JPH05235897A - Demodulator for synchronization type spread spectrum modulation wave - Google Patents

Demodulator for synchronization type spread spectrum modulation wave

Info

Publication number
JPH05235897A
JPH05235897A JP6966992A JP6966992A JPH05235897A JP H05235897 A JPH05235897 A JP H05235897A JP 6966992 A JP6966992 A JP 6966992A JP 6966992 A JP6966992 A JP 6966992A JP H05235897 A JPH05235897 A JP H05235897A
Authority
JP
Japan
Prior art keywords
demodulation
angle
output
synchronization
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6966992A
Other languages
Japanese (ja)
Other versions
JP2650557B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP6966992A priority Critical patent/JP2650557B2/en
Publication of JPH05235897A publication Critical patent/JPH05235897A/en
Application granted granted Critical
Publication of JP2650557B2 publication Critical patent/JP2650557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attain ideal demodulation with simple configuration by obtaining a non-modulation processing VCO output synchronously with an input angular modulation wave from a demodulation system PLL, obtaining a spread code generating clock through the frequency division of the said output as a signal equivalent to a local oscillation output at modulation. CONSTITUTION:A synchronization type spread spectrum (SS) modulation wave signal from an input terminal In2 is fed to a loop filter 24 as a signal subject to inverse spread by an inverse spread use multiplier 3 or the like, the loop filter 24 eliminates a phase error in a phase locked loop locking an angular modulation wave after the inverse spread and a carrier signal subject to no modulation is outputted from a VCO 22. The signal is frequency-divided by 1/N1 and 1/N2 frequency dividers 26, 27 and a clock equivalent to a local oscillation output at modulation is obtained, then jitter in a spread code generator 47 and the multiplier 3 or the like is suppressed and ideal demodulation of the synchronization SS spread modulation wave is attained with simple configuration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1次変調波のキャリヤと
拡散符号とが同期関係にある、同期型スペクトル拡散
(以下“SS”と略記する)変調波を復調する復調装置
の改良に係り、特に、同期保持機能を不要とした、同期
型SS変調波の復調装置に関する。なお、以下の説明に
おいては、本発明の復調装置を、通信機器の受信部に適
用するものとし、必要に応じて送信部(変調回路)の説
明も行なうことにする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a demodulator for demodulating a synchronous spread spectrum (hereinafter abbreviated as "SS") modulated wave in which a carrier of a primary modulated wave and a spread code are in a synchronous relationship. In particular, the present invention relates to a demodulation device for a synchronous SS modulated wave that does not require a synchronization holding function. In the following description, the demodulation device of the present invention is applied to the receiving section of communication equipment, and the transmitting section (modulation circuit) will be described as necessary.

【0002】[0002]

【技術的背景】最近SS通信において、SS技術による
多元接続法を用いた移動体通信が実用域に達して来てい
る。周知の如く電波資源は有限なので、周波数を有効に
利用する必要がある。その点、SS信号は広い周波数帯
域に拡散されて、変調波のパワースペクトル密度が微小
なので、他の通信電波等に与える影響は小さく、既存の
通信周波数帯での混用も可能であり、原理的に周波数利
用効率の向上に寄与できる。そこでSSによる無線通信
も身近になりつつあり、今後、車両等に搭載しての移動
体間通信応用など、その将来性や発展性が大きく期待さ
れている。
TECHNICAL BACKGROUND Recently, in SS communication, mobile communication using the multiple access method by SS technology has reached a practical range. As is well known, since radio resources are limited, it is necessary to effectively use frequencies. In that respect, the SS signal is spread over a wide frequency band and the power spectrum density of the modulated wave is very small, so that it has little effect on other communication radio waves and the like, and can be mixed in existing communication frequency bands. In addition, it can contribute to the improvement of frequency utilization efficiency. Therefore, wireless communication by SS is becoming familiar, and in the future, it is expected to have great potential and developability such as application of communication between mobile bodies mounted on vehicles.

【0003】[0003]

【従来の技術】SS通信において、受信における同期捕
捉と同期保持は基本的に必要なものであり、今までに種
々の同期捕捉方法や保持方法が提案され、且つ、実用化
されている。その中で、変調時に1次変調である角度変
調(周波数変調や位相変調)用キャリヤと、2次変調で
あるSS変調に用いられる拡散符号用クロック信号とに
同期関係を持たせてSS変調を行なう、所謂同期型SS
変調,復調方式も、受信,復調において回路構成を多少
なりとも簡素化できる方式として知られている。
2. Description of the Related Art In SS communication, synchronization acquisition and synchronization holding in reception are basically required, and various synchronization acquisition methods and holding methods have been proposed and put into practical use. Among them, during the modulation, the carrier for angle modulation (frequency modulation or phase modulation) which is the primary modulation and the spread code clock signal used for the SS modulation which is the secondary modulation are synchronized with each other to perform the SS modulation. Do so-called synchronous SS
The modulation / demodulation method is also known as a method that can simplify the circuit configuration to some extent in reception and demodulation.

【0004】かかる従来技術について、図1乃至図5を
併せ参照して説明する。図1は本復調装置に対する送信
用信号を生成する送信部側(変調装置)の回路構成を、
図2は従来の同期型SS変調波の復調装置の回路構成
を、図3はDLL(遅延ロックループ)型同期保持回路
の主要部となる信号処理回路の具体的回路構成を、図4
はDLL型同期保持回路における同期保持特性を、図5
はスライディング相関型同期捕捉動作を示す相関特性
を、夫々示している。
The conventional technique will be described with reference to FIGS. FIG. 1 shows the circuit configuration of the transmission unit side (modulation device) that generates a transmission signal for the present demodulation device.
2 shows a circuit configuration of a conventional synchronous SS demodulation wave demodulator, and FIG. 3 shows a specific circuit configuration of a signal processing circuit which is a main part of a DLL (delay lock loop) type synchronous holding circuit.
Shows the sync holding characteristic in the DLL type sync holding circuit as shown in FIG.
Respectively show the correlation characteristics showing the sliding correlation type synchronous acquisition operation.

