JPH05256782A - Raman spectrometer for analysis of slight amount of constituent - Google Patents

Raman spectrometer for analysis of slight amount of constituent

Info

Publication number
JPH05256782A
JPH05256782A JP4826992A JP4826992A JPH05256782A JP H05256782 A JPH05256782 A JP H05256782A JP 4826992 A JP4826992 A JP 4826992A JP 4826992 A JP4826992 A JP 4826992A JP H05256782 A JPH05256782 A JP H05256782A
Authority
JP
Japan
Prior art keywords
light
raman
photomultiplier tube
wavelength
acid ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4826992A
Other languages
Japanese (ja)
Other versions
JPH0785057B2 (en
Inventor
Takashi Kimoto
岳志 紀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimoto Electric Co Ltd
Original Assignee
Kimoto Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd filed Critical Kimoto Electric Co Ltd
Priority to JP4048269A priority Critical patent/JPH0785057B2/en
Publication of JPH05256782A publication Critical patent/JPH05256782A/en
Publication of JPH0785057B2 publication Critical patent/JPH0785057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain a Raman spectrometer which can analyze a slight amount of constituent, by using a high-output laser diode as a light source and by using a photomultiplier tube highly sensitive to a specific wavelength as a detector. CONSTITUTION:An incident light is applied from a light source of a high-output laser diode 11 to a sample 13 through an optical system 12. Part of the incident light is radiated as a Raman light in the direction perpendicular to the optical axis of the incident light. This Raman light is converged by an optical system 14 and enters an optical filter 15 provided at a point of convergence. In the optical filter 15, the Raman light is separated into its spectral components and the light component thus obtained is sent to a photomultiplier tube 16 being a detector. The quantity of light detected by the photomultiplier tube 16 is converted into a current and it is amplified by an amplifier 17 and displayed. In this case, detection sensitivity to the Raman light separated into its spectral components is increased by using the photomultiplier tube being highly sensitive to a light of a wavelength 800 to 1000nm, and by using a non-dispersion type spectroscope more preferably, a sulfuric-acid ion, a carbonic-acid ion, a nitric-acid ion and a phosphoric-acid ion, as well as dissolved oxygen of water, in a solid or a liquid can be analyzed in such a high accuracy as 10 to 100mumol/L.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微量成分の分析用ラマ
ン分光計に関し、特に微量の硫酸イオン、炭酸イオンな
どの陰イオンおよび水中の溶存酸素の分析用ラマン分光
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Raman spectrometer for analyzing trace components, and more particularly to a Raman spectrometer for analyzing trace amounts of anions such as sulfate ions and carbonate ions and dissolved oxygen in water.

【0002】[0002]

【従来の技術】薬剤、生体高分子・有機物などの固体や
高濃度の液体試料の分析計としてラマン分光計が最近用
いられている。
2. Description of the Related Art A Raman spectrometer has recently been used as an analyzer for solid samples such as drugs, biopolymers and organic substances, and liquid samples of high concentration.

