学院上海应用物理研究所 Long-trace optical surface profile detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737758A (en) * 2016-02-24 2016-07-06 中国科学院上海应用物理研究所 Long trace profile
CN105737759A (en) * 2016-02-24 2016-07-06 中国科学院上海应用物理研究所 Long trace profile measurement device
CN105758333A (en) * 2016-02-24 2016-07-13 中国科学院上海应用物理研究所 Long-trace optical surface profile detector

Similar Documents

Publication Publication Date Title
JP2651093B2 (en) Shape detection method and device
US20110298896A1 (en) Speckle noise reduction for a coherent illumination imaging system
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
JP2732849B2 (en) Interferometer
JPH0434811B2 (en)
JPH05332741A (en) Surface form measuring device
JP2003042734A (en) Method and apparatus for measurement of surface shape
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
US4115008A (en) Displacement measuring apparatus
JPH05256666A (en) Rotary encoder
JP3139862B2 (en) Surface defect inspection equipment
JP2004020536A (en) Three-dimensional shape measuring apparatus
JPH06347228A (en) Apparatus and method for measuring surface shape
JPH0658728A (en) Measuring apparatus for surface shape
US11977032B2 (en) Displacement measurement device and defect detection device
JPH07243820A (en) Measuring apparatus of surface shape
SU669202A1 (en) Loose material level meter
JPH05133725A (en) Surface shape measuring device
JPH0719824A (en) Shape measuring apparatus
JPS62200209A (en) Shape measuring apparatus
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JP2004077223A (en) Optical heterodyne interferometer
JPH0719842A (en) Optical measuring apparatus for shape of surface
JP2023162680A (en) Detection device and detection method