JPH07240700A - Inverse spread spectrum circuit - Google Patents

Inverse spread spectrum circuit

Info

Publication number
JPH07240700A
JPH07240700A JP6030306A JP3030694A JPH07240700A JP H07240700 A JPH07240700 A JP H07240700A JP 6030306 A JP6030306 A JP 6030306A JP 3030694 A JP3030694 A JP 3030694A JP H07240700 A JPH07240700 A JP H07240700A
Authority
JP
Japan
Prior art keywords
signal
code
multiplier
spread
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6030306A
Other languages
Japanese (ja)
Inventor
Kazuhisa Ishiguro
和久 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6030306A priority Critical patent/JPH07240700A/en
Publication of JPH07240700A publication Critical patent/JPH07240700A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a spread code by the use of a simple configuration and implement inverse spread spectrum by using the code. CONSTITUTION:A phase of a reception signal subject to spread spectrum processing is compared with a phase of an output signal from a 1st multiplier 18 at a phase comparator 13. An output depending on the phase difference is fed to a VCXO 15 via an LPF 14. After an output signal of the VCXO 15 is subjected to frequency division by means of a frequency divider 16 and the result is applied to a spread code generation circuit 17 as a clock signal. The generated spread code is multiplied by an output signal of the VCXO 15 with a 1st multiplier 18 and the product is applied to the phase comparator 13. Thus, the spread code is synchronously with the reception signal and the spread code and the 2nd multiplier 19 are multiplied at a 2nd multiplier 19, in which inverse spread spectrum processing is implemented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、所定の符号によりスペ
クトル拡散された信号を逆拡散するスペクトル逆拡散回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrum despreading circuit for despreading a signal that has been spectrum spread by a predetermined code.

【0002】[0002]

【従来の技術】従来より、種々の無線通信方式が提案さ
れており、その中にスペクトル拡散通信方式がある。こ
のスペクトル拡散通信方式(特に、直接拡散方式)で
は、送信側において、情報信号で変調された1次変調信
号に拡散符号を乗算し、スペクトル拡散された信号を得
る。そして、このスペクトル拡散された信号を無線送信
する。一方、受信局側では、受信信号に拡散符号を乗算
することによって逆拡散して、受信信号を1次変調され
た信号に戻した後、これを復調して情報信号を得る。こ
のように、スペクトル拡散通信方式では、スペクトル拡
散された信号が無線通信されるため、所定周波数の電波
による無線通信との干渉を排除して通信を行うことがで
きる。
2. Description of the Related Art Conventionally, various wireless communication systems have been proposed, and a spread spectrum communication system is one of them. In this spread spectrum communication system (particularly, direct spread system), the transmission side multiplies the primary modulation signal modulated by the information signal by a spread code to obtain a spread spectrum signal. Then, the spectrum-spread signal is wirelessly transmitted. On the other hand, on the receiving station side, the received signal is despread by multiplying it by a spreading code, the received signal is returned to a primary modulated signal, and this is demodulated to obtain an information signal. As described above, in the spread spectrum communication method, since the spread spectrum signal is wirelessly communicated, it is possible to perform communication while eliminating interference with radio communication by radio waves of a predetermined frequency.

【0003】ここで、スペクトル拡散通信方式では、受
信信号を逆拡散しなければならない。そして、この逆拡
散のためには、受信側において発生した拡散符号を受信
信号中の拡散符号(受信拡散符号)に同期をとって乗算
しなければならない。このような受信信号を逆拡散する
回路としては、図2の如きDLL(ディレーロックルー
プ)と呼ばれるものがある。図2において、周波数変換
回路(1)で周波数変換された受信信号は乗算器(2)
及び(3)に印加され、PN(疑似雑音)符号発生器
(6)からの第1PN符号及び第1PN符号の1ビット
前の第2PN符号とそれぞれ乗算される。乗算器(2)
及び(3)の出力はそれぞれ包路線検波器(4)及び
(5)で検波された後、比較器(7)に印加され、比較
器(7)の比較結果に応じた出力は、LPF(ローパス
フィルタ)(8)を介して、VCXO(電圧制御型水晶
発振器)(9)に印加される。さらに、VCXO(9)
の出力信号は、PN符号発生器(6)に印加される。ま
た、第1PN符号は、遅延回路(10)でT/2だけ遅
延された後、乗算器(11)に印加され、受信信号と乗
算されることによってスペクトル逆拡散が行われる。尚
TはPN符号の1ビットに対応する時間である。
Here, in the spread spectrum communication system, the received signal