JPH05133725A - Surface shape measuring device - Google Patents

Surface shape measuring device

Info

Publication number
JPH05133725A
JPH05133725A JP30045991A JP30045991A JPH05133725A JP H05133725 A JPH05133725 A JP H05133725A JP 30045991 A JP30045991 A JP 30045991A JP 30045991 A JP30045991 A JP 30045991A JP H05133725 A JPH05133725 A JP H05133725A
Authority
JP
Japan
Prior art keywords
light
measured
phase
measuring
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30045991A
Other languages
Japanese (ja)
Inventor
Yoshitomi Sameda
芳富 鮫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30045991A priority Critical patent/JPH05133725A/en
Publication of JPH05133725A publication Critical patent/JPH05133725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a surface shape measuring device, which can make surface measuring over a wide measuring range for surface unevenness on an object to be measured in the height direction. CONSTITUTION:A surface shape measuring device is equipped with an interferential light projecting means to project a moving interferential fringes due to two-waveform light onto an object 4 to be measured, a light sensing means 2 to observe this projected moving interferential fringe at an angle different from the projection angle, and a phase measuring means 3 to measure the phase of the change in photo-intensity at different measuring points on the object sensed by the photo-sensing means 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の表面形状を計測
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the surface shape of an object.

【0002】[0002]

【従来の技術】光切断法による従来の形状測定法を図7
に示す。投光器5から扇状の光を被測定物4に投光し、
投光角度と異なる角度から受光器6で反射光を観測す
る。ここで得られる画像は図示のもので、画像中の反射
光による輝線の上下の位置が、被測定物の凹凸を表す。
この方法で、扇状光が当たった部分のみの凹凸情報しか
得られないので、被測定物の面の凹凸情報を得るには、
扇状光を被測定物の端から端まで走査して、それに応じ
たすべての画像を撮像しなければならない。
2. Description of the Related Art FIG. 7 shows a conventional shape measuring method using a light cutting method.
Shown in. A fan-shaped light is projected from the projector 5 to the DUT 4,
The reflected light is observed by the light receiver 6 from an angle different from the projection angle. The image obtained here is shown in the figure, and the positions above and below the bright line due to the reflected light in the image represent the unevenness of the measured object.
With this method, since only the unevenness information of the portion irradiated by the fan-shaped light can be obtained, in order to obtain the unevenness information of the surface of the measured object,
It is necessary to scan the fan-shaped light from one end to the other end of the object to be measured, and to capture all the corresponding images.

【0003】受光器6は、図8に示すように、レンズ60
および光検出器61より成る。高さ方向の測定レンジは、
レンズ60と光検出器61によって制限され、BからCの範
囲である。よって、表面の微小な凹凸を測定したい被測
定物が傾いていた場合、全面の測定は不可能となる。ま
た、光検出器61の位置分解能を変えずに、BからCの測
定範囲を広げた場合、測定する凹凸分解能が悪化する。
As shown in FIG. 8, the light receiver 6 includes a lens 60.
And a photodetector 61. The measurement range in the height direction is
Limited by lens 60 and photodetector 61, range B to C. Therefore, when the object to be measured for measuring the minute irregularities on the surface is tilted, it is impossible to measure the entire surface. Further, when the measurement range from B to C is expanded without changing the position resolution of the photodetector 61, the uneven resolution to be measured deteriorates.

【0004】また、干渉による従来の形状測定法として
図9に示す構成がある。この干渉による形状測定では、
面の凹凸情報が一度に得られることと、高さ方向の測定
範囲が広いことが特徴である。干渉測定に用いられるレ
ーザ15の波長は1μm前後なので、被測定物の凹凸が0.
5 μm程度で干渉縞が現れることになる。このとき、光
検出器8の隣合わせの画素の間で、被測定物4の凹凸の
差が0.5 μmを越えると、干渉縞の計測ができなくな
り、表面凹凸を計測することができない。
Further, as a conventional shape measuring method by interference, there is a configuration shown in FIG. In the shape measurement by this interference,
It is characterized in that surface irregularity information can be obtained at one time and the measurement range in the height direction is wide. Since the wavelength of the laser 15 used for interferometry is around 1 μm, the unevenness of the measured object is 0.
Interference fringes will appear at about 5 μm. At this time, if the difference in the unevenness of the DUT 4 between the adjacent pixels of the photodetector 8 exceeds 0.5 μm, the interference fringes cannot be measured and the surface unevenness cannot be measured.

