JP2929850B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2929850B2
JP2929850B2 JP20867492A JP20867492A JP2929850B2 JP 2929850 B2 JP2929850 B2 JP 2929850B2 JP 20867492 A JP20867492 A JP 20867492A JP 20867492 A JP20867492 A JP 20867492A JP 2929850 B2 JP2929850 B2 JP 2929850B2
Authority
JP
Japan
Prior art keywords
conductive film
film
wiring
forming
connection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20867492A
Other languages
Japanese (ja)
Other versions
JPH0661355A (en
Inventor
耕児 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP20867492A priority Critical patent/JP2929850B2/en
Publication of JPH0661355A publication Critical patent/JPH0661355A/en
Application granted granted Critical
Publication of JP2929850B2 publication Critical patent/JP2929850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法
関し、特に電解メッキ法により形成される多層の金属配
の形成方法に関する。
The present invention relates also relates <br/> to a method of manufacturing a semiconductor device, relates to a particular method of forming a multilayer metal wiring formed by electrolytic plating.

【0002】[0002]

【従来の技術】従来の多層配線の形成方法を図面を用い
て説明する。
2. Description of the Related Art A conventional method for forming a multilayer wiring will be described with reference to the drawings.

【0003】まず図3(a)に示すように、密着金属と
してチタンタングステン合金を用いた第1導電膜2およ
び第1導電膜上に主配線材料として金を用いた第2導電
膜3から構成される下層金配線の形成された半導体基板
1上に、既知の手法であるCVD技術、フォトリソグラ
フィー技術、ドライエッチング技術等を用いて、シリコ
ン酸化膜やシリコン窒化膜及び平坦化塗布膜等より構成
される厚さ0.5〜1.0μmの層間絶縁膜4を形成す
る。次で、この層間絶縁膜4をパターニングし0.4〜
1.0μm径の接続孔5を形成する。
First, as shown in FIG. 3A, a first conductive film 2 using a titanium tungsten alloy as an adhesion metal and a second conductive film 3 using gold as a main wiring material are formed on the first conductive film. A silicon oxide film, a silicon nitride film, a planarization coating film, and the like are formed on a semiconductor substrate 1 on which a lower gold wiring to be formed is formed, using a known technique such as a CVD technique, a photolithography technique, or a dry etching technique. Then, an interlayer insulating film 4 having a thickness of 0.5 to 1.0 μm is formed. Next, the interlayer insulating film 4 is patterned to a thickness of 0.4 to
A connection hole 5 having a diameter of 1.0 μm is formed.

【0004】さらに、タングステンにチタンが5〜10
%添加されたチタンタングステン合金より構成される第
3導電膜6を、既知の技術であるD.C.マグネトロン
スパッタ法を用いて成膜パワー1.0〜5.0kW、成
膜圧力2〜10mTorrとし、0.05〜0.2μm
の厚みで、層間絶縁膜4、第2導電膜3上に形成する。
続いて、第3導電膜6表面のメッキ液からの保護、密着
性の改善、メッキ電流の供給を目的として、金、白金、
パラジウム等より構成される下地金属膜7を、D.C.
マグネトロンスパッタ法を用いて成膜パワー0.5〜
1.0kW、成膜圧力2〜10mTorrの条件の下、
0.01〜0.1μmの厚みで第3導電膜6上に形成す
る。
Further, titanium is added to tungsten in an amount of 5-10.
% Of a titanium-tungsten alloy added to the third conductive film 6, which is a known technique. C. Using a magnetron sputtering method, a film forming power of 1.0 to 5.0 kW, a film forming pressure of 2 to 10 mTorr, and 0.05 to 0.2 μm
Is formed on the interlayer insulating film 4 and the second conductive film 3.
Subsequently, for the purpose of protecting the surface of the third conductive film 6 from the plating solution, improving the adhesion, and supplying the plating current, gold, platinum,
A base metal film 7 made of palladium or the like is C.
A film forming power of 0.5 to 0.5 using a magnetron sputtering method
Under the conditions of 1.0 kW and a film forming pressure of 2 to 10 mTorr,
It is formed on the third conductive film 6 with a thickness of 0.01 to 0.1 μm.

