JPH05243222A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05243222A
JPH05243222A JP4142792A JP4142792A JPH05243222A JP H05243222 A JPH05243222 A JP H05243222A JP 4142792 A JP4142792 A JP 4142792A JP 4142792 A JP4142792 A JP 4142792A JP H05243222 A JPH05243222 A JP H05243222A
Authority
JP
Japan
Prior art keywords
conductive film
film
insulating film
forming
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4142792A
Other languages
Japanese (ja)
Inventor
Koji Urabe
耕児 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4142792A priority Critical patent/JPH05243222A/en
Publication of JPH05243222A publication Critical patent/JPH05243222A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent a difference in level on the surface which corresponds to the thickness of an interconnection and thereby to form an accurate resist pattern in the following photolithography process by forming a metal interconnection selectively after formation of an interconnection pattern on an insulating film. CONSTITUTION:A laminated metal film constituted of a first conductive film 102 and a second conductive film 103 is formed and an interconnection pattern is formed. Then, on the laminated metal film, a first insulating film 105 and a third conductive film 106 are formed and an interconnection pattern which is nearly the same as the formerly formed interconnection pattern is made on the first insulating film 105 and the third conductive film 106. Nextly, a fourth conductive film 107 is formed on the first insulating film 105 and the second conductive film 103 and then the fourth conductive film 107 on the flat part is removed, being remained only on a side wall part, to expose the surface of the second conductive film 103 again. After that, a fifth conductive film 108 is formed selectively by electrolytic plating on the second conductive film 103. After removing the whole of the third conductive film 106 a part of the fourth conductive film 107, a second insulating film 109 is formed on the fifth conductive film 108 and the first insulating film 105.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解メッキにより形成
される半導体装置の製造方法に関し、特に半導体装置の
金属配線および層間絶縁膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device formed by electrolytic plating, and more particularly to a method of manufacturing a metal wiring and an interlayer insulating film of a semiconductor device.

【0002】[0002]

【従来の技術】図12に示す通り、タングステンにチタ
ンが5〜10%添加されたチタンタングステン合金より
構成される第1導電膜202を、既知の技術であるD.
C.マグネトロンスパッタ法を用いて成膜パワー1.0
〜5.0kW、成膜圧力2〜10mTorrとし、0.05〜
0.2μm の厚みで、下層絶縁膜201上に形成し、密
着性の改善、メッキ電流の供給を目的として、金、白
金、パラジウム等より構成される第2導電膜203を、
D.C.マグネトロンスパッタ法を用いて成膜パワー
0.5〜1.0kW、成膜圧力2〜10mTorrの条件の
下、0.01〜0.1μm の厚みで第1導電膜202上
に形成する。フォトリソグラフィ技術を用いてポジタイ
プフォトレジストより構成される配線成形用マスク20
4を、1.0〜2.0μm の厚みで第2導電膜203上
に選択的に形成し、硫酸金ナトリウム、硫酸、燐酸等よ
り構成される電解金メッキ液を用い、第2導電膜203
を陰極、白金あるいはチタンに白金を被覆したメッシュ
状電極を陽極として通電し、メッキ温度30〜60℃、
電流密度1〜4mA/cm2 の条件の下で電解金メッキを行
い、金より構成される低い電気抵抗を有する第3導電膜
205を0.5〜2.0μmの厚みで選択的に形成し、
さらに有機溶剤を用いて配線形成用マスク204を除去
する。第3導電膜205は配線全体の電気抵抗の低減を
目的として形成されるものである。
2. Description of the Related Art As shown in FIG. 12, a first conductive film 202 made of a titanium-tungsten alloy in which titanium is added to tungsten in an amount of 5 to 10% is a known technique.
C. Film formation power of 1.0 using magnetron sputtering method
~ 5.0 kW, film forming pressure 2 ~ 10 mTorr, 0.05 ~
A second conductive film 203 made of gold, platinum, palladium or the like having a thickness of 0.2 μm is formed on the lower insulating film 201 for the purpose of improving adhesion and supplying a plating current,
D. C. A magnetron sputtering method is used to form a film having a thickness of 0.01 to 0.1 μm on the first conductive film 202 under the conditions of film forming power of 0.5 to 1.0 kW and film forming pressure of 2 to 10 mTorr. Wiring forming mask 20 composed of positive type photoresist using photolithography technology
4 is selectively formed on the second conductive film 203 with a thickness of 1.0 to 2.0 μm, and the second conductive film 203 is formed by using an electrolytic gold plating solution composed of sodium gold sulfate, sulfuric acid, phosphoric acid, or the like.
Is used as a cathode, and a mesh-shaped electrode formed by coating platinum on platinum or titanium is used as an anode.
Electrolytic gold plating is performed under the condition of current density of 1 to 4 mA / cm 2 to selectively form a third conductive film 205 of gold having a low electric resistance with a thickness of 0.5 to 2.0 μm,
Further, the wiring forming mask 204 is removed using an organic solvent. The third conductive film 205 is formed for the purpose of reducing the electric resistance of the entire wiring.