【0005】まず、送信部である同期型スペクトル拡散
変調装置について、図1を参照しながら説明する。オー
ディオ信号を含む情報S(t)は、入力端子In1 より角度変
調回路52に供給されて角度変調が行われる。角度変調
用キャリヤは局部発振器(OSC)49より供給され、
局部発振出力に同期したキャリヤとして得られる。角度
変調出力F(t)は拡散変調用の乗算器6に供給され、ここ
で拡散符号発生器(PNG)48より出力されている拡
散符号P(t) との乗算による拡散変調が行われる。PN
G48にはクロック信号として、OSC49より出力さ
れる局部発振出力を分周器25で1/N1 に分周した分
周出力を、クロック信号C(t)として得ているため、角度
変調キャリヤと拡散符号とは同期関係が保たれる。従っ
て、乗算器6よりBPF11を介して得られるSS変調
出力はF(t)P(t) となり、出力端子Out1より出力され
る。
First, a synchronous spread spectrum modulator which is a transmitter will be described with reference to FIG. The information S (t) including the audio signal is supplied from the input terminal In1 to the angle modulation circuit 52 to be angle-modulated. The carrier for angle modulation is supplied from a local oscillator (OSC) 49,
Obtained as a carrier synchronized with the local oscillator output. The angle modulation output F (t) is supplied to the multiplier 6 for spread modulation, where spread modulation is performed by multiplication with the spread code P (t) output from the spread code generator (PNG) 48. PN
As a clock signal, a local oscillation output output from the OSC 49 is divided into 1 / N 1 by the frequency divider 25 as a clock signal, and a divided output is obtained as a clock signal C (t). A synchronization relationship is maintained with the spreading code. Therefore, the SS modulation output obtained from the multiplier 6 via the BPF 11 becomes F (t) P (t) and is output from the output terminal Out1.

【0006】このような同期型SS変調波は電波(無
線)やワイヤ(有線)等の伝送媒体を介して復調部へと
伝送されるが、ここで、復調動作(従来の復調装置)に
ついて、図2を参照し乍ら説明する。上記SS変調波は
受信機側のアンテナ(図示せず)で受信されて、入力端
子In2 よりBPF12を介してAGC(自動利得制御回
路)20に供給され、ここで必要に応じて増幅された
後、スライディング相関及び逆拡散復調兼用の乗算器3
と、DLL型同期保持用信号処理回路(以下単に「DL
L用信号処理回路」等と記載する)36に供給される。
乗算器3にはPNG(拡散符号発生器)47にて生成さ
れる拡散符号も供給されており、この拡散符号用のクロ
ック信号は、同期捕捉されるまでには同期保持時に比較
してやゝ高めにVCO(電圧制御発振器)21により設
定されている。従って、スライディング相関と逆拡散復
調は時系列的に行なわれる。
Such a synchronous SS modulated wave is transmitted to the demodulation section via a transmission medium such as radio waves (wireless) or wires (wired). Here, regarding the demodulation operation (conventional demodulation device), This will be described with reference to FIG. The SS modulated wave is received by an antenna (not shown) on the receiver side, is supplied from the input terminal In2 to the AGC (automatic gain control circuit) 20 through the BPF 12, and after being amplified as necessary here. , A multiplier for both sliding correlation and despread demodulation 3
And a DLL-type synchronization holding signal processing circuit (hereinafter simply referred to as “DL
L signal processing circuit ”).
A spreading code generated by a PNG (spreading code generator) 47 is also supplied to the multiplier 3, and the clock signal for this spreading code is slightly higher than that at the time of holding the synchronization until the synchronization is acquired. It is set by a VCO (voltage controlled oscillator) 21. Therefore, the sliding correlation and the despread demodulation are performed in time series.

【0007】ここで、同期捕捉(確立)に至る動作を説
明する。BPF12にて不要な周波数帯域成分を減衰乃
至除去された入力SS変調波P(t)*d(t)cosωtは、乗
算器3において拡散符号発生器47からの拡散符号P
(t) との乗算による相関が行われる。この拡散符号P
(t) は受信側のPNG48で生成される拡散符号P(t)
に比べ、実際には時間τの遅延を有するP(t−τ)であ
り、これをP(t) の文字Pの上にΛ(ハット)を付けて
表記するが、ここでは電子出願における使用可能文字の
制約上から、“ρ(t) ”で表わすことにする。これによ
り、乗算器3からの乗算出力はP(t)*ρ(t)*d(t)cosω
tと表現される。
The operation leading to synchronization acquisition (establishment) will now be described. The input SS modulated wave P (t) * d (t) cosωt from which unnecessary frequency band components have been attenuated or removed by the BPF 12 is used by the spread code P from the spread code generator 47 in the multiplier 3.
Correlation is performed by multiplication with (t). This spreading code P
(t) is the spreading code P (t) generated by the PNG 48 on the receiving side.
Is actually P (t−τ) with a delay of time τ, and is represented by adding Λ (hat) on the letter P of P (t), but here it is used in electronic applications. Due to the restriction of possible characters, it is represented by "ρ (t)". As a result, the multiplication output from the multiplier 3 is P (t) * ρ (t) * d (t) cosω
Expressed as t.