【0005】次に図3(b)に示すように、フォトリソ
グラフィー技術を用いてポジタイプフォトレジスト膜よ
り構成される配線形成用のマスク膜9を1.0〜2.0
μmの厚みで下地金属膜7上に選択的に形成し、硫酸金
ナトリウム、硫酸、燐酸等より構成される電解金メッキ
液を用い、下地金属膜7を陰極、白金あるいはチタンに
白金を被覆したメッシュ状電極を陽極として通電し、メ
ッキ温度30〜60℃、電流密度1〜4mA/cm2
条件の下で金メッキを行い、金メッキ膜より構成される
低い電気抵抗を有する第4導電膜8を0.5〜2.0μ
mの厚みで選択的に形成し、さらに有機溶剤を用いて配
線形成用マスク膜9を除去する。第4導電膜8は配線全
体の電気抵抗の低減を目的として形成されるものであ
る。
Next, as shown in FIG. 3B, a photolithography technique is used to form a mask film 9 for forming a wiring made of a positive type photoresist film from 1.0 to 2.0.
A mesh in which the base metal film 7 is selectively formed on the base metal film 7 with a thickness of μm, and the base metal film 7 is coated with a cathode, platinum or titanium by using an electrolytic gold plating solution composed of sodium gold sulfate, sulfuric acid, phosphoric acid, or the like. An electric current is applied using the electrode as an anode, gold plating is performed under the conditions of a plating temperature of 30 to 60 ° C. and a current density of 1 to 4 mA / cm 2 , and the fourth conductive film 8 having a low electric resistance formed of a gold plating film is removed. 0.5-2.0μ
m, and the wiring forming mask film 9 is removed using an organic solvent. The fourth conductive film 8 is formed for the purpose of reducing the electric resistance of the entire wiring.

【0006】続いて図3(c)に示す通り、アルゴンガ
スをソースとしたミリング法や、CF4 、SF6 をエッ
チングガスとした反応性イオンエッチング法により、第
4導電属膜8をエッチングマスクとして下層の第3導電
膜6および下地金属膜7の不要部分のみを除去して、第
3導電膜6、下地金属膜7、第4導電膜8より構成され
る半導体装置の金属配線を形成していた。
Subsequently, as shown in FIG. 3C, the fourth conductive film 8 is etched by a milling method using an argon gas as a source or a reactive ion etching method using CF 4 or SF 6 as an etching gas. Then, only unnecessary portions of the lower third conductive film 6 and the underlying metal film 7 are removed to form a metal wiring of a semiconductor device including the third conductive film 6, the underlying metal film 7, and the fourth conductive film 8. I was

【0007】[0007]

【発明が解決しようとする課題】上述した従来の半導体
装置の金属配線の形成方法は、以下に示す欠点がある。
The above-described conventional method for forming a metal wiring of a semiconductor device has the following drawbacks.

【0008】従来の配線形成方法においては、上層配線
と下層配線が上層配線の抵抗率の大きい密着金属膜を介
して接続されており、層間接続抵抗値が上昇するため、
金属配線の安定した良好な電気特性や高い長期信頼性が
得にくい。したがって高い長期信頼性と安定した特性を
有する半導体装置を得にくくなり、さらにその製造過程
での高い歩留は実現できない。
In the conventional wiring forming method, the upper wiring and the lower wiring are connected via an adhesive metal film having a large resistivity of the upper wiring, and the interlayer connection resistance increases.
It is difficult to obtain stable and good electrical characteristics and high long-term reliability of metal wiring. Therefore, it is difficult to obtain a semiconductor device having high long-term reliability and stable characteristics, and a high yield in the manufacturing process cannot be realized.