【0003】図13に示す通り、アルゴンガスをソース
としたミリング法、CF4 、SF6をエッチングガスと
した反応性イオンエッチング法により、第3導電膜20
5をエッチングマスクとして下層の第1導電膜202お
よび第2導電膜203の不要部分のみをわ除去して、第
1導電膜202、第2導電膜203、第3導電膜205
より構成される金属配線を形成する。
As shown in FIG. 13, the third conductive film 20 is formed by a milling method using argon gas as a source and a reactive ion etching method using CF 4 and SF 6 as etching gases.
5 is used as an etching mask to remove unnecessary portions of the lower first conductive film 202 and the second conductive film 203, and the first conductive film 202, the second conductive film 203, and the third conductive film 205 are removed.
Forming a metal wiring.

【0004】図14に示す通り、下層絶縁膜201及び
第3導電膜膜205上に第1絶縁膜206としてプラズ
マCVD法によりシリコン酸化膜あるいはシリコン窒化
膜を0.5〜2.0μm の厚みで形成する。
As shown in FIG. 14, a silicon oxide film or a silicon nitride film having a thickness of 0.5 to 2.0 μm is formed as a first insulating film 206 on the lower insulating film 201 and the third conductive film 205 by a plasma CVD method. Form.

【0005】図15に示す通り、第1絶縁膜206上に
第2絶縁膜207として有機シリカあるいは無機シリカ
等の塗布膜を形成し熱処理を施した後にエッチバックを
行い、第1絶縁膜206と第3導電膜205との間に生
ずる段差を滑らかにする。更に、第1絶縁膜206及び
第2絶縁膜207上に第3絶縁膜208としてプラズマ
CVD法によりシリコン酸化膜あるいはシリコン窒化膜
を0.5〜2.0μmの厚みで形成する。
As shown in FIG. 15, a coating film of organic silica or inorganic silica is formed as a second insulating film 207 on the first insulating film 206, heat-treated and then etched back to form the first insulating film 206. The step formed between the third conductive film 205 and the third conductive film 205 is smoothed. Further, a silicon oxide film or a silicon nitride film having a thickness of 0.5 to 2.0 μm is formed as a third insulating film 208 on the first insulating film 206 and the second insulating film 207 by the plasma CVD method.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の半導体
装置の金属配線の形成方法は、以下に示す欠点がある。
The above-described conventional method for forming metal wiring of a semiconductor device has the following drawbacks.