【0003】ラマン分光計は、図6に示すように光源1
からの光を光学系2で集光し、集光点に固体、液体また
は気体の試料3を置くと、光軸方向4に入射光と同じ振
動数の光を透過すると同時に、光軸と直角方向5に入射
光と異なった振動数のラマン光を放射するというラマン
効果を利用したものである。最近光源1として単色光を
得られるAr,Krなどのイオンレーザを用いるラマン
分光計が開発された。これは光源1から振動数νの光を
光学系2で集光し、集光点に試料3を置くと、振動数
(ν+ν0 )の光がラマン光として放射される。また入
射光の振動数をνとするとラマン光の振動数(ν+
ν0)のν0は物質によって決まり、その振動数でのラマ
ン光の強度はその物質の濃度に比例するという関係があ
る。なお、一般にはν>>ν0 の関係がある。したがっ
て、ラマン光の光路に光学系6を設けラマン光を集光
し、その集光点に分散型分光器7を置き、その先に検出
器8を設けると、ラマン光のある振動数に対するラマン
光の強度が求まり、これによって試料3に含まれる物質
の同定と定量ができる。この場合、固体試料は整形機な
どで一定の形状とし、液体や気体の試料は透明な試料セ
ルに充填して用いる。
The Raman spectrometer has a light source 1 as shown in FIG.
When the light from the optical system 2 is condensed by the optical system 2 and the solid, liquid or gas sample 3 is placed at the condensing point, the light having the same frequency as the incident light is transmitted in the optical axis direction 4 and at the same time, it is perpendicular to the optical axis. This utilizes the Raman effect of emitting Raman light having a frequency different from that of the incident light in the direction 5. Recently, a Raman spectrometer using an ion laser such as Ar or Kr that can obtain monochromatic light as the light source 1 has been developed. This is because light of frequency ν is collected from the light source 1 by the optical system 2, and when the sample 3 is placed at the condensing point, light of frequency (ν + ν 0 ) is emitted as Raman light. If the frequency of incident light is ν, the frequency of Raman light (ν +
[nu 0 [nu 0 of) is determined by the material, the intensity of the Raman light in the frequency is related that is proportional to the concentration of the substance. In general, there is a relationship of ν >> ν 0 . Therefore, when the optical system 6 is provided in the optical path of the Raman light, the Raman light is condensed, the dispersive spectroscope 7 is placed at the condensing point, and the detector 8 is provided in front of it, the Raman light with respect to a certain frequency is obtained. The intensity of light is obtained, and the substance contained in the sample 3 can be identified and quantified. In this case, the solid sample has a fixed shape by a shaping machine, and the liquid or gas sample is filled in a transparent sample cell for use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Ar,
Krなどの可視域を使用したラマン分光計では、波長分
解能を上げるため、高精度の分光を必要とし、そのた
め、光が分散し、わずかな微弱光しか測定に利用できな
い。また、赤外域のフーリエラマン分光計では、検出器
に高感度のものがない。このため従来のラマン分光計で
硫酸イオン、炭酸イオンなどの陰イオンおよび水中の溶
存酸素の定量限界は、液体試料の場合、0.1mol/
L程度である。
However, Ar,
Raman spectrometers that use the visible range such as Kr require high-precision spectroscopy in order to improve wavelength resolution. Therefore, light is dispersed and only a very weak light can be used for measurement. Further, in the Fourier Raman spectrometer in the infrared region, there is no highly sensitive detector. Therefore, in the conventional Raman spectrometer, the quantification limit of anions such as sulfate and carbonate ions and dissolved oxygen in water is 0.1 mol /
It is about L.

【0005】これに対し、大気や水などの環境分析にお
ける定量限界を下げる要求は強い。また微量な試料しか
得られない生体試料などの分析をする必要も出てきてい
る。
On the other hand, there is a strong demand for lowering the limit of quantification in environmental analysis of the atmosphere and water. In addition, it has become necessary to analyze biological samples and the like that can obtain only minute amounts of samples.

【0006】本発明の目的は、定量限界を1/1000
〜1/10,000に下げた10〜100μmol/L
のラマン分光計を提供することである。
The object of the present invention is to limit the quantification to 1/1000.
10-100 μmol / L reduced to ~ 1 / 10,000
Is to provide a Raman spectrometer.

【0007】[0007]

【問題を解決するための手段】本発明は、高出力レーザ
ダイオードを光源とし、波長800〜1000nmに高
感度な光電子増倍管を検出器とすることを特徴とする微
量成分の分析用ラマン分光計である。
SUMMARY OF THE INVENTION The present invention uses a high-power laser diode as a light source and a photomultiplier tube having a high sensitivity at a wavelength of 800 to 1000 nm as a detector. Raman spectroscopy for analysis of trace components. It is total.

【0008】また本発明は、ラマン光の分光に非分散型
の分光器を用いることを特徴とする。
Further, the present invention is characterized by using a non-dispersive spectroscope for the Raman light spectroscopy.