【0008】かかる乗算出力は乗算器4,5に供給さ
れ、乗算器4ではVCO22からの再生キャリヤ cos
(ωt-φ)との乗算による同期検波が行われる。従っ
て、乗算器4からは(1/2)P(t)*ρ(t)*d(t)*{cosφ+c
os(2ωt-φ)}なる信号が出力され、次段のLPF(低域
濾波器)17でP(t)*ρ(t)*d(t)cos(2ωt-φ)/2成
分が除去されて、P(t)*ρ(t)*d(t)cosφとなる。φの
値が0に近い値であれば、LPF17出力P(t)*ρ(t)*
d(t)cosφはほぼ 1/2のレベルとなる。一方、乗算器5
には、電圧制御発振器(VCO)22よりの再生キャリ
ヤ cos(ωt-φ)が、π/2位相シフト回路23にて位相
をπ/2シフトされたsin(ωt-φ)なるキャリヤが供給さ
れている。
The multiplication output is supplied to the multipliers 4 and 5, and the multiplier 4 reproduces the carrier carrier cos from the VCO 22.
Synchronous detection is performed by multiplication with (ωt-φ). Therefore, from the multiplier 4, (1/2) P (t) * ρ (t) * d (t) * {cosφ + c
os (2ωt-φ)} is output and the LPF (low-pass filter) 17 at the next stage removes P (t) * ρ (t) * d (t) cos (2ωt-φ) / 2 components As a result, P (t) * ρ (t) * d (t) cosφ. If the value of φ is close to 0, the LPF17 output P (t) * ρ (t) *
The level of d (t) cosφ is about 1/2. On the other hand, the multiplier 5
Is supplied with a carrier of regenerated carrier cos (ωt-φ) from the voltage controlled oscillator (VCO) 22 and sin (ωt-φ) whose phase is shifted by π / 2 in the π / 2 phase shift circuit 23. ing.

【0009】従って、乗算器5の出力は(−1/2)P(t)*
ρ(t)*d(t)*{sinφ+sin(2ωt-φ)}となり、LPF18
からは−P(t)*ρ(t)sinφが出力されるが、実際のレベ
ルは0に近くなっている。LPF17とLPF18の出
力は共に乗算器6に供給され、ここで乗算が行なわれ
て、その出力はP2 (t)*ρ2 (t)*d2 (t)*(-1/2)sin2φ
なる誤差信号として得られる。かかる誤差信号は、更に
ループの応答時定数を決めるループフィルタ24にて−
Ksin2φなる誤差信号に変換された後、VCO22に制
御用信号として供給される。このような一巡の位相同期
ループからなるキャリヤ再生回路50は、入力キャリヤ
に同期してPSK復調を同時に行なうことができるもの
である。
Therefore, the output of the multiplier 5 is (-1/2) P (t) *.
ρ (t) * d (t) * {sinφ + sin (2ωt-φ)}, and LPF18
Outputs -P (t) * ρ (t) sinφ, but the actual level is close to zero. The outputs of the LPF 17 and LPF 18 are both supplied to the multiplier 6, where multiplication is performed, and the output is P 2 (t) * ρ 2 (t) * d 2 (t) * (-1/2) sin 2φ
Is obtained as an error signal. Such an error signal is further reduced by the loop filter 24 which determines the response time constant of the loop.
After being converted into an error signal of Ksin2φ, it is supplied to the VCO 22 as a control signal. The carrier reproducing circuit 50 including such a loop of phase locked loop can simultaneously perform PSK demodulation in synchronization with the input carrier.

【0010】通信装置における受信部の電源オン後、最
初に働きだすのはこのキャリヤ再生回路50であり、従
って、キャリヤ再生の後、LPF17より得られる相関
出力P(t)*ρ(t) 、即ち、図5のt0 点を中心とする3
角出力特性に基づく出力は、スライディング相関の同期
捕捉用のスレシュホールドレベル検出回路(同期検出回
路)34に供給され、ここで同期捕捉点SLを検出された
後、更に出力(波形)整形回路35に供給され、同期捕
捉時より一定の直流出力を得ている。この直流出力は加
算回路42に供給され、ここでDLL用信号処理回路3
6からの相関出力と加算された後、VCO21に供給さ
れる。得られた加算出力によってVCO21は制御さ
れ、制御された電圧制御発振出力は、正規の同期保持時
の拡散符号を発生させるためのクロック信号となる。
It is this carrier regenerating circuit 50 that first starts to work after the power of the receiving section in the communication device is turned on. Therefore, after carrier regeneration, the correlation output P (t) * ρ (t) obtained from the LPF 17, That is, 3 centered at the point t 0 in FIG.
An output based on the angular output characteristic is supplied to a threshold level detection circuit (synchronization detection circuit) 34 for synchronous acquisition of sliding correlation, and after the synchronization acquisition point SL is detected here, an output (waveform) shaping circuit 35 is further provided. , And a constant DC output is obtained from the time of synchronization acquisition. This DC output is supplied to the adder circuit 42, where the DLL signal processing circuit 3
After being added to the correlation output from 6, the VCO 21 is supplied. The VCO 21 is controlled by the obtained addition output, and the controlled voltage-controlled oscillation output becomes a clock signal for generating the spread code at the time of normal synchronization holding.

【0011】次に、同期保持動作について説明する。入
力SS変調波はBPF12を介してDLL用信号処理回
路36に供給されるが、ここで、DLL用信号処理回路
36の具体的回路例を図3に示して、機能,動作を説明
する。上記SS変調波は入力端子In3 より乗算器7,8
に供給される。一方、入力端子In4 には、前記乗算器3
に供給される正規の拡散符号P(t) よりも位相がΔt早
いP(t−Δt)なる拡散符号(イ)が、入力端子In5 には
Δt遅いP(t+Δt)なる拡散符号(ロ)が、PNG47
より夫々供給されている。なお、ΔtはSS方式では拡
散符号の1ビット分の時間,即ち1チップ時間なので、
乗算器7の出力は正規動作時の逆拡散出力であるPSK
変調波であり、これを伝送できる狭帯域特性のBPF1
3を介して絶対値回路(又はエンベロープ検出回路)3
8に供給される。同様に、乗算器8の出力もBPF14
を介して絶対値回路39に供給されている。
Next, the synchronization holding operation will be described. The input SS modulated wave is supplied to the DLL signal processing circuit 36 via the BPF 12. Here, a specific circuit example of the DLL signal processing circuit 36 is shown in FIG. The SS modulated wave is input from the input terminal In3 to the multipliers 7 and 8
Is supplied to. On the other hand, the multiplier 3 is connected to the input terminal In4.
The spread code (a) having a phase Δt earlier than that of the regular spread code P (t) supplied to the terminal (a) and the spread code (b) having a phase Δt slower than P (t + Δt) at the input terminal In5. , PNG47
More supplied respectively. In the SS method, Δt is the time for one bit of the spread code, that is, one chip time, so
The output of the multiplier 7 is PSK which is the despreading output during normal operation.
It is a modulated wave, and the narrow band characteristic BPF1 that can transmit this.
Absolute value circuit (or envelope detection circuit) 3
8 are supplied. Similarly, the output of the multiplier 8 is also the BPF 14
Is supplied to the absolute value circuit 39 via.