【0009】[0009]

【0010】[0010]

【課題を解決するため手段】 本発明の半導体装置の製造
方法は、 半導体基板上に密着用の金属からなる第1導電
膜と主配線材料からなる第2導電膜とを順次形成したの
ちパターニングし下層配線を形成する工程と、この下層
配線上に層間絶縁膜を形成したのちパターニングし接続
孔を形成する工程と、この接続孔を含む全面に密着用の
金属からなる第3導電膜を形成したのち異方性エッチン
グを行ない前記接続孔内の前記第2導体膜を露出させる
工程と、露出した前記第2導電膜をイオンミリング法を
用いて第3導電膜を残しつつ全面をエッチバックし逆ス
パッタされた第2の導電膜を接続孔の側壁に付着させ、
次で第2導電膜を含む全面に主配線材料からなる第4導
電膜を形成したのちパターニングし前記第3導電膜と共
に上層配線を形成する工程とを含むものである。
SUMMARY OF THE INVENTION Manufacturing of a semiconductor device according to the present invention
The method includes the steps of sequentially forming a first conductive film made of a metal for adhesion and a second conductive film made of a main wiring material on a semiconductor substrate, and then patterning to form a lower wiring, and an interlayer insulating film formed on the lower wiring. Forming a film and then patterning to form a connection hole; forming a third conductive film made of a metal for adhesion on the entire surface including the connection hole; and performing anisotropic etching to form the second hole in the connection hole. A step of exposing the conductive film and an ion milling method of the exposed second conductive film.
And etch back the entire surface while leaving the third conductive film.
The putted second conductive film is attached to the side wall of the connection hole,
Next, a fourth conductive film made of a main wiring material is formed on the entire surface including the second conductive film, and then patterned to form an upper wiring together with the third conductive film.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(d)は本発明に関連する技術例を説
明するための半導体チップの断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIGS. 1A to 1D are cross-sectional views of a semiconductor chip for explaining a technical example related to the present invention.

【0012】まず図1(a)に示す通り、半導体基板1
上に密着金属としてスパッタ法によりチタンタングステ
ン合金の第1導電膜2および主配線材料として電解メッ
キ法による金からなる第2導電膜3を形成したのちパタ
ーニングし下層金配線を形成する。次でこの下層金属配
線を含む全面に、既知の手法であるCVD技術、フォト
リソグラフィー技術、ドライエッチング技術等を用い
て、シリコン酸化膜やシリコン窒化膜及び平坦化塗布膜
等より構成される厚さ0.5〜1.0μmの層間絶縁膜
4を形成する。次でこの層間絶縁膜4をパターニングし
0.4〜1.0μm径の接続孔5を形成する。次で密着
金属としてタングステンにチタンが5〜10%添加され
たチタンタングステン合金より構成される第3導電膜6
を、既知の技術であるD.C.マグネトロンスパッタ法
を用いて、成膜パワー1.0〜5.0kW、成膜圧力2
〜10mTorrの条件で、0.05〜0.2μmの厚
みで、層間絶縁膜4、第2導電膜3上に形成する。直径
1μm以下の微細な接続孔においてスパッタ法により形
成した第3導電膜6の段差被覆性は30%程度である。
First, as shown in FIG.
A first conductive film 2 of titanium-tungsten alloy and a second conductive film 3 of gold as a main wiring material formed by electrolytic plating are formed on the first conductive film 2 by sputtering as an adhesion metal, and then patterned to form a lower gold wiring. Next, using a known technique such as CVD technology, photolithography technology, dry etching technology, etc., the entire surface including the lower metal wiring is formed of a silicon oxide film, a silicon nitride film, a planarization coating film, and the like. An interlayer insulating film 4 having a thickness of 0.5 to 1.0 μm is formed. Next, the interlayer insulating film 4 is patterned to form a connection hole 5 having a diameter of 0.4 to 1.0 μm. Next, a third conductive film 6 made of a titanium tungsten alloy in which 5 to 10% of titanium is added to tungsten as an adhesion metal
Is a known technology. C. Using a magnetron sputtering method, a film forming power of 1.0 to 5.0 kW and a film forming pressure of 2
The film is formed on the interlayer insulating film 4 and the second conductive film 3 at a thickness of 0.05 to 0.2 μm under a condition of 10 to 10 mTorr. The step coverage of the third conductive film 6 formed by sputtering in a fine connection hole having a diameter of 1 μm or less is about 30%.