【0009】また本発明は、前記非分散型の分光器とし
て、マイケルソン干渉計または波長800〜1000n
m中の一定幅範囲の波長を選択する近赤外光学フィルタ
を用いることを特徴とする。
The present invention also provides a Michelson interferometer or a wavelength of 800 to 1000 n as the non-dispersive spectroscope.
It is characterized by using a near-infrared optical filter that selects a wavelength in a constant width range in m.

【0010】[0010]

【作用】本発明に従えば、ラマン分光計の光源に高出力
レーザダイオードを用い、波長785nm(振動数1
2,739cm-1)の光を試料に放射して、ラマン光を
発生させ、光学フィルタで分光し、分光したラマン光を
波長800〜1000nm(振動数12,500〜1
0,000cm-1)の光に高感度な光電子増倍管を用い
ることによって検出感度を上げ、さらに好ましくは、非
分散型分光器を用いることによって、従来の分散型ラマ
ン分光計に比べ1000倍以上の集光面積が得られ、両
者の作用によって、固体中、液体中の硫酸イオン、炭酸
イオン、硝酸イオンおよびりん酸イオンならびに水の溶
存酸素を10〜100μmol/Lまで正確に分析でき
る。
According to the present invention, a high-power laser diode is used as the light source of the Raman spectrometer, and the wavelength is 785 nm (frequency 1
The light of 2,739 cm −1 ) is emitted to the sample to generate Raman light, which is dispersed by an optical filter, and the separated Raman light has a wavelength of 800 to 1000 nm (frequency: 12,500 to 1).
The detection sensitivity is increased by using a photomultiplier tube with high sensitivity to light of 20,000 cm −1 ), and more preferably, by using a non-dispersion type spectrometer, it is 1000 times higher than that of a conventional dispersion type Raman spectrometer. The above light-collecting area is obtained, and by the action of both, it is possible to accurately analyze the sulfate ion, carbonate ion, nitrate ion and phosphate ion in the solid and the liquid, and the dissolved oxygen of water up to 10 to 100 μmol / L.

【0011】非分散型分光器の好ましい例としては、マ
イケルソン干渉計または波長800〜1000nm中の
一定幅範囲の波長を選択する近赤外光学フィルタを用い
たものがある。
A preferred example of the non-dispersive spectroscope includes a Michelson interferometer or a near-infrared optical filter that selects a wavelength within a fixed width range from 800 to 1000 nm.

【0012】また、気体中の炭酸ガス、窒素酸化物、硫
黄酸化物なども処理して炭酸イオン、硝酸イオン、硫酸
イオンの形に変化させて分析できる。
Further, carbon dioxide gas, nitrogen oxides, sulfur oxides, etc. in the gas can be treated to be converted into carbonate ion, nitrate ion and sulfate ion for analysis.

【0013】[0013]

【実施例】以下実施例でもって、本発明にかかる微量成
分の分析用ラマン分光計をより具体的に説明するが、本
発明はこれに限定されるものではない。
EXAMPLES The Raman spectrometer for analyzing trace components according to the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0014】図1は、本発明の一実施例の微量成分の分
析用ラマン分光計10の全体図である。入射光は、1W
高出力レーザダイオード11の光源から波長785nm
で光学系12を通って試料13に照射される。入射光の
大部分は透過光となるが、その一部は入射光の光軸と直
角方向にラマン光として放射される。このラマン光は光
学系14で収光され、収光点に設けられた光学フィルタ
15に入る。光学フィルタ15では、ラマン光を分光
し、分光した光成分を検出器である光電子増倍管16に
送る。光電子増倍管16で検出された光量は電流に変換
され、増巾器17で増巾して表示される。
FIG. 1 is an overall view of a Raman spectrometer 10 for analyzing trace components according to an embodiment of the present invention. Incident light is 1W
From the light source of the high power laser diode 11 to a wavelength of 785 nm
Then, the sample 13 is irradiated through the optical system 12. Most of the incident light becomes transmitted light, but part of the incident light is emitted as Raman light in a direction perpendicular to the optical axis of the incident light. The Raman light is collected by the optical system 14 and enters the optical filter 15 provided at the light collecting point. The optical filter 15 separates the Raman light and sends the separated light components to the photomultiplier tube 16 which is a detector. The amount of light detected by the photomultiplier tube 16 is converted into an electric current, which is displayed by the amplifier 17 with an increased width.