【0007】このような配線形成方法においては、配線
が存在する部分と存在しない部分に於て配線の膜厚に相
当する表面段差が生じるため、フォトリソグラフィ工程
に於て正確なレジストパターンを形成することが困難と
なっている。
In such a wiring forming method, since a surface step corresponding to the film thickness of the wiring is generated in the portion where the wiring is present and the portion where the wiring is not present, an accurate resist pattern is formed in the photolithography process. Has become difficult.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置の金
属配線および層間絶縁膜の製造方法は、密着金属として
の第1導電膜および該第1導電膜上に存在するメッキ密
着材料としての第2導電膜よりなる積層金属膜を形成し
パターニングにより配線パターンを形成する工程と、前
記積層金属膜上に第1絶縁膜および第3導電膜を形成す
る工程と、前記第1絶縁膜および第3導電膜に前記配線
パターンとほぼ同一の配線パターンを開孔し前記第2導
電膜の表面を露出させる工程と、前記第1絶縁膜上およ
び前記第2導電膜上に第4導電膜を形成する工程と、平
坦部の前記第4導電膜を除去し側壁のみを残しつつ再び
前記第2導電膜の表面を露出させる工程と、前記第2導
電膜上に電解メッキ法により選択的に第5導電膜を形成
する工程と、前記第3導電膜の全部および第4導電膜の
一部を除去する工程と、前記第5導電膜および第1絶縁
膜上に第2絶縁膜を形成する工程を有する。
A method of manufacturing a metal wiring and an interlayer insulating film of a semiconductor device according to the present invention comprises a first conductive film as an adhesion metal and a plating adhesion material existing on the first conductive film as a plating adhesion material. Forming a wiring pattern by patterning a laminated metal film made of two conductive films, forming a first insulating film and a third conductive film on the laminated metal film, and forming the first insulating film and the third insulating film. A step of forming a wiring pattern substantially the same as the wiring pattern in the conductive film to expose the surface of the second conductive film, and forming a fourth conductive film on the first insulating film and the second conductive film. A step of removing the fourth conductive film in the flat portion and exposing the surface of the second conductive film again while leaving only a side wall, and selectively performing a fifth conductive process on the second conductive film by electrolytic plating. A step of forming a film, and A 3 and removing part of the conductive film of the whole and the fourth conductive film, forming a second insulating film on the fifth conductive layer and the first insulating film.

【0009】[0009]

【作用】本発明の半導体装置の製造方法は、層間絶縁膜
に配線パターンを形成した後に配線金属を選択的に形成
するため、配線膜厚に相当する表面段差は生じない。し
たがって、後のフォトリソグラフィ工程に於て正確なレ
ジストパターンの形成が可能となる。
According to the method of manufacturing a semiconductor device of the present invention, since the wiring metal is selectively formed after forming the wiring pattern on the interlayer insulating film, a surface step corresponding to the wiring film thickness does not occur. Therefore, an accurate resist pattern can be formed in the subsequent photolithography process.

【0010】[0010]

【実施例】次に本発明の実施例1について図面を参照し
て説明する。
Embodiment 1 Next, Embodiment 1 of the present invention will be described with reference to the drawings.

【0011】図1に示す通り、密着金属としてタングス
テンにチタンが5〜10%添加されたチタンタングステ
ン合金より構成される第1導電膜102を、既知の技術
であるD.C.マグネトロンスパッタ法を用いて成膜パ
ワー1.0〜5.0kW、成膜圧力2〜10mTorrとし、
0.05〜0.2μm の厚みで、下層絶縁膜101上に
形成する。続いて、密着性の改善、メッキ電流の供給を
目的として、金、白金、パラジウム等より構成される第
2導電膜103を、D.C.マグネトロンスパッタ法を
用いて成膜パワー0.5〜1.0kW、成膜圧力2〜10
mTorrの条件の下、0.01〜0.1μm の厚みで第1
導電膜102上に形成し、既知の手法であるフォトリソ
グラフィ技術、ドライエッチング技術等を用いて、第1
導電膜102及び第2導電膜103より構成される積層
導電膜の配線パターンを形成する。
As shown in FIG. 1, a first conductive film 102 made of a titanium-tungsten alloy in which 5% to 10% of titanium is added to tungsten as an adhesion metal is used as a known technique. C. Using the magnetron sputtering method, the film forming power is 1.0 to 5.0 kW and the film forming pressure is 2 to 10 mTorr.
It is formed on the lower insulating film 101 with a thickness of 0.05 to 0.2 μm. Then, for the purpose of improving the adhesiveness and supplying the plating current, the second conductive film 103 made of gold, platinum, palladium, or the like was formed by D.I. C. Film formation power of 0.5 to 1.0 kW and film formation pressure of 2 to 10 using magnetron sputtering method
Under the condition of mTorr, the first thickness of 0.01-0.1 μm
It is formed on the conductive film 102, and the first method is performed by using a known method such as photolithography technique or dry etching technique.
A wiring pattern of a laminated conductive film including the conductive film 102 and the second conductive film 103 is formed.