【0012】従って、絶対値回路38からの出力は、近
似的にキャリヤ周波数の2倍の成分にP(t)*P(t−Δt)
が乗じられた信号となり、絶対値回路39出力も同様に
キャリヤ周波数の2倍の成分にP(t)*P(t+Δt)が乗じ
られた信号として得られる。夫々の出力信号は引算回路
40に供給されて引算されるが、その特性は図4に示す
逆S字型の相関特性となる。なお、点(C) は同期保持点
である。このようにして得られた相関出力は、これを制
御信号に加工するためのループフィルタ28を介して出
力端子Out3より出力され、図2の加算回路42にて前記
波形整形回路35の出力と加算された後VCO21に供
給され、同期の保持が行われる。
Therefore, the output from the absolute value circuit 38 is approximately P (t) * P (t-Δt) in the component of twice the carrier frequency.
And the output of the absolute value circuit 39 is also obtained as a signal in which the component of twice the carrier frequency is multiplied by P (t) * P (t + Δt). The respective output signals are supplied to the subtraction circuit 40 to be subtracted, and the characteristics thereof are the inverse S-shaped correlation characteristics shown in FIG. The point (C) is a synchronization holding point. The correlation output thus obtained is output from the output terminal Out3 via the loop filter 28 for processing this into a control signal, and is added to the output of the waveform shaping circuit 35 by the adder circuit 42 of FIG. After that, it is supplied to the VCO 21 and the synchronization is maintained.

【0013】[0013]

【発明が解決しようとする課題】かかる従来のSS復調
装置は、同期保持用の回路やAGC20等が必要であ
り、回路構成が複雑になってコストも上昇し、また、各
回路が必ずしも理論通りには機能しないために、装置を
安定に動作させるのが困難になる等の問題が生じてい
た。また、キャリヤ再生用のVCO22とクロック発生
用VCO21の双方に発振器を必要とし、又、同期保持
回路も併用しなければならないので、回路規模が増大化
するという課題が生じていた。そこで、SS同期回路を
簡略化することや、AGC回路2を不要とする復調装置
の実現が望まれていた。
Such a conventional SS demodulator requires a circuit for maintaining synchronization, an AGC 20, etc., which complicates the circuit configuration and increases the cost, and each circuit does not always follow the theory. However, there is a problem that it is difficult to operate the device stably because it does not function. Further, since both the VCO 22 for carrier reproduction and the VCO 21 for clock generation need oscillators and a synchronous holding circuit must be used together, there is a problem that the circuit scale increases. Therefore, it has been desired to simplify the SS synchronization circuit and realize a demodulation device that does not require the AGC circuit 2.

【0014】[0014]

【課題を解決するための手段】本発明の同期型スペクト
ル拡散変調波の復調装置は、逆拡散復調により得られる
角度変調波にロックする位相同期ループの位相誤差出力
に生じる復調情報成分をループフィルタにより十分に除
去して無変調化したキャリヤ信号を得るキャリヤ生成手
段と、キャリヤ信号を第1,第2の分周数で分周して第
1,第2のクロック信号を得るクロック信号発生手段
と、第1のクロック信号を基に同期捕捉用の拡散符号を
生成すると共に,第2のクロック信号を基に同期確立時
の拡散符号を生成する復調用拡散符号の生成手段と、第
1のクロック信号による拡散符号を基に同期捕捉を行う
同期捕捉手段と、同期捕捉により同期確立ポイントを検
出して第2のクロック信号に切替えて同期の確立による
逆拡散を行なう逆拡散手段と、得られた逆拡散出力より
復調用角度変調波を抽出して角度復調を行う角度復調手
段と、角度復調出力より同期捕捉のためのノイズ検出を
行なって第1,第2のクロック信号の選択切換え用の制
御信号(誤差電圧)を生成する生成手段とを備えて構成
することにより、上記課題を解決したものである。
A demodulator for a synchronous spread spectrum modulated wave according to the present invention uses a loop filter for a demodulation information component generated in a phase error output of a phase locked loop locked to an angle modulated wave obtained by despread demodulation. Carrier generating means for obtaining a carrier signal that has been sufficiently demodulated to obtain an unmodulated carrier signal, and clock signal generating means for obtaining the first and second clock signals by dividing the carrier signal by the first and second frequency division numbers. And a demodulation spreading code generating means for generating a spreading code for synchronization acquisition based on the first clock signal, and for generating a spreading code when synchronization is established based on the second clock signal; Synchronization acquisition means for performing synchronization acquisition based on a spread code by a clock signal, and despreading for detecting a synchronization establishment point by synchronization acquisition and switching to a second clock signal to perform despreading by establishment of synchronization. Means, an angle demodulation means for extracting an angle-modulated wave for demodulation from the obtained despread output to perform angle demodulation, and noise detection for synchronization acquisition from the angle demodulation output to detect the first and second clock signals. The above problem is solved by the configuration including a generation unit that generates a control signal (error voltage) for selection switching of the above.