【0015】図2では、上で用いた光電子増倍管16の
検出回路を示す図である。光学フィルタで分光された光
は、入光窓21から光電子増倍管16に入り、光電面2
2で光電変換により電子に交換する。すなわち、光電面
22では1個の光子を1個の電子に変換する。光電面2
2は負の高電圧(−HV)がかけてあるので陰極として
作用し、電子は陽極25へ進むが、途中に電圧分割回路
によって作られるダイノードと呼ばれる電極231,2
32,…23nで増倍される。陽極に集まった電子は、
電流となって増幅器に入り、電圧に変換されて増幅され
る。光電子増倍管16を用いることによって、微弱なラ
マン光も検出できる。
FIG. 2 is a diagram showing the detection circuit of the photomultiplier tube 16 used above. The light dispersed by the optical filter enters the photomultiplier tube 16 through the light entrance window 21, and the photocathode 2
At 2, the electrons are exchanged by photoelectric conversion. That is, the photocathode 22 converts one photon into one electron. Photocathode 2
Since 2 has a negative high voltage (-HV), it acts as a cathode, and the electrons proceed to the anode 25, but on the way, electrodes 231 and 231 called dynodes created by a voltage dividing circuit.
32 ... 23n. The electrons collected at the anode are
It becomes a current and enters the amplifier, is converted into a voltage and is amplified. By using the photomultiplier tube 16, weak Raman light can also be detected.

【0016】ラマン光を分光する光学フィルタ15に
は、各種の方法があるが、非分散型の分光器として振動
数に従って波長を換えてその強度を測定するには、図3
に示すマイケルソン干渉計30が好ましい。マイケルソ
ン干渉計30は収光されたラマン光31を半鏡平板35
に照射する。半鏡平板35は、ラマン光31の1/2を
透過光32とし、これは第1の平面鏡36で反射され、
再び半鏡平板35に至り、今度はここで反射される。半
鏡平板35では、ラマン光31の残りの1/2は反射光
33となり、第2の平面鏡37で反射され、再び半鏡平
板35に至り、今度はこれを透過する。第1の平面鏡3
6で反射された光32と第1の平面鏡37で反射された
光33とは、半鏡平板35で併され、光34となって光
電子増倍管16の方向へ進む。半鏡平板35が第1の平
面鏡36および第2の平面鏡37と45°の角で設けら
れているとき、半鏡平板35とこれらの平面鏡36,3
7との距離の差が、入射光の波長の1/2の整数倍のと
き、光34の量が干渉によって最大となるので、これを
用いてラマン光を分光できる。したがって、第1の平面
鏡をコンピュータ18で微動させ、波長を決め、そのと
きの光の強度を求めることで、含有物質の同定と定量が
できる。
There are various methods for the optical filter 15 for separating the Raman light. To measure the intensity by changing the wavelength according to the frequency as a non-dispersive spectroscope, FIG.
The Michelson interferometer 30 shown in is preferred. The Michelson interferometer 30 converts the collected Raman light 31 into a half mirror plate 35.
To irradiate. The half mirror flat plate 35 uses half of the Raman light 31 as transmitted light 32, which is reflected by the first plane mirror 36,
It reaches the semi-mirror flat plate 35 again and is reflected here. On the semi-mirror flat plate 35, the remaining half of the Raman light 31 becomes reflected light 33, which is reflected by the second flat mirror 37, reaches the semi-mirror flat plate 35 again, and is transmitted through this time. First plane mirror 3
The light 32 reflected by 6 and the light 33 reflected by the first plane mirror 37 are combined by the semi-mirror flat plate 35 and become light 34, which travels toward the photomultiplier tube 16. When the half mirror flat plate 35 is provided at an angle of 45 ° with the first flat mirror 36 and the second flat mirror 37, the half mirror flat plate 35 and these flat mirrors 36, 3 are formed.
When the difference in distance from 7 is an integral multiple of 1/2 of the wavelength of the incident light, the amount of light 34 becomes maximum due to interference, so that Raman light can be separated by using this. Therefore, the contained substance can be identified and quantified by finely moving the first plane mirror by the computer 18, determining the wavelength, and determining the light intensity at that time.