【0012】図2に示す通り、下層絶縁膜101及びパ
ターニングされた第2導電膜上に第1絶縁膜105とし
てプラズマCVD法によりシリコン酸化膜あるいはシリ
コン窒化膜を0.5〜2.0μm の厚みで形成し、続い
て第3導電膜106としてチタンタングステン合金をス
パッタ法を用いて第1絶縁膜105上に0.05〜0.
2μm の厚みで形成する。
As shown in FIG. 2, a silicon oxide film or a silicon nitride film having a thickness of 0.5 to 2.0 μm is formed as a first insulating film 105 on the lower insulating film 101 and the patterned second conductive film by a plasma CVD method. Then, a titanium-tungsten alloy is used as the third conductive film 106 on the first insulating film 105 by a sputtering method in an amount of 0.05 to 0.
It is formed with a thickness of 2 μm.

【0013】図3に示す通り、既知の手法であるフォト
リソグラフィ技術、ドライエッチング技術法等を用い
て、第1導電膜102及び第2導電膜103より構成さ
れる積層導電膜と同一の配線パターンを開口し、第2導
電膜103を露出させる。
As shown in FIG. 3, the same wiring pattern as the laminated conductive film composed of the first conductive film 102 and the second conductive film 103 is formed by using the known photolithography technique, dry etching technique and the like. To expose the second conductive film 103.

【0014】図4に示す通り、第1絶縁膜105及び第
2導電膜103上に第4導電膜107としてチタンタン
グステン合金をスパッタ法により0.05〜0.2μm
の厚みで形成する。
As shown in FIG. 4, a titanium-tungsten alloy is used as a fourth conductive film 107 on the first insulating film 105 and the second conductive film 103 by a sputtering method to have a thickness of 0.05 to 0.2 μm.
It is formed with the thickness of.

【0015】図5に示すように、第4導電膜107にド
ライエッチングを施すことにより平坦部の第3導電膜1
06および側壁部の第4導電膜107を残しつつ第2導
電膜103を露出させる。続いて酸素雰囲気中での熱処
理あるいは酸素プラズマに曝すことにより第3導電膜1
06及び第4導電膜107の表面を酸化させる。
As shown in FIG. 5, the fourth conductive film 107 is dry-etched to form a flat portion of the third conductive film 1.
The second conductive film 103 is exposed while leaving 06 and the fourth conductive film 107 on the side wall. Subsequently, the third conductive film 1 is subjected to heat treatment in an oxygen atmosphere or exposure to oxygen plasma.
The surfaces of 06 and the fourth conductive film 107 are oxidized.