【0015】[0015]

【実施例】図1以降を参照し乍ら、本発明の同期型SS
変調波の復調装置の具体的実施例について説明する。図
1は本発明の第1実施例である、同期型SS変調波の復
調装置1のブロック構成図である。この図において、2
6〜29は入力信号周波数を夫々1/N1 ,1/N2
は1/N3 に分周する分周器、43は振幅制限増幅器
(LIM)、53は角度復調回路、Swはスイッチ回路で
あり、その他、図2に示した従来装置と同一構成部分に
は同一符号を付して、その詳細な説明を省略する。な
お、ループフィルタ24,VCO22,分周器29,及
び位相比較器6により、PLL回路(位相同期ループ)
が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 and subsequent figures, the synchronous SS of the present invention is shown.
A specific example of the demodulation device for the modulated wave will be described. FIG. 1 is a block diagram of a demodulator 1 for a synchronous SS modulated wave, which is a first embodiment of the present invention. In this figure, 2
6 to 29 are frequency dividers for dividing the input signal frequency into 1 / N 1 , 1 / N 2 or 1 / N 3 , respectively, 43 is an amplitude limiting amplifier (LIM), 53 is an angle demodulation circuit, and Sw is a switch circuit. Other than that, the same components as those of the conventional device shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. The loop filter 24, the VCO 22, the frequency divider 29, and the phase comparator 6 form a PLL circuit (phase locked loop).
Are formed.

【0016】入力端子In2 より同期型SS変調波F(t)P
(t) がBPF12を介して逆拡散用乗算器3に供給さ
れ、拡散符号発生器47より出力される拡散符号ρ(t)
との乗算が行われる。拡散符号ρ(t) はVCO21のフ
リーラン出力を分周器24で分周したものをクロック信
号としてスイッチ回路Swを介して入力し、これを基に拡
散符号発生器47にて生成している。従って、乗算器3
の出力はF(t)P(t)*ρ(t)となる。この乗算出力は同期
捕捉前の拡散状態のもので、時間の経過と共に相関状態
が得られて、後段の角度復調回路53の復調ノイズの低
下に至る。
Synchronous SS modulated wave F (t) P from input terminal In2
(t) is supplied to the despreading multiplier 3 via the BPF 12, and the spreading code ρ (t) output from the spreading code generator 47.
Is multiplied by. The spread code ρ (t) is input through the switch circuit Sw as a clock signal obtained by dividing the free-run output of the VCO 21 by the frequency divider 24, and is generated by the spread code generator 47 based on this. . Therefore, the multiplier 3
Output is F (t) P (t) * ρ (t). This multiplication output is in the diffused state before synchronization acquisition, and the correlation state is obtained with the lapse of time, leading to reduction in demodulation noise of the angle demodulation circuit 53 in the subsequent stage.

【0017】この復調ノイズを、オーディオ周波数帯よ
り若干高目に通過帯域を設定されたBPF16を介して
同期検出回路34に供給され、更に整形回路35にて波
形整形されて制御信号化し、得られた制御信号をスイッ
チ回路25に供給することにより分周器23に接続を切
換える。これにより、VCO21の出力はN1 分の1に
分周されて、正規のクロック信号として拡散符号発生器
47に供給される。従って、拡散符号発生器47より出
力される拡散符号はP(t) となり、乗算器3の出力はP
(t)*P(t)F(t) となる。
This demodulation noise is supplied to the sync detection circuit 34 via the BPF 16 whose pass band is set slightly higher than the audio frequency band, and is further waveform-shaped by the shaping circuit 35 to form a control signal, which is obtained. The connection to the frequency divider 23 is switched by supplying the control signal to the switch circuit 25. As a result, the output of the VCO 21 is divided by N 1 and supplied to the spread code generator 47 as a regular clock signal. Therefore, the spreading code output from the spreading code generator 47 is P (t), and the output of the multiplier 3 is P (t).
(t) * P (t) F (t).

【0018】ところで周知の如く、P2 (t)=1 なので、
BPF15の出力はSS復調されたF(t)として得られ、
振幅制限増幅器43を介して角度復調回路53と分周器
28に供給される。分周器28では角度変調波F(t)をN
3 分の1に分周し、角度変調波のデビエーション(偏
移)ΔfをN3 分の1に下げて、位相比較器(乗算器)
6における位相比較レンジを超えないようにしている。
従って、位相比較器6ではVCO22の出力を分周器2
9を介してN3 分の1に分周し、分周器28の出力と位
相比較が行われ、ループフィルタ24にて誤差電圧(制
御信号)化し、VCO22にフィードバックしている。
As is well known, since P 2 (t) = 1,
The output of the BPF 15 is obtained as SS demodulated F (t),
It is supplied to the angle demodulation circuit 53 and the frequency divider 28 via the amplitude limiting amplifier 43. The frequency divider 28 divides the angle-modulated wave F (t) by N.
3 minutes and 1-divided in to lower the angle modulation wave deviation (the deviation) Delta] f to 1 of N 3 minutes, a phase comparator (a multiplier)
The phase comparison range in 6 is not exceeded.
Therefore, the phase comparator 6 outputs the output of the VCO 22 to the frequency divider 2
The frequency is divided into N 1/3 via 9, the phase comparison is performed with the output of the frequency divider 28, the loop filter 24 converts it into an error voltage (control signal) and feeds it back to the VCO 22.

【0019】位相比較器6の出力は角度変調波F(t)の復
調されたものとして得られるが、ループフィルタ24の
時定数を大きく選ぶことにより、復調成分を大幅に低下
させることが可能となるので、VCO22の出力はほぼ
無変調化されたものとして得られる。この無変調化VC
O出力は入力角度変調波に同期しており、このVCO2
2の出力を変調装置側の分周器25と同じ分周数に設定
してクロック信号としているから、変調時と等しい拡散
符号P(t) が得られる。一方、角度復調回路53に供給
された角度変調波F(t)はここで角度復調されてs'(t)と
なり、LPF19を介して出力端子Out2より出力され
る。
The output of the phase comparator 6 is obtained as a demodulated angle-modulated wave F (t), but the demodulation component can be greatly reduced by selecting a large time constant for the loop filter 24. Therefore, the output of the VCO 22 is obtained as an almost non-modulated one. This unmodulated VC
The O output is synchronized with the input angle modulated wave, and this VCO2
Since the output of 2 is set as the clock signal by setting the same frequency division number as the frequency divider 25 on the modulator side, the spreading code P (t) equal to that at the time of modulation can be obtained. On the other hand, the angle modulated wave F (t) supplied to the angle demodulation circuit 53 is angle demodulated here to s' (t), and is output from the output terminal Out2 via the LPF 19.