【0017】この他にラマン光の分光用光学フィルタ1
5に、波長800〜1000nm中の一定幅範囲の波長
を選択する赤外域の光を透過する光学フィルタを用いて
もよい。
In addition to this, an optical filter 1 for Raman light spectroscopy
An optical filter that transmits light in the infrared region, which selects a wavelength in a fixed width range from 800 to 1000 nm, may be used as the optical filter 5.

【0018】また試料が気体などのときは、試料セルに
図4で示すような多重反射セル40を用いる。試料セル
41の両側に楕円面鏡42,43を用い、試料セル41
内で入射光を何回も楕円面鏡42,43を用いて反射さ
せて、強いラマン光44を放射させる。この場合、ラマ
ン光44は楕円面鏡42,43の2つの焦点45,46
から発することになる。
When the sample is gas, a multiple reflection cell 40 as shown in FIG. 4 is used as the sample cell. Using the elliptical mirrors 42 and 43 on both sides of the sample cell 41,
The incident light is reflected many times inside the ellipsoidal mirrors 42 and 43 to emit the intense Raman light 44. In this case, the Raman light 44 has two focal points 45, 46 of the elliptical mirrors 42, 43.
Will be emitted from.

【0019】本実施例のラマン分光計を用いて、硝酸イ
オン、重炭酸イオンおよび硫酸イオン各0.1μmol
/Lの水溶液を分析し得たチャートを図5に示す。ピー
クAは硝酸イオンを表し、ν0 =1050cm-1にあ
る。ピークBは重炭酸イオンを表し、ν0=1015c
-1にある。ピークCは硫酸イオンを表し、ν0=98
0cm-1にある。チャートには図示していないが、水中
のりん酸イオンや溶存酸素濃度も同様のピークを示し
た。これらの定量下限をそのラマン光の振動数(ν0
とともに表1に表す。
Using the Raman spectrometer of this Example, 0.1 μmol each of nitrate ion, bicarbonate ion and sulfate ion
A chart obtained by analyzing an aqueous solution of / L is shown in FIG. Peak A represents nitrate ion and is at ν 0 = 1050 cm −1 . Peak B represents bicarbonate ion, ν 0 = 1015c
m- 1 . Peak C represents sulfate ion, ν 0 = 98
It is at 0 cm -1 . Although not shown in the chart, phosphate ion and dissolved oxygen concentration in water also showed similar peaks. The lower limit of quantification of these is the frequency of the Raman light (ν 0 ).
Are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】なお、実施例の説明に用いた図1は原理を
説明するもので光学系12および14は簡略化して示し
てある。実際は空間距離を節約するために鏡を使って光
路を確保している。またラマン光は透過光に比べて、弱
いので透過光の影響を受けないような工夫をしている。
また高出力ダイオードから発射される光は人体に危害を
及ぼすので、これが外部に洩れないような防護策も施さ
れている。
It should be noted that FIG. 1 used in the description of the embodiment illustrates the principle, and the optical systems 12 and 14 are shown in a simplified manner. In reality, a mirror is used to secure the optical path in order to save space distance. Raman light is weaker than transmitted light, so it is devised so that it is not affected by transmitted light.
In addition, since the light emitted from the high power diode is harmful to the human body, a protective measure is taken to prevent it from leaking to the outside.