【0013】続いて図1(b)に示すように、CF4
2 、Cl2 などを反応ガスとする異方性ドライエッチ
ングを行い、平坦部及び接続孔5の側壁部の第3導電膜
6を残しつつ、接続孔底部の第3導電膜6のみを除去し
第2導電膜3を露出させる。
Subsequently, as shown in FIG. 1B, CF 4 ,
Anisotropic dry etching using O 2 , Cl 2, or the like as a reaction gas is performed to remove only the third conductive film 6 at the bottom of the connection hole while leaving the flat portion and the third conductive film 6 at the side wall of the connection hole 5. Then, the second conductive film 3 is exposed.

【0014】次に図1(c)に示すように、金メッキ膜
の密着、メッキ電流の供給を目的とし、金からなる下地
金属膜7をD.C.マグネトロンスパッタ法を用いて、
成膜パワー0.5〜1.0kW、成膜圧力2〜10mT
orrの条件の下、0.01〜0.μmの厚みで、第2
導電膜3及び第3導電膜6上に形成する。
Next, as shown in FIG. 1C, for the purpose of adhesion of the gold plating film and supply of plating current, the underlying metal film 7 made of gold is C. Using magnetron sputtering,
Deposition power 0.5 to 1.0 kW, deposition pressure 2 to 10 mT
orr conditions, 0.01 to 0. 2 μm thick
It is formed on the conductive film 3 and the third conductive film 6.

【0015】さらに図1(d)のごとく、フォトリソグ
ラフィー技術を用いてフォトレジスト膜より構成される
配線形成用マスクを1.0〜2.0μmの厚みで下地金
属膜7上に選択的に形成し、硫酸金ナトリウム、硫酸、
燐酸等より構成される電解金メッキ液を用い、下地膜7
を陰極、白金あるいはチタンに白金を被覆したメッシュ
状電極を陽極として通電し、メッキ温度30〜60℃、
電流密度1〜4mA/cm2 の条件の下で金メッキを行
い、金メッキ膜より構成される低い電気抵抗を有する第
4導電膜8を0.5〜2.0μmの厚みで選択的に形成
する。次で有機溶剤を用いて配線形成用のマスク膜を除
去する。第4導電膜8は配線全体の電気抵抗の低減を目
的として形成されるものである。
Further, as shown in FIG. 1D, a wiring forming mask composed of a photoresist film is selectively formed on the underlying metal film 7 with a thickness of 1.0 to 2.0 μm by using a photolithography technique. And sodium gold sulfate, sulfuric acid,
Using an electrolytic gold plating solution composed of phosphoric acid or the like,
The cathode, platinum or a mesh-like electrode of titanium coated with platinum as an anode, a plating temperature of 30 to 60 ° C.
Gold plating is performed under the conditions of a current density of 1 to 4 mA / cm 2 , and a fourth conductive film 8 composed of a gold plated film and having a low electric resistance is selectively formed with a thickness of 0.5 to 2.0 μm. Next, the mask film for wiring formation is removed using an organic solvent. The fourth conductive film 8 is formed for the purpose of reducing the electric resistance of the entire wiring.