【0016】図6に示す通り、硫酸金ナトリウム、硫
酸、燐酸等より構成される電解金メッキ液を用い、第3
導電膜106及び第4導電膜107をメッキ電流経路、
第2導電膜103を陰極、白金あるいはチタンに白金を
被覆したメッシュ状電極を陽極として通電し、メッキ温
度30〜60℃、電流密度1〜4mA/cm2 の条件の下で
電解金メッキを行い、金より構成される低い電気抵抗を
有する第5導電膜108を0.5〜2.0μm の厚みで
第2導電膜103上に選択的に形成する。第3導電膜1
06及び第4導電膜107の表面を酸化させ絶縁体とす
ることにより第3導電膜106及び第4導電膜107の
表面へのメッキ金の析出を防いでいる。
As shown in FIG. 6, a third electrolytic gold plating solution composed of sodium gold sulfate, sulfuric acid, phosphoric acid, etc. is used.
The conductive film 106 and the fourth conductive film 107 are plated current paths,
The second conductive film 103 is used as a cathode and platinum or a mesh-shaped electrode formed by coating platinum on titanium as an anode is energized to perform electrolytic gold plating under the conditions of a plating temperature of 30 to 60 ° C. and a current density of 1 to 4 mA / cm 2 . A fifth conductive film 108 made of gold and having a low electric resistance is selectively formed on the second conductive film 103 with a thickness of 0.5 to 2.0 μm. Third conductive film 1
By oxidizing the surfaces of 06 and the fourth conductive film 107 to form an insulator, deposition of plated gold on the surfaces of the third conductive film 106 and the fourth conductive film 107 is prevented.

【0017】図7に示す通り、第3導電膜106および
第4導電膜107の一部を等方性エッチングにより除去
した後、第5導電膜108の安定化のために熱処理を施
す。
As shown in FIG. 7, after the third conductive film 106 and the fourth conductive film 107 are partially removed by isotropic etching, a heat treatment is performed to stabilize the fifth conductive film 108.

【0018】図8に示す通り、第1絶縁膜105および
第5導電膜108上に第2絶縁膜109としてプラズマ
CVD法によりシリコン酸化膜あるいはシリコン窒化膜
を0.5〜2.0μm の厚みで形成する。
As shown in FIG. 8, a silicon oxide film or a silicon nitride film having a thickness of 0.5 to 2.0 μm is formed as a second insulating film 109 on the first insulating film 105 and the fifth conductive film 108 by the plasma CVD method. Form.

【0019】このようにして形成された金属配線は、前
もって層間絶縁膜が形成された配線パターンに配線を成
膜するために、配線膜厚に相当する段差は生じない。
The metal wiring thus formed has no step corresponding to the wiring film thickness because the wiring is formed on the wiring pattern in which the interlayer insulating film is formed in advance.

【0020】次に本発明の実施例2について図面を参照
して説明する。
Next, a second embodiment of the present invention will be described with reference to the drawings.

【0021】図9に示す通り、実施例1と同様の手法お
よび材料を用いて、第1導電膜102および第2導電膜
103から構成される積層導電膜の形成された下層絶縁
膜101上に、第1絶縁膜105、第3導電膜106を
形成し、第2導電膜103と同一の配線パターンを開口
した後、第1絶縁膜105および第2導電膜103上に
第4導電膜107を形成し、平坦部の第3の導電膜10
6および側壁部の第4導電膜107を残しつつ第2導電
膜103を露出させ、第2導電膜103上にのみ第5導
電膜108を形成し、平坦部の第3導電膜106および
側壁部の第4導電膜107を除去する。
As shown in FIG. 9, the same method and material as in Example 1 are used to form a laminated conductive film composed of the first conductive film 102 and the second conductive film 103 on the lower insulating film 101. After forming the first insulating film 105 and the third conductive film 106 and opening the same wiring pattern as the second conductive film 103, the fourth conductive film 107 is formed on the first insulating film 105 and the second conductive film 103. The third conductive film 10 formed and on the flat portion
6 and the fourth conductive film 107 on the side wall portion, the second conductive film 103 is exposed, and the fifth conductive film 108 is formed only on the second conductive film 103. The fourth conductive film 107 of is removed.