【0020】次に、本発明の同期型SS変調波の復調装
置の第2実施例について、図7と共に説明する。第2実
施例装置2の前記第1実施例装置1との主な相違点は、
両図から明らかなように、ループフィルタ24の後に引
算回路41を設け、出力端子Out2に供給される復調出力
s'(t)を分岐し、レベル調整器30にてレベルを適宜調
整したのち引算回路41に供給し、位相比較器6で得ら
れた復調成分(復調情報や復調ノイズ)をここで打消し
ている。
Next, a second embodiment of the demodulator of the synchronous SS modulated wave of the present invention will be described with reference to FIG. The main difference between the second embodiment device 2 and the first embodiment device 1 is that
As is clear from both figures, the subtraction circuit 41 is provided after the loop filter 24, the demodulation output s' (t) supplied to the output terminal Out2 is branched, and the level adjuster 30 adjusts the level appropriately. The demodulation components (demodulation information and demodulation noise) supplied to the subtraction circuit 41 and obtained by the phase comparator 6 are canceled here.

【0021】これにより、ループフィルタ24の時定数
を小さくできるので、PLL回路の動的応答特性を迅速
にすることができ、更に、SS同期の確立時間を短縮す
ることができる。しかも、VCO22に供給される誤差
電圧中には復調成分は皆無となるので、変調時のクロッ
ク信号と略等価なクロック信号として得られる。なお、
それ以外の動作は前記第1実施例装置1と同じであるの
で、同一構成部分に同一符号を付して、その詳細な説明
を省略する。
As a result, the time constant of the loop filter 24 can be reduced, so that the dynamic response characteristic of the PLL circuit can be speeded up, and the establishment time of SS synchronization can be shortened. Moreover, since there is no demodulation component in the error voltage supplied to the VCO 22, it can be obtained as a clock signal substantially equivalent to the clock signal at the time of modulation. In addition,
Since the other operations are the same as those of the first embodiment device 1, the same components are designated by the same reference numerals and detailed description thereof will be omitted.

【0022】この第2実施例装置2の構成において、ル
ープフィルタ24と引算回路41の配置を逆にし、且
つ、角度復調回路53よりレベル調整器30を介して引
算回路41に供給するよう構成することもできる(これ
を第3実施例とする)。この場合は引算回路41におい
て、前もって復調成分を打消してからループフィルタ2
4に供給されるので、図7の復調装置2に比較して、ル
ープフィルタ24を含むPLL回路のループ応答周波数
(応答時定数)を、復調周波数帯域よりも十分低く設定
することが可能となる。これにより、C/N劣化時にV
CO22の出力信号中に顕著となるジッタを、ループ応
答時定数の値だけ抑えることが可能となり、SS同期の
確立時間も前記復調装置1よりも短くできるので、ジッ
タの抑圧と同期確立時間の観点において、バランスのと
れた復調装置を提供できる。
In the configuration of the second embodiment device 2, the arrangement of the loop filter 24 and the subtraction circuit 41 is reversed, and the angle demodulation circuit 53 supplies the subtraction circuit 41 via the level adjuster 30. It can also be configured (this is the third embodiment). In this case, the subtraction circuit 41 cancels the demodulation component in advance, and then the loop filter 2
4, the loop response frequency (response time constant) of the PLL circuit including the loop filter 24 can be set sufficiently lower than the demodulation frequency band as compared with the demodulator 2 of FIG. .. As a result, when C / N deteriorates, V
Jitter that becomes noticeable in the output signal of the CO 22 can be suppressed by the value of the loop response time constant, and the SS synchronization establishment time can be made shorter than that of the demodulator 1. Therefore, from the viewpoint of jitter suppression and synchronization establishment time. In, a balanced demodulator can be provided.

【0023】[0023]

【発明の効果】叙上の如く、本発明の同期型SS変調波
の復調装置によれば、各実施例の共通の特長として、復
調装置内のPLLにおいて入力角度変調波に同期して無
変調化したVCO出力を得ているので、これを分周した
拡散符号発生用クロック信号を、変調時の局部発振出力
と等価な信号とすることが可能となり、入来した同期型
SS変調波の理想的な復調を達成でき、更に、従来装置
におけるDLL型同期保持回路や、入力SS変調波レベ
ルのバラツキを一定にするAGC回路20が不要となる
ので、回路規模が大幅に簡素化される特長を有する。
As described above, according to the demodulator of the synchronous SS modulated wave of the present invention, the common feature of each embodiment is that the PLL in the demodulator does not modulate in synchronization with the input angle modulated wave. Since the converted VCO output is obtained, the spread code generating clock signal obtained by dividing the VCO output can be used as a signal equivalent to the local oscillation output at the time of modulation, which is ideal for the incoming synchronous SS modulated wave. Demodulation can be achieved, and further, the DLL type synchronization holding circuit and the AGC circuit 20 for making the variation of the input SS modulated wave level constant in the conventional device are not required, so that the circuit scale can be greatly simplified. Have.

【0024】また、各実施例の特長としては、第1実施
例の復調装置は回路が最も簡潔であり、第2実施例装置
は同期確立時間を最も短くすることができる。更に、第
3実施例装置は、レベル調整器30にて角度復調回路5
3の出力レベルを調整することにより、同期確立時間を
第2実施例装置2の値から第1実施例装置1の値まで任
意の値に設定することができ、これによりVCO22出
力中のジッタを最小にすることが可能となるという優れ
た特長を有する。
Further, as a feature of each embodiment, the demodulator of the first embodiment has the simplest circuit and the second embodiment of the device can minimize the synchronization establishment time. Furthermore, in the device of the third embodiment, the angle adjuster circuit 5 is used in the level adjuster 30.
By adjusting the output level of No. 3, the synchronization establishment time can be set to any value from the value of the device 2 of the second embodiment to the value of the device 1 of the first embodiment, whereby the jitter in the output of the VCO 22 is set. It has an excellent feature that it can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】送信用信号を生成する同期型SS変調装置のブ
ロック図。
FIG. 1 is a block diagram of a synchronous SS modulator that generates a transmission signal.