【0022】[0022]

【発明の効果】本発明によれば、高出力レーザダイオー
ドを光源とし、高感度光電子増倍管を検出器とすること
によって、微量成分の分析用ラマン分光計を得、これに
よって水中の炭酸イオン、硫酸イオン、硝酸イオン、り
ん酸イオンおよび溶存酸素を10〜100μmol/L
の低濃度まで分析できる。固体や気体中の微量成分も同
様に分析できる。
According to the present invention, a high-power laser diode is used as a light source and a high-sensitivity photomultiplier tube is used as a detector to obtain a Raman spectrometer for the analysis of trace components. , Sulfate ion, nitrate ion, phosphate ion and dissolved oxygen 10 to 100 μmol / L
Can be analyzed up to a low concentration. Trace components in solids and gases can be similarly analyzed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体図である。FIG. 1 is an overall view of an embodiment of the present invention.

【図2】図1に示す装置に用いる光電子増倍管16の原
理を説明するための図である。
FIG. 2 is a diagram for explaining the principle of a photomultiplier tube 16 used in the device shown in FIG.

【図3】本発明の一実施例に用いるマイケルソン干渉計
30の原理を説明するための図である。
FIG. 3 is a diagram for explaining the principle of a Michelson interferometer 30 used in an embodiment of the present invention.

【図4】本発明の一実施例に用いる多重反射セル40の
断面図である。
FIG. 4 is a cross-sectional view of a multiple reflection cell 40 used in an embodiment of the present invention.

【図5】図1に示す装置を用いて水中の微量成分を分析
したときのチャートである。
5 is a chart when a trace component in water is analyzed using the apparatus shown in FIG.

【図6】ラマン分光計の原理を説明するための図であ
る。
FIG. 6 is a diagram for explaining the principle of a Raman spectrometer.

【符号の説明】[Explanation of symbols]

10 微量成分分析用ラマン 11 高出力レーザダイオード光源 13 試料 15 光学フィルタ 16 高感度光電子増倍管 17 増幅器 30 マイケルソン干渉計 10 Raman for trace component analysis 11 High-power laser diode light source 13 Sample 15 Optical filter 16 High-sensitivity photomultiplier tube 17 Amplifier 30 Michelson interferometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高出力レーザダイオードを光源とし、波
長800〜1000nmに高感度な光電子増倍管を検出
器とすることを特徴とする微量成分の分析用ラマン分光
計。
1. A Raman spectrometer for analysis of trace components, which comprises a high-power laser diode as a light source and a photomultiplier tube with high sensitivity at a wavelength of 800 to 1000 nm as a detector.
【請求項2】 ラマン光の分光に非分散型の分光器を用
いることを特徴とする請求項1記載の微量成分の分析用
ラマン分光計。
2. The Raman spectrometer for analyzing trace components according to claim 1, wherein a non-dispersion type spectroscope is used for Raman spectroscopy.
【請求項3】 前記非分散型の分光器として、マイケル
ソン干渉計または波長800〜1000nm中の一定幅
範囲の波長を選択する近赤外光学フィルタを用いること
を特徴とする請求項2記載の微量成分の分析用ラマン分
光計。
3. The Michelson interferometer or a near-infrared optical filter for selecting a wavelength within a fixed width range of 800 to 1000 nm is used as the non-dispersive spectroscope. Raman spectrometer for the analysis of trace components.
JP4048269A 1992-03-05 1992-03-05 Raman spectrometer for analysis of trace components Expired - Lifetime JPH0785057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048269A JPH0785057B2 (en) 1992-03-05 1992-03-05 Raman spectrometer for analysis of trace components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048269A JPH0785057B2 (en) 1992-03-05 1992-03-05 Raman spectrometer for analysis of trace components

Publications (2)

Publication Number Publication Date
JPH05256782A true JPH05256782A (en) 1993-10-05
JPH0785057B2 JPH0785057B2 (en) 1995-09-13

Family

ID=12798722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048269A Expired - Lifetime JPH0785057B2 (en) 1992-03-05 1992-03-05 Raman spectrometer for analysis of trace components