【0005】[0005]

【発明が解決しようとする課題】以上のように、光切断
法による形状測定では、一度に面の測定ができず、高さ
方向の測定範囲が狭い。また、干渉による測定では、被
測定物に0.5 μm以上の段差がある場合に測定できな
い。そこで、本発明は、被測定物の高さ方向の凹凸の測
定範囲が広く、面の計測ができる表面形状測定装置を提
供することを目的とする。
As described above, in the shape measurement by the light section method, the surface cannot be measured at once and the measurement range in the height direction is narrow. Also, the measurement by interference cannot be performed when the measured object has a step of 0.5 μm or more. Therefore, it is an object of the present invention to provide a surface shape measuring apparatus that has a wide measurement range of unevenness in the height direction of an object to be measured and can measure a surface.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、図1(a) に示すように2波長光による移
動干渉縞を被測定物4に投光する干渉投光手段1と、被
測定物4に投光された移動干渉縞を投光角と異なる角度
から観測する光検出手段2と、この光検出手段2によっ
て検出された被測定物の各点の光強度変化の位相を測定
する位相測定手段3を設ける。
In order to achieve the above object, the present invention provides an interference projection means for projecting moving interference fringes of two-wavelength light onto an object to be measured 4 as shown in FIG. 1 (a). 1, light detection means 2 for observing the moving interference fringes projected on the DUT 4 from an angle different from the projection angle, and changes in the light intensity of each point of the DUT detected by this light detection means 2. Phase measuring means 3 for measuring the phase of is provided.

【0007】[0007]

【作用】上記構成において、干渉投光手段1からは、移
動干渉縞Cが被測定物に投光される。干渉縞は、2光波
の差の周期(以後ヘテロダイン周期と呼ぶ)で、1縞分
移動する。光検出手段2で観測される画像図1(b) は、
光切断法で複数の扇状光を投光したものと似た画像で、
この干渉縞はヘテロダイン周期で移動する。画像中の一
点に着目したとき、その点の強度変化は、ヘテロダイン
周期の正弦波となる。投光角と受光角が異なるので、被
測定物の表面の凹凸は画像中の各点の強度変化の位相と
して検出することができる。
In the above structure, the moving interference fringe C is projected from the interference light projecting means 1 onto the object to be measured. The interference fringes move by one fringe in the cycle of the difference between the two light waves (hereinafter referred to as the heterodyne cycle). Image 1 (b) observed by the light detection means 2 is
With an image similar to that of multiple fan-shaped light projected by the light cutting method,
This interference fringe moves in a heterodyne period. Focusing on one point in the image, the intensity change at that point becomes a sine wave with a heterodyne period. Since the projection angle and the reception angle are different, the unevenness on the surface of the object to be measured can be detected as the phase of the intensity change at each point in the image.

【0008】[0008]

【実施例】本発明の表面形状測定装置の基本構成は図1
に示す通りであるが、先ず、干渉投光手段1によって投
光する移動干渉縞の空間光強度分布を示す図2を用い
て、観測画像の光強度変化から被測定物の凹凸を求める
方法を示す。図2の太線が干渉縞を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic configuration of the surface profile measuring apparatus of the present invention is shown in FIG.
First, a method for obtaining the unevenness of the object to be measured from the change in the light intensity of the observed image will be described with reference to FIG. 2 showing the spatial light intensity distribution of the moving interference fringes projected by the interference light projecting means 1. Show. The thick line in FIG. 2 indicates the interference fringe.