【図2】従来の代表的同期型SS変調波の復調装置のブ
ロック構成図。
FIG. 2 is a block configuration diagram of a conventional typical demodulator for a synchronous SS modulated wave.

【図3】従来装置の主要部であるDLL型同期保持用信
号処理回路の具体的構成図。
FIG. 3 is a specific configuration diagram of a DLL-type synchronization holding signal processing circuit which is a main part of a conventional device.

【図4】DLL型同期保持用信号処理回路における同期
保持特性を示す特性図。
FIG. 4 is a characteristic diagram showing a sync holding characteristic in a DLL-type sync holding signal processing circuit.

【図5】スライディング相関型同期捕捉動作の説明用相
関特性図。
FIG. 5 is a correlation characteristic diagram for explaining a sliding correlation type synchronous capturing operation.

【図6】本発明の復調装置の第1実施例を示すブロック
構成図。
FIG. 6 is a block diagram showing the first embodiment of the demodulation device of the present invention.

【図7】本発明の復調装置の第2実施例を示すブロック
構成図。
FIG. 7 is a block configuration diagram showing a second embodiment of the demodulation device of the present invention.

【符号の説明】[Explanation of symbols]

1,2 復調装置 3〜9 乗算器 11〜16 BPF(帯域濾波器) 17〜19 LPF(低域濾波器) 21,22 VCO(電圧制御発振器) 24 ループフィルタ 25〜29 分周器 30 レベル調整器 34 同期検出回路 35 整形回路 40,41 引算回路 43 振幅制限増幅器 47,48 PNG(拡散符号発生器) 50 キャリヤ再生回路 52 角度変調回路 53 角度復調回路 Sw スイッチ回路 1, 2 Demodulator 3-9 Multiplier 11-16 BPF (Band filter) 17-19 LPF (Low-pass filter) 21,22 VCO (Voltage controlled oscillator) 24 Loop filter 25-29 Divider 30 Level adjustment 34 Sync detection circuit 35 Shaping circuit 40, 41 Subtraction circuit 43 Amplitude limiting amplifier 47, 48 PNG (spreading code generator) 50 Carrier regeneration circuit 52 Angle modulation circuit 53 Angle demodulation circuit Sw switch circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】1次変調用の角度変調波のキャリヤと2次
変調用の拡散符号とが同期関係を保ちながら拡散変調さ
れて送出された、同期型スペクトル拡散変調信号を入力
して復調する同期型スペクトル拡散変調波の復調装置に
おいて、 逆拡散復調により得られる角度変調波にロックする位相
同期ループの位相誤差出力に生じる復調情報成分をルー
プフィルタにより十分に除去して無変調化したキャリヤ
信号を得るキャリヤ生成手段と、該キャリヤ信号を第
1,第2の分周数で分周して第1,第2のクロック信号
を得るクロック信号発生手段と、該第1のクロック信号
を基に同期捕捉用の拡散符号を生成すると共に,上記第
2のクロック信号を基に同期確立時の拡散符号を生成す
る復調用拡散符号の生成手段と、上記第1のクロック信
号による拡散符号を基に同期捕捉(スライディング相
関)を行う同期捕捉手段と、該同期捕捉により同期確立
ポイントを検出して上記第2のクロック信号に切替えて
同期の確立による逆拡散を行なう逆拡散手段と、得られ
た逆拡散出力より復調用角度変調波を抽出して角度復調
を行う角度復調手段と、該角度復調出力より同期捕捉の
ためのノイズ検出を行なって上記第1,第2のクロック
信号の選択切換え用の制御信号(誤差電圧)を生成する
生成手段とより成る、同期型スペクトル拡散変調波の復
調装置。
Claims: 1. A synchronous spread spectrum modulation signal is input and demodulated, in which a carrier of an angle-modulated wave for primary modulation and a spread code for secondary modulation are spread-modulated and transmitted while maintaining a synchronous relationship. In a demodulator for a synchronous spread spectrum modulated wave, a demodulated information component generated in a phase error output of a phase locked loop locked to an angle modulated wave obtained by despread demodulation is sufficiently removed by a loop filter to make it a non-modulated carrier signal. Based on the first clock signal, and carrier signal generating means for obtaining the first and second clock signals by dividing the carrier signal by the first and second frequency division numbers. A spreading code for demodulation, which generates a spreading code for acquisition of synchronization and a spreading code when synchronization is established based on the second clock signal, and an expansion by the first clock signal. Synchronization acquisition means for performing synchronization acquisition (sliding correlation) based on the scattered code; despreading means for detecting a synchronization establishment point by the synchronization acquisition and switching to the second clock signal to perform despreading by establishment of synchronization. An angle demodulating means for extracting an angle-modulated wave for demodulation from the obtained despread output to perform angle demodulation, and noise detection for synchronizing acquisition from the angle demodulated output for the first and second clock signals. A demodulation device for a synchronous spread spectrum modulated wave, which comprises a generation means for generating a control signal (error voltage) for selection switching of the above.
【請求項2】1次変調用の角度変調波のキャリヤと2次
変調用の拡散符号とが同期関係を保ちながら拡散変調さ
れて送出された、同期型スペクトル拡散変調信号を入力
して復調する同期型スペクトル拡散変調波の復調装置に
おいて、 逆拡散復調により得られる角度変調波にロックする位相
同期ループの位相誤差出力に生じる復調情報成分を角度
復調出力との引算により打消して無変調化したキャリヤ
信号を得るキャリヤ生成手段と、該キャリヤ信号を第
1,第2の分周数で分周して第1,第2のクロック信号
を得るクロック信号発生手段と、該第1のクロック信号
を基に同期捕捉用の拡散符号を生成すると共に,上記第
2のクロック信号を基に同期確立時の拡散符号を生成す
る復調用拡散符号の生成手段と、得られた第1のクロッ
ク信号による拡散符号を基に同期捕捉を行う手段と、同
期捕捉により同期確立ポイントを検出して第2のクロッ
ク信号に切替えて同期の確立による逆拡散を行なう逆拡
散手段と、得られた逆拡散出力より復調用角度変調波を
抽出して角度復調を行う角度復調手段と、該角度復調出
力より同期捕捉のためのノイズ検出と制御信号化を行な
って上記第1,第2のクロック信号の選択切換え用の制
御信号を生成する生成手段とより成る、同期型スペクト
ル拡散変調波の復調装置。
2. A synchronous spread spectrum modulation signal, which is spread-modulated and transmitted while maintaining a synchronous relationship between a carrier of an angle-modulated wave for primary modulation and a spread code for secondary modulation, and demodulates the same. In a demodulator for a synchronous spread spectrum modulation wave, the demodulation information component generated in the phase error output of the phase locked loop that locks to the angle modulation wave obtained by despread demodulation is canceled by subtraction with the angle demodulation output to make no modulation. Carrier generating means for obtaining the generated carrier signal, clock signal generating means for obtaining the first and second clock signals by dividing the carrier signal by the first and second frequency division numbers, and the first clock signal And a means for generating a spreading code for demodulation for generating a spreading code for synchronization acquisition based on the second clock signal and a spreading code at the time of establishing synchronization based on the second clock signal, and the obtained first clock signal. Yo Means for performing synchronization acquisition based on the spread code, despreading means for detecting the synchronization establishment point by synchronization acquisition and switching to the second clock signal for despreading by establishing synchronization, and the obtained despreading output Angle demodulation means for extracting the angle-modulated wave for demodulation to perform angle demodulation, and noise detection and control signal conversion for synchronous acquisition from the angle demodulation output to selectively switch the first and second clock signals. Demodulation device for a synchronous spread spectrum modulated wave, which comprises a generating means for generating a control signal.
【請求項3】角度変調波にロックする位相同期ループ手
段として、前記角度変調波の周波数偏移を下げる分周器
を備え、分周された角度変調波を上記位相同期ループ内
の位相比較器に供給するよう構成した、請求項1又は請
求項2に記載の同期型スペクトル拡散変調波の復調装
置。
3. A phase-locked loop means for locking the angle-modulated wave, comprising a frequency divider for reducing the frequency deviation of the angle-modulated wave, and the frequency-divided angle-modulated wave in the phase-locked loop having a phase comparator. The demodulator of the synchronous spread spectrum modulated wave according to claim 1 or 2, which is configured to be supplied to
【請求項4】角度変調波にロックする位相同期ループに
おける復調成分の打消し用引算手段は、位相同期ループ
内のループフィルタ出力と,最終的な角度復調出力をレ
ベル調整して得られた復調出力とを引算するか、若しく
は、位相同期ループ内の位相比較器出力と,角度復調出
力をレベル調整して得られた復調出力とを引算するよう
構成されたものである、請求項2に記載の同期型スペク
トル拡散変調波の復調装置。
4. The subtraction means for canceling the demodulation component in the phase locked loop locked to the angle modulated wave is obtained by adjusting the level of the loop filter output in the phase locked loop and the final angle demodulated output. The demodulation output is subtracted, or the phase comparator output in the phase-locked loop and the demodulation output obtained by level-adjusting the angle demodulation output are subtracted. 2. A demodulator for a synchronous spread spectrum modulated wave according to 2.
JP6966992A 1992-02-19 1992-02-19 Synchronous spread spectrum modulated wave demodulator Expired - Lifetime JP2650557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6966992A JP2650557B2 (en) 1992-02-19 1992-02-19 Synchronous spread spectrum modulated wave demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6966992A JP2650557B2 (en) 1992-02-19 1992-02-19 Synchronous spread spectrum modulated wave demodulator