【0022】図10に示すように第1絶縁膜105の表
面と第5導電膜108の表面が同一の高さになるように
異方性ドライエッチングにより第1絶縁膜105のエッ
チバックを行う。
As shown in FIG. 10, the first insulating film 105 is etched back by anisotropic dry etching so that the surface of the first insulating film 105 and the surface of the fifth conductive film 108 have the same height.

【0023】図11に示す通り、第1絶縁膜105およ
び第5導電膜108上に第2絶縁膜109としてプラズ
マCVD法によりシリコン酸化膜あるいはシリコン窒化
膜を0.5〜2.0μm の厚みで形成する。この様にし
て形成された金属配線では、第1絶縁膜と金属配線との
間に生ずる段差をエッチバックにより低減しているの
で、第2絶縁膜109は更に平坦化されている。
As shown in FIG. 11, a silicon oxide film or a silicon nitride film having a thickness of 0.5 to 2.0 μm is formed as a second insulating film 109 on the first insulating film 105 and the fifth conductive film 108 by the plasma CVD method. Form. In the metal wiring thus formed, the step difference between the first insulating film and the metal wiring is reduced by etching back, so that the second insulating film 109 is further flattened.

【0024】[0024]

【発明の効果】以上説明したように本発明の半導体装置
の金属配線および層間絶縁膜の製造方法は、絶縁膜に形
成された配線パターンに配線金属を成膜するため、従来
例に於て生じる配線膜厚に相当する段差は発生しない。
したがって、後のフォトリソグラフィ工程に於て正確な
レジストパターンの形成が可能となり多層配線を形成す
ることが容易となる。
As described above, in the method for manufacturing the metal wiring and the interlayer insulating film of the semiconductor device of the present invention, since the wiring metal is formed on the wiring pattern formed on the insulating film, the conventional method occurs. A step corresponding to the wiring film thickness does not occur.
Therefore, an accurate resist pattern can be formed in the subsequent photolithography process, and the multilayer wiring can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の工程縦断面図である。FIG. 1 is a process vertical sectional view of a first embodiment of the present invention.

【図2】本発明の実施例1の工程縦断面図である。FIG. 2 is a process vertical sectional view of the first embodiment of the present invention.

【図3】本発明の実施例1の工程縦断面図である。FIG. 3 is a process vertical sectional view of the first embodiment of the present invention.

【図4】本発明の実施例1の工程縦断面図である。FIG. 4 is a process vertical sectional view of the first embodiment of the present invention.

【図5】本発明の実施例1の工程縦断面図である。FIG. 5 is a process vertical sectional view of the first embodiment of the present invention.

【図6】本発明の実施例1の工程縦断面図である。FIG. 6 is a process vertical sectional view of the first embodiment of the present invention.

【図7】本発明の実施例1の工程縦断面図である。FIG. 7 is a process vertical sectional view of the first embodiment of the present invention.

【図8】本発明の実施例1の工程縦断面図である。FIG. 8 is a process vertical sectional view of the first embodiment of the present invention.

【図9】本発明の実施例2の工程縦断面図である。FIG. 9 is a process vertical cross-sectional view of a second embodiment of the present invention.

【図10】本発明の実施例2の工程縦断面図である。FIG. 10 is a process vertical sectional view of the second embodiment of the present invention.

【図11】本発明の実施例2の工程縦断面図である。FIG. 11 is a process vertical sectional view of the second embodiment of the present invention.

【図12】従来の半導体装置の金属配線形成方法の工程
縦断面図である。
FIG. 12 is a process vertical cross-sectional view of a conventional method for forming a metal wiring of a semiconductor device.

【図13】従来の半導体装置の金属配線形成方法の工程
縦断面図である。
FIG. 13 is a process vertical cross-sectional view of a conventional method for forming a metal wiring of a semiconductor device.

【図14】従来の半導体装置の金属配線形成方法の工程
縦断面図である。
FIG. 14 is a process vertical cross-sectional view of a conventional method for forming a metal wiring of a semiconductor device.