【0016】次でアルゴンガスをソースとしたミリング
法や、CF4 、SF6 をエッチングガスとした反応性イ
オンエッチング法により、第4導電膜8をエッチングマ
スクとして第3導電膜6および下地金属膜7の不要部分
のみを除去して、第2導電膜6、下地金属膜7、第4導
電膜8より構成される半導体装置の上層金配線を形成す
る。
Next, the third conductive film 6 and the underlying metal film are formed by using the fourth conductive film 8 as an etching mask by a milling method using an argon gas as a source or a reactive ion etching method using CF 4 and SF 6 as an etching gas. By removing only unnecessary portions of the semiconductor device 7, an upper gold wiring of the semiconductor device including the second conductive film 6, the underlying metal film 7, and the fourth conductive film 8 is formed.

【0017】このようにして形成された金属配線は、上
層金配線と下層金配線の接続に於て、抵抗率の大きい密
着金属を介さずに上層金配線の金メッキ膜と下層金配線
の金が直接接続されるため、従来より接続抵抗が低く、
信頼性が高い配線構造となっている。接続孔径を0.6
〜1.4μmとした場合の抵抗を従来例のものと共に図
4に示す。また、第1導電膜及び第3導電膜としてチタ
ンタングステン合金を例として挙げたが、耐熱性及び耐
酸化性に優れたチタン/窒化チタン積層膜を使用するこ
とも可能である。本技術例の半導体装置の金属配線構造
および製造方法は、MOS,バイポーラ等の半導体集積
回路装置の種類にかかわらず適応可能である。
In the metal wiring thus formed, in the connection between the upper gold wiring and the lower gold wiring, the gold plating film of the upper gold wiring and the gold of the lower gold wiring are connected without the interposition of an adhesive metal having a large resistivity. Because it is directly connected, the connection resistance is lower than before,
The wiring structure has high reliability. 0.6 connection hole
FIG. 4 shows the resistance in the case of .about.1.4 .mu.m together with that of the conventional example. Although the titanium-tungsten alloy has been described as an example of the first conductive film and the third conductive film, a titanium / titanium nitride laminated film having excellent heat resistance and oxidation resistance may be used. The metal wiring structure and the manufacturing method of the semiconductor device according to the present technical example are applicable regardless of the type of the semiconductor integrated circuit device such as a MOS and a bipolar.

【0018】図2(a)〜(d)は本発明の実施例を説
明するための半導体チップの断面図である。
FIGS. 2A to 2D are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention .

【0019】まず図2(a)に示すように、技術例と
様の手法及び材料を用いて、密着金属としてチタンタン
グステン合金を用いた第1導電膜2および第1導電膜上
に主配線材料として金を用いた第2導電膜3から構成さ
れる下層金配線の形成された半導体基板1上に、層間絶
縁膜4、層間接続孔5、第3導電膜6を形成し、平坦部
及び層間接続孔側壁部の第3導電膜6を残しつつ、層間
接続孔底部の第3導電膜6のみを除去し、第2導電膜3
を露出させる。
First, as shown in FIG. 2A, a first conductive film 2 and a first conductive film using a titanium-tungsten alloy as an adhesion metal, using the same technique and material as in the technical example. An interlayer insulating film 4, an interlayer connection hole 5, and a third conductive film 6 are formed on a semiconductor substrate 1 on which a lower gold wiring composed of a second conductive film 3 using gold as a main wiring material is formed. The second conductive film 3 is removed by removing only the third conductive film 6 at the bottom of the interlayer connection hole while leaving the third conductive film 6 at the flat portion and the sidewall of the interlayer connection hole.
To expose.

【0020】続いて図2(b)に示すように、アルゴン
ガスを用いて平坦部及び層間接続孔側壁部の第3導電膜
6を残しつつイオンミリングを施すことにより、第2導
電膜3から逆スパッタされた金を層間接続孔側壁部に再
付着させる。
Subsequently, as shown in FIG. 2B, ion milling is performed by using argon gas while leaving the third conductive film 6 on the flat portion and the side wall portion of the interlayer connection hole. The reverse-sputtered gold is deposited again on the side wall of the interlayer connection hole.