【0009】光検出手段2の光軸はz軸と平行とする。
これによっても一般性は失われない。光波B1は、角周
波数ω1 でz軸に対してθ1 傾けて投光する。また、光
波B2は、角周波数ω2 でz軸に対してθ2 傾けて投光
する。 ω2 −ω1 <<ω1 であるので、B1,B2の波長は共にλで表す。光波B
1とB2の光強度をa1 ,a2 とすると、その電界は、 EB1(x,y,z,t)=a1 exp i{ω1 t+φ1 ( x,y,z) } EB2(x,y,z,t)=a2 exp i{ω2 t+φ2 ( x,y,z) }…(1) ただし、 となる。B1とB2による干渉縞の光強度は I(x,y,z,t)=|EB1+EB2 =|EB12 +|EB12 +2a1 2 cos {( ω2 −ω1 )t+(φ2 −φ1 ) } …(2) である。即ち、x,y,z点における光強度の位相は、 ψ=φ2 −φ1 で与えるられる。
The optical axis of the light detecting means 2 is parallel to the z axis.
This does not lose generality either. The light wave B1 is projected at an angular frequency ω 1 with an inclination of θ 1 with respect to the z axis. The light wave B2 is projected at an angular frequency ω 2 with an inclination of θ 2 with respect to the z axis. Since ω 2 −ω 1 << ω 1 , the wavelengths of B 1 and B 2 are both represented by λ. Light wave B
Assuming that the light intensities of 1 and B2 are a 1 and a 2 , the electric field is E B1 (x, y, z, t) = a 1 exp i {ω 1 t + φ 1 (x, y, z)} EB2 ( x, y, z, t) = a 2 exp i {ω 2 t + φ 2 (x, y, z)} (1) Becomes The light intensity of the interference fringe due to B1 and B2 is I (x, y, z, t) = | E B1 + E B2 | 2 = | E B1 | 2 + | E B1 | 2 + 2a 1 a 2 cos {(ω 2 −ω 1 ) t + (φ 2 −φ 1 )} (2) That is, the phase of the light intensity at the x, y, and z points is ψ = φ 2 −φ 1 Given in.

【0010】光検出手段2では、光軸がz軸と平行なの
で、被測定物のz座標にかかわらず、x,y点の反射光
強度変化を得ることができる。すなわち、被測定物の表
面の座標x,y点の高さを求めるためには、その点の光
強度変化の位相を求めて、式(3) によりz座標を求めれ
ばよい。また、式(3) からわかるように、光強度の位相
とz値は線形関係である。
Since the optical axis of the light detecting means 2 is parallel to the z axis, it is possible to obtain the reflected light intensity change at the x and y points regardless of the z coordinate of the object to be measured. That is, in order to obtain the heights of the coordinates x and y on the surface of the object to be measured, the phase of the change in the light intensity at that point can be obtained and the z coordinate can be obtained from equation (3). Further, as can be seen from the equation (3), the phase of the light intensity and the z value have a linear relationship.

【0011】また、高さ方向の測定範囲は、移動干渉縞
と光検出手段の光束が交わる部分なので、移動干渉縞を
z方向に幅広く生成すればその分だけ測定できることに
なる。
Further, since the measuring range in the height direction is a portion where the moving interference fringes and the light flux of the light detecting means intersect, if the moving interference fringes are widely generated in the z direction, the measurement can be performed correspondingly.

【0012】干渉投光手段1の具体的構成例を図3に示
す。2波長レーザ10は、偏光面が90°異なるコヒーレン
トな2波長の光波を発生する。これを、ビームエクスパ
ンダ11によりビーム径を拡大し、偏光ビームスプリッタ
12によって1つの光波B1だけ反射させる。透過したも
う一方の光波B2はミラー13によって、光波B1と微小
角で交わらせる。この角度は、測定分解能および式(3)
により必要な角度を設定する。交わった光波は偏光面が
異なるので、偏光板14によって干渉縞を生成する。
FIG. 3 shows a concrete configuration example of the interference light projecting means 1. The two-wavelength laser 10 generates coherent two-wavelength light waves whose polarization planes differ by 90 °. The beam expander 11 expands the beam diameter, and the polarization beam splitter
Only one light wave B1 is reflected by 12. The other transmitted light wave B2 is made to intersect with the light wave B1 at a minute angle by the mirror 13. This angle is determined by the measurement resolution and equation (3).
To set the required angle. Since the intersecting light waves have different polarization planes, interference fringes are generated by the polarizing plate 14.