【図15】従来の半導体装置の金属配線形成方法の工程
縦断面図である。
FIG. 15 is a process vertical cross-sectional view of a conventional method for forming metal wiring of a semiconductor device.

【符号の説明】[Explanation of symbols]

101 下層絶縁膜 102 第1導電膜 103 第2導電膜 104 配線形成用マスク 105 第1絶縁膜 106 第3導電膜 107 第4導電膜 108 第5導電膜 109 第2絶縁膜 201 下層絶縁膜 202 第1導電膜 203 第2導電膜 204 配線形成用マスク 205 第3導電膜 206 第1絶縁膜 207 第2絶縁膜 208 第3絶縁膜 Reference Signs List 101 lower insulating film 102 first conductive film 103 second conductive film 104 wiring mask 105 first insulating film 106 third conductive film 107 fourth conductive film 108 fifth conductive film 109 second insulating film 201 lower insulating film 202 second 1 Conductive Film 203 Second Conductive Film 204 Wiring Forming Mask 205 Third Conductive Film 206 First Insulating Film 207 Second Insulating Film 208 Third Insulating Film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密着金属としての第1導電膜および該第
1導電膜上に存在するメッキ密着材料としての第2導電
膜よりなる積層金属膜を形成しパターニングにより配線
パターンを形成する工程と、前記積層金属膜上に第1絶
縁膜および第3導電膜を形成する工程と、前記第1絶縁
膜および第3導電膜に前記配線パターンとほぼ同一の配
線パターンを開孔し前記第2導電膜の表面を露出させる
工程と、前記第1絶縁膜上および前記第2導電膜上に第
4導電膜を形成する工程と、平坦部の前記第4導電膜を
除去し側壁のみを残しつつ再び前記第2導電膜の表面を
露出させる工程と、前記第2導電膜上に電解メッキ法に
より選択的に第5導電膜を形成する工程と、前記第3導
電膜の全部および第4導電膜の一部を除去する工程と、
前記第5導電膜および第1絶縁膜上に第2絶縁膜を形成
する工程を有する事を特徴とする半導体装置の製造方
法。
1. A step of forming a wiring metal pattern by forming a laminated metal film made of a first conductive film as an adhesion metal and a second conductive film as a plating adhesion material existing on the first conductive film, and forming a wiring pattern by patterning. Forming a first insulating film and a third conductive film on the laminated metal film; and forming a wiring pattern in the first insulating film and the third conductive film, the wiring pattern being substantially the same as the wiring pattern. Exposing the surface of the first conductive film, forming a fourth conductive film on the first insulating film and the second conductive film, and removing the fourth conductive film in the flat portion and leaving only the side wall again. A step of exposing the surface of the second conductive film; a step of selectively forming a fifth conductive film on the second conductive film by an electrolytic plating method; A step of removing a part,
A method of manufacturing a semiconductor device, comprising the step of forming a second insulating film on the fifth conductive film and the first insulating film.
【請求項2】 前記第2導電膜上に電解メッキ法により
選択的に前記第5導電膜を形成する工程の前に、前記第
3導電膜および前記第4導電膜の表面を酸化させる工程
を有することを特徴とする請求項1記載の半導体装置の
製造方法。
2. A step of oxidizing the surfaces of the third conductive film and the fourth conductive film before the step of selectively forming the fifth conductive film on the second conductive film by an electrolytic plating method. The method for manufacturing a semiconductor device according to claim 1, further comprising:
【請求項3】 前記第2絶縁膜を形成する工程の前に、
前記第1絶縁膜表面と前記第5導電膜表面がほぼ同一の
高さになるように前記第1絶縁膜をエッチバックする工
程を有することを特徴とする請求項1記載の半導体装置
の製造方法。
3. Before the step of forming the second insulating film,
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of etching back the first insulating film so that the surface of the first insulating film and the surface of the fifth conductive film have substantially the same height. ..
JP4142792A 1992-02-27 1992-02-27 Manufacture of semiconductor device Withdrawn JPH05243222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142792A JPH05243222A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142792A JPH05243222A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05243222A true JPH05243222A (en) 1993-09-21