【0021】次に図2(c)に示すように、金メッキ膜
の密着、メッキ電流の供給を目的とし、金からなる下地
金属膜7を、D.C.マグネトロンスパッタ法を用いて
成膜パワー0.5〜1.0kW、成膜圧力2〜10mT
orrの条件の下、0.01〜0.1μmの厚みで、第
3導電膜6及び第2導電膜3上に形成する。
Next, as shown in FIG. 2C, for the purpose of adhesion of the gold plating film and supply of plating current, the underlying metal film 7 made of gold is C. Using a magnetron sputtering method, a film forming power of 0.5 to 1.0 kW and a film forming pressure of 2 to 10 mT
It is formed on the third conductive film 6 and the second conductive film 3 with a thickness of 0.01 to 0.1 μm under the condition of orr.

【0022】さらに図2(d)のごとく、技術例と同様
の手法及び材料を用いて第4導電膜8を形成する。
Further, as shown in FIG. 2D, a fourth conductive film 8 is formed using the same technique and material as in the technical example .

【0023】このようにして得られた金属配線は、技術
と同様に上層配線と下層配線が密着金属を介さずに接
続されるため、従来より接続抵抗が低く、信頼性が高い
配線構造となっている。また、下地金属膜の形成工程に
おいて、接続孔側壁には金が再付着しているため接続孔
全体に金を形成することが容易であることから、平坦部
の下地金属膜を薄膜化することが可能となり、後工程で
のエッチングが容易となる。
[0023] In this way, the resulting metal wiring, technology
As in the example , since the upper layer wiring and the lower layer wiring are connected without the interposition of the adhesion metal, the wiring structure has a lower connection resistance and higher reliability than before. Also, in the step of forming the base metal film, it is easy to form gold on the entire connection hole because gold is re-adhered to the side wall of the connection hole. Is possible, and the etching in the subsequent process becomes easy.

【0024】尚、上記実施例では、主配線材料に金を用
いた場合について説明したが、銅を用いても同じ効果が
得られる。
In the above embodiment, the case where gold is used as the main wiring material has been described. However, the same effect can be obtained by using copper.

【0025】[0025]

【発明の効果】以上説明したように本発明の半導体装置
の金属配線構造および製造方法によれば、積層構造を持
つ上層配線と下層配線の接続に於て、上層配線と下層配
線の主配線材料が同一であり、抵抗率の大きい密着金属
を介さずに上層配線と下層配線の主配線材料が直接接続
されるため、従来より層間接続抵抗を低減できる。この
ため、安定した特性と高い長期信頼性を有する半導体装
置が得られるという効果を有する。
As described above, according to the metal wiring structure and the manufacturing method of the semiconductor device of the present invention, in the connection between the upper wiring and the lower wiring having a laminated structure, the main wiring material of the upper wiring and the lower wiring is used. Are the same, and the main wiring material of the upper wiring and the lower wiring is directly connected without the intervention of a close contact metal having a large resistivity, so that the interlayer connection resistance can be reduced as compared with the related art. Therefore, there is an effect that a semiconductor device having stable characteristics and high long-term reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関連する技術例を説明するための半導
体チップの断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining a technical example related to the present invention .

【図2】本発明の実施例を説明するための半導体チップ
の断面図。
FIG. 2 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention .

【図3】従来例を説明するための半導体チップの断面
図。
FIG. 3 is a sectional view of a semiconductor chip for explaining a conventional example.