Country Status (1)

Country Link
JP (1) JPH0785057B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637742A1 (en) * 1993-08-05 1995-02-08 Kyoto Daiichi Kagaku Co., Ltd. Apparatus and method for measuring concentrations of components with light scattering
WO1996029925A3 (en) * 1995-03-27 1996-12-05 Massachusetts Inst Technology Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes
US5818047A (en) * 1994-08-20 1998-10-06 Renishaw Plc Detector for explosive substances
EP0781990B1 (en) * 1995-12-30 2007-01-24 ARKRAY, Inc Raman scattered light measuring apparatus
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
CN105136770A (en) * 2015-08-13 2015-12-09 苏州优谱德精密仪器科技有限公司 Automatic liquid detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028268B4 (en) * 2005-06-14 2013-12-12 Forschungsverbund Berlin E.V. Method and apparatus for generating and detecting a Raman spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement
JPS63308543A (en) * 1987-06-10 1988-12-15 Fuji Electric Co Ltd Scattered light measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement
JPS63308543A (en) * 1987-06-10 1988-12-15 Fuji Electric Co Ltd Scattered light measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637742A1 (en) * 1993-08-05 1995-02-08 Kyoto Daiichi Kagaku Co., Ltd. Apparatus and method for measuring concentrations of components with light scattering
US5818047A (en) * 1994-08-20 1998-10-06 Renishaw Plc Detector for explosive substances
WO1996029925A3 (en) * 1995-03-27 1996-12-05 Massachusetts Inst Technology Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes
US5615673A (en) * 1995-03-27 1997-04-01 Massachusetts Institute Of Technology Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes
EP0781990B1 (en) * 1995-12-30 2007-01-24 ARKRAY, Inc Raman scattered light measuring apparatus
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
CN105136770A (en) * 2015-08-13 2015-12-09 苏州优谱德精密仪器科技有限公司 Automatic liquid detection method

Also Published As

Publication number Publication date
JPH0785057B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
CN108169092B (en) Online detection device and method for heavy metals and isotopes of atmospheric particulates
JPS62129741A (en) Photoacoustic analysis method and apparatus
RU2563770C2 (en) Improved raman scatter with high acceptance cone, resolution, transmission, quantum efficiency and background reduction
US5559333A (en) Apparatus of non-dispersive infrared analyzer
EP0745840A2 (en) Non-dispersive infrared analyzer
CN211014002U (en) Spectrometer based on electric vacuum device
JPH05256782A (en) Raman spectrometer for analysis of slight amount of constituent
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
JP2002189004A (en) X-ray analyzer
Omenetto et al. Atomic fluorescence flame spectrometry using a mercury line source
EP4317947A1 (en) Fluorescence measuring device
CN102507464A (en) Photon counting full-spectrum direct reading absorption spectrometer
Epstein et al. Application of Laser-excited Atomic Fluorescence Spectrometry to the Determination of Nickel and Tin
Pardue et al. Applications of a vidicon spectrometer to analytical problems in clinical chemistry
US4402606A (en) Optogalvanic intracavity quantitative detector and method for its use
JPS6259842A (en) Flame photometer using internal standard method
CN217820166U (en) Hazardous chemical identification instrument based on ion mobility spectrometry and Raman spectroscopy
CN117092051B (en) Atomic absorption spectrum measuring device and method
JPS62102140A (en) Quantitative determination and correcting method for laser excited plasma spectrochemical analysis
Smith et al. Raman Monitoring of Environmental Contaiminants in a Space Habitat
Winkowski et al. Laser Detection of Formaldehyde and Ethane in Human Breath as Potential Disease Biomarkers
SU705276A1 (en) Two-channel atomic absorption spectrophotometer
KR20130087845A (en) Detecting method and apparatus using laser-induced breakdown spectroscopy
WO2022086897A1 (en) Multi-dimensional rydberg fingerprint spectroscopy
SU1467462A1 (en) Device for quantitative analysis of matter