【0013】また、干渉投光手段1の他の構成例を図4
に示す。この例の場合は、レーザ15は単波長のものでよ
い。レーザ光はビームスプリッタ16で2分割し、光周波
数シフタ17で光波の周波数を変える。ここで、光周波数
シフタ17Aと17Bの周波数差がヘテロダイン周波数にな
る。これらの光波をビームエクスパンダ11により拡大し
て、ミラー13およびビームスプリッタ16で微小角に交わ
らせ、干渉縞を発生する。
Another example of the structure of the interference light projecting means 1 is shown in FIG.
Shown in. In this example, the laser 15 may be single wavelength. The laser light is divided into two by the beam splitter 16, and the frequency of the light wave is changed by the optical frequency shifter 17. Here, the frequency difference between the optical frequency shifters 17A and 17B becomes the heterodyne frequency. These light waves are expanded by the beam expander 11 and are intersected at a minute angle by the mirror 13 and the beam splitter 16 to generate interference fringes.

【0014】図3の干渉投光手段の構成は部品数が少な
く構成できるという特長があり、図4の干渉手段の構成
はレーザに半導体レーザが使えることで小型化できるこ
とや、光周波数シフタの周波数を選ぶことでヘテロダイ
ン周波数設定の自由度が大きいという特長がある。
The structure of the interference projecting means shown in FIG. 3 is characterized in that the number of parts can be reduced, and the structure of the interference means shown in FIG. 4 can be miniaturized by using a semiconductor laser for the laser and the frequency of the optical frequency shifter. By selecting, there is a great deal of freedom in setting the heterodyne frequency.

【0015】光検出手段2および位相検出手段3の具体
的構成の例を図5に示す。光検出手段2では、レンズ20
により光電検出器21に被測定物4の反射光を集光する。
光電検出器21は、画像を得るためには数多く並べる必要
があるが、ここでは原理説明のため、2個だけ図示す
る。光電検出器21A,21Bは、それぞれ被測定物4の
A.B部分の反射光強度の変化を検出し、信号SA,S
Bを発生する。信号SA,ABは、被測定物のA,B部
分の高さ情報を、位相情報として含んでいる。そこで、
位相測定手段3において、零電圧検出器30A,30Bでそ
れぞれの信号電圧が負から正に変わるタイミングをとら
えてカウンタ32のスタート/ストップを行い位相を検出
する。これによって、A部分とB部分の高低差を測定す
ることができる。
FIG. 5 shows an example of a specific configuration of the light detecting means 2 and the phase detecting means 3. In the light detecting means 2, the lens 20
Thus, the reflected light of the DUT 4 is collected on the photoelectric detector 21.
Although a large number of photoelectric detectors 21 need to be arranged in order to obtain an image, only two photoelectric detectors 21 are shown here for the purpose of explaining the principle. The photoelectric detectors 21A and 21B are the A.D. The change in the reflected light intensity at the B portion is detected, and the signals SA and S are detected.
B is generated. The signals SA and AB include height information of the portions A and B of the device under test as phase information. Therefore,
In the phase measuring means 3, the zero voltage detectors 30A and 30B detect the phase by starting / stopping the counter 32 at the timing when each signal voltage changes from negative to positive. Thereby, the height difference between the A portion and the B portion can be measured.