【図4】従来例と実施例における接続孔径と接続抵抗と
の関係を示す図。
FIG. 4 is a diagram showing a relationship between a connection hole diameter and a connection resistance in a conventional example and an example.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1導電膜 3 第2導電膜 4 層間絶縁膜 5 接続孔 6 第3導電膜 7 下地金属膜 8 第4導電膜 9 マスク膜 Reference Signs List 1 semiconductor substrate 2 first conductive film 3 second conductive film 4 interlayer insulating film 5 connection hole 6 third conductive film 7 underlying metal film 8 fourth conductive film 9 mask film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に密着用の金属からなる
第1導電膜と主配線材料からなる第2導電膜とを順次形
成したのちパターニングし下層配線を形成する工程と、
この下層配線上に層間絶縁膜を形成したのちパターニン
グし接続孔を形成する工程と、この接続孔を含む全面に
密着用の金属からなる第3導電膜を形成したのち異方性
エッチングを行ない前記接続孔内の前記第2導体膜を露
出させる工程と、露出した前記第2導電膜をイオンミリ
ング法を用いて第3導電膜を残しつつ全面をエッチバッ
クし逆スパッタされた第2の導電膜を接続孔の側壁に付
着させ、次で第2導電膜を含む全面に主配線材料からな
る第4導電膜を形成したのちパターニングし前記第3導
電膜と共に上層配線を形成する工程とを含むことを特徴
とする半導体装置の製造方法。
A step of sequentially forming a first conductive film made of a metal for adhesion and a second conductive film made of a main wiring material on a semiconductor substrate and then patterning to form a lower wiring;
Forming a connection hole by patterning after forming an interlayer insulating film on the lower layer wiring, forming a third conductive film made of a metal for adhesion on the entire surface including the connection hole, and performing anisotropic etching. Exposing the second conductive film in the connection hole ;
Etch the entire surface using the etching method while leaving the third conductive film.
A second conductive film sputtered reversely is attached to the side wall of the connection hole.
Is deposited, the semiconductor device characterized in that it comprises a step of forming the following in upper wiring with the entire surface and patterning after forming a fourth conductive film made of a main wiring material and the third conductive film and a second conductive film Manufacturing method.
JP20867492A 1992-08-05 1992-08-05 Method for manufacturing semiconductor device Expired - Fee Related JP2929850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20867492A JP2929850B2 (en) 1992-08-05 1992-08-05 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20867492A JP2929850B2 (en) 1992-08-05 1992-08-05 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0661355A JPH0661355A (en) 1994-03-04
JP2929850B2 true JP2929850B2 (en) 1999-08-03

Family

ID=16560186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20867492A Expired - Fee Related JP2929850B2 (en) 1992-08-05 1992-08-05 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2929850B2 (en)

Also Published As

Publication number Publication date
JPH0661355A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
JPH1032208A (en) Manufacture of semiconductor device
JP3102409B2 (en) Wiring forming method and plasma ashing apparatus
EP0239746A2 (en) Method for manufacturing a semiconductor device
JP2536377B2 (en) Semiconductor device and manufacturing method thereof
JP2929850B2 (en) Method for manufacturing semiconductor device
JP2570139B2 (en) Method for forming embedded wiring of semiconductor device
JP2737762B2 (en) Method for manufacturing semiconductor device
JPH0799199A (en) Manufacture for semiconductor device
JPH05211242A (en) Semiconductor device and its manufacture
JPH0555167A (en) Manufacture of semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
JP2874216B2 (en) Semiconductor device and manufacturing method thereof
JPH05243222A (en) Manufacture of semiconductor device
JPH0897214A (en) Manufacture of semiconductor device
JPH02277242A (en) Manufacture of semiconductor device
KR100396687B1 (en) Method for forming metal interconnection of semiconductor device
JPH04217323A (en) Manufacture of bump electrode for semiconductor device
JP3211287B2 (en) Method for manufacturing semiconductor device
JPH05109714A (en) Manufacture of semiconductor device
JPH05121571A (en) Manufacture of semiconductor device
KR100440476B1 (en) Method for fabricating semiconductor device
KR0179275B1 (en) Metal interconnector and method therefor in semiconductor device
JPS62281356A (en) Manufacture of semiconductor device
JP2745913B2 (en) Manufacturing method of plated wiring
JPH05109649A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990420

LAPS Cancellation because of no payment of annual fees