Publications (2)

Publication Number Publication Date
JPH05235897A true JPH05235897A (en) 1993-09-10
JP2650557B2 JP2650557B2 (en) 1997-09-03

Family

ID=13409484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6966992A Expired - Lifetime JP2650557B2 (en) 1992-02-19 1992-02-19 Synchronous spread spectrum modulated wave demodulator

Country Status (1)

Country Link
JP (1) JP2650557B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848544A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Code synchronism detecting circuit
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication
JPH0247940A (en) * 1988-08-09 1990-02-16 Mitsubishi Electric Corp Direct frequency spread synchronizing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848544A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Code synchronism detecting circuit
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication
JPH0247940A (en) * 1988-08-09 1990-02-16 Mitsubishi Electric Corp Direct frequency spread synchronizing system

Also Published As

Publication number Publication date
JP2650557B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US6459721B1 (en) Spread spectrum receiving apparatus
US5301206A (en) Spread spectrum communication system
US5303258A (en) Spread spectrum communications system
JPH0810839B2 (en) Spread spectrum communication device
US5402442A (en) Receiving device for receiving and demodulating spread spectrum-modulated GPS wave
JPH06315020A (en) Spread spectrum communication system
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2591398B2 (en) Spread spectrum wireless communication equipment
JP2650550B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2650556B2 (en) Synchronous spread spectrum modulation demodulator
JP2591401B2 (en) Spread spectrum wireless communication equipment
JP2650560B2 (en) Multi-channel spread spectrum modulation demodulator
JP2650572B2 (en) Demodulator in spread spectrum system
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2682363B2 (en) Spread spectrum modulation and / or demodulation device
JPH1188290A (en) Spread spectrum communication system
JP2748075B2 (en) Spread spectrum communication system
JP3234446B2 (en) Spread spectrum signal demodulator
JP3578575B2 (en) Two-phase phase modulation transceiver
JPS60171839A (en) Space diversity
JPH0514312A (en) Radio communication method
JPH05276143A (en) Signal transmitter
JPH08340277A (en) Spread spectrum receiver
JPH07240700A (en) Inverse spread spectrum circuit
JPH07240701A (en) Spread spectrum circuit and inverse spread spectrum circuit