【0016】また、光検出手段2および位相検出手段3
の他の具体的構成例を図6に示す。この場合は、被測定
物4の反射光はCCDイメージデテクタ22で捕らえる。
CCDイメージデテクタでは、連続的な強度変化を検出
することはできないので、例えば、ヘテロダイン1周期
に4回画像を取り込む。この4枚の画像のx,y点の強
度を A0 (x,y),A1 (x,y),A2 (x,y),A
3 (x,y) とすると、点x,yの位相は、 で計算できるので、データ演算器34によって上記位相を
測定し、被測定物の凹凸を計測することができる。
The light detecting means 2 and the phase detecting means 3 are also provided.
FIG. 6 shows another specific example of the configuration. In this case, the reflected light of the DUT 4 is captured by the CCD image detector 22.
Since the CCD image detector cannot detect continuous intensity changes, for example, images are captured four times in one period of heterodyne. The intensities of the x and y points of these four images are A 0 (x, y), A 1 (x, y), A 2 (x, y), A
If 3 (x, y), the phase of points x and y is Therefore, the data calculator 34 can measure the above-mentioned phase and measure the unevenness of the object to be measured.

【0017】光検出手段2および位相検出手段3の図5
の構成によれば、光電検出器21の信号を実時間処理して
位相を求めるので高速な測定ができる。また、図6の構
成によれば、CCDイメージデテクタ22の出力はシリア
ルなのでA/Dコンバータおよびデータ演算器34は1つ
でよくハードウェアが簡潔となる。
FIG. 5 of the light detecting means 2 and the phase detecting means 3.
With this configuration, since the signal of the photoelectric detector 21 is processed in real time to obtain the phase, high-speed measurement can be performed. Further, according to the configuration of FIG. 6, since the output of the CCD image detector 22 is serial, only one A / D converter and one data calculator 34 is needed, and the hardware is simple.

【0018】[0018]

【発明の効果】本発明によれば、移動干渉縞を被測定物
に投光することによって、被測定物の各点の反射光の強
度変化の位相を求めることで凹凸が測定できるので、走
査の必要な面の計測が可能である。また、移動干渉縞を
高さ方向に幅広く発生させればその分だけ広い測定範囲
が得られる。
According to the present invention, by projecting the moving interference fringes onto the object to be measured, the unevenness can be measured by obtaining the phase of the intensity change of the reflected light at each point of the object to be measured. The required surface can be measured. Moreover, if the moving interference fringes are generated widely in the height direction, a wider measurement range can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面形状測定装置の基本構成図および
光測定手段1で観測される画像。
FIG. 1 is a basic configuration diagram of a surface profile measuring apparatus of the present invention and an image observed by a light measuring means 1.

【図2】本発明による移動干渉縞を側面から見た図。FIG. 2 is a side view of a moving interference fringe according to the present invention.

【図3】本発明による干渉投光手段1の具体的な構成例
(1) 。
FIG. 3 is a specific configuration example of the interference light projecting means 1 according to the present invention.
(1).

【図4】本発明による干渉投光手段1の具体的な構成例
(2) 。
FIG. 4 is a specific configuration example of the interference light projecting means 1 according to the present invention.
(2).

【図5】本発明による光検出手段2および位相測定手段
3の具体的構成例(1) 。
FIG. 5 is a specific configuration example (1) of the light detecting means 2 and the phase measuring means 3 according to the present invention.

【図6】本発明による光検出手段2および位相測定手段
3の具体的構成例(2) 。
FIG. 6 is a specific configuration example (2) of the light detecting means 2 and the phase measuring means 3 according to the present invention.

【図7】光切断法による従来の形状測定法を示す図。FIG. 7 is a diagram showing a conventional shape measuring method by a light section method.

【図8】光切断法の原理を示す図。FIG. 8 is a diagram showing the principle of a light cutting method.

【図9】干渉による従来の形状測定法を示す図。FIG. 9 is a diagram showing a conventional shape measuring method by interference.