Family

ID=12608068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142792A Withdrawn JPH05243222A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05243222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010464A3 (en) * 2002-07-18 2004-05-13 Micron Technology Inc Methods of electrochemically treating semiconductor substrates, and methods of forming capacitor constructions
US7045898B2 (en) 1998-12-25 2006-05-16 Nec Electronics Corporation Semiconductor device and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045898B2 (en) 1998-12-25 2006-05-16 Nec Electronics Corporation Semiconductor device and manufacturing method thereof
WO2004010464A3 (en) * 2002-07-18 2004-05-13 Micron Technology Inc Methods of electrochemically treating semiconductor substrates, and methods of forming capacitor constructions
US6984301B2 (en) 2002-07-18 2006-01-10 Micron Technology, Inc. Methods of forming capacitor constructions
KR100658252B1 (en) * 2002-07-18 2006-12-14 미크론 테크놀로지,인코포레이티드 Methods of electrochemically treating semiconductor substrates, and methods of forming capacitor constructions
US7179361B2 (en) 2002-07-18 2007-02-20 Micron Technology, Inc. Method of forming a mass over a semiconductor substrate
US7179716B2 (en) 2002-07-18 2007-02-20 Micron Technology, Inc. Method of forming a metal-containing layer over selected regions of a semiconductor substrate
US7273778B2 (en) 2002-07-18 2007-09-25 Micron Technology, Inc. Method of electroplating a substance over a semiconductor substrate
US7282131B2 (en) 2002-07-18 2007-10-16 Micron Technology, Inc. Methods of electrochemically treating semiconductor substrates
US7344977B2 (en) 2002-07-18 2008-03-18 Micron Technology, Inc. Method of electroplating a substance over a semiconductor substrate
US7348234B2 (en) 2002-07-18 2008-03-25 Micron Technology, Inc. Methods of forming capacitor constructions
JP2008113006A (en) * 2002-07-18 2008-05-15 Micron Technology Inc Method for forming capacitor construction
US7375014B2 (en) 2002-07-18 2008-05-20 Micron Technology, Inc. Methods of electrochemically treating semiconductor substrates

Similar Documents

Publication Publication Date Title
EP0045405B1 (en) Method of forming aluminum/copper alloy conductors
JPH1032208A (en) Manufacture of semiconductor device
JPH0160940B2 (en)
JPH05243222A (en) Manufacture of semiconductor device
JP2737762B2 (en) Method for manufacturing semiconductor device
JP2570139B2 (en) Method for forming embedded wiring of semiconductor device
JP2929850B2 (en) Method for manufacturing semiconductor device
JPH05275549A (en) Manufacture of semiconductor device
JPH05211242A (en) Semiconductor device and its manufacture
JPH0114701B2 (en)
JPH0799199A (en) Manufacture for semiconductor device
JPS61242018A (en) Manufacture of semiconductor device
JP3211287B2 (en) Method for manufacturing semiconductor device
JPH05121571A (en) Manufacture of semiconductor device
JPH05243217A (en) Manufacture of semiconductor device
JPS6261334A (en) Formation of pattern
KR0173178B1 (en) Etching process for metal layer of semiconductor
KR100192173B1 (en) Method of forming a tungsten plug in a semiconductor device
TW559921B (en) Method for rounding corner of thin film component in semiconductor device
JPS5821310A (en) Manufacture of planar type magnetic bubble element
JPS61203654A (en) Semiconductor device and its production
JPH05109714A (en) Manufacture of semiconductor device
JP2745913B2 (en) Manufacturing method of plated wiring
JP2699498B2 (en) Method for manufacturing semiconductor device
JPH04196429A (en) Manufacture of integrated circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518