【符号の説明】[Explanation of symbols]

1…干渉投光手段、 2…光検出手段 3…位相測定手段、 4…被測定物、10…2波長
レーザ、11…ビームエクスパンダ、12…偏光ビームスプ
リッタ、13…ミラー、14…偏光波、 15…
単波長レーザ、16…ビームスプリッタ、 17…光周波
数シフタ、18…アパーチャ、 20…レンズ、21…
光電検出器、22…CCDイメージデテクタ、30…零電圧
検出器、 31…パルス発生器、32…カウンタ、
33…A/Dコンバータ、34…データ演算器、
B1,B2…光波、C…移動干渉縞。
DESCRIPTION OF SYMBOLS 1 ... Interference projection means, 2 ... Photodetection means 3 ... Phase measurement means, 4 ... DUT, 10 ... 2 wavelength laser, 11 ... Beam expander, 12 ... Polarization beam splitter, 13 ... Mirror, 14 ... Polarization wave , 15 ...
Single wavelength laser, 16 ... Beam splitter, 17 ... Optical frequency shifter, 18 ... Aperture, 20 ... Lens, 21 ...
Photoelectric detector, 22 ... CCD image detector, 30 ... Zero voltage detector, 31 ... Pulse generator, 32 ... Counter,
33 ... A / D converter, 34 ... Data calculator,
B1, B2 ... light wave, C ... moving interference fringe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2波長光による移動干渉縞を被測定物に
投光する干渉投光手段と、前記被測定物に投光された移
動干渉縞を投光角と異なる角度から観測する光検出手段
と、前記光検出手段によって検出された被測定物の各点
の光強度変化の位相を測定する位相測定手段を設け、被
測定物の各点の光強度変化の位相によって各々の凹凸を
測定することを特徴とする表面形状測定装置。
1. An interference light projecting means for projecting moving interference fringes of two-wavelength light onto an object to be measured, and light detection for observing the moving interference fringes projected onto the object to be measured from an angle different from a projection angle. Means and phase measuring means for measuring the phase of the change in the light intensity of each point of the measured object detected by the light detecting means, and measuring each unevenness by the phase of the change of the light intensity of each point of the measured object A surface shape measuring device characterized by:
JP30045991A 1991-11-15 1991-11-15 Surface shape measuring device Pending JPH05133725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30045991A JPH05133725A (en) 1991-11-15 1991-11-15 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30045991A JPH05133725A (en) 1991-11-15 1991-11-15 Surface shape measuring device

Publications (1)

Publication Number Publication Date
JPH05133725A true JPH05133725A (en) 1993-05-28

Family

ID=17885052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30045991A Pending JPH05133725A (en) 1991-11-15 1991-11-15 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JPH05133725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112144B1 (en) * 2009-12-30 2012-02-14 부산대학교 산학협력단 Interference system and detecting system of using partial reflect
KR101112143B1 (en) * 2011-12-21 2012-02-14 부산대학교 산학협력단 Detecting system of using partial reflect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112144B1 (en) * 2009-12-30 2012-02-14 부산대학교 산학협력단 Interference system and detecting system of using partial reflect
KR101112143B1 (en) * 2011-12-21 2012-02-14 부산대학교 산학협력단 Detecting system of using partial reflect

Similar Documents

Publication Publication Date Title
US4869593A (en) Interferometric surface profiler
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
US4714348A (en) Method and arrangement for optically determining surface profiles
JP2651093B2 (en) Shape detection method and device
JPS6149602B2 (en)
JP4188515B2 (en) Optical shape measuring device
CN1225720A (en) Optical measurement
JPS6249562B2 (en)
US11248899B2 (en) Method and apparatus for deriving a topography of an object surface
JP2003042734A (en) Method and apparatus for measurement of surface shape
JP2533514B2 (en) Depth / thickness measuring device
JPH05133725A (en) Surface shape measuring device
JP2595050B2 (en) Small angle measuring device
JP2993836B2 (en) Interferometer using coherence degree
JPH0587541A (en) Two-dimensional information measuring device
JP3139862B2 (en) Surface defect inspection equipment
Zhang et al. Spatiotemporal phase unwrapping and its application in fringe projection fiber optic phase-shifting profilometry
JPS6149601B2 (en)
RU2157963C1 (en) Method for monitoring article border position and device which implements said method
EP0467343A2 (en) Optical heterodyne interferometer
JP3466713B2 (en) Measuring device
JPH0719842A (en) Optical measuring apparatus for shape of surface
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JPS63218827A (en) Light spectrum detector
JPH055610A (en) Measuring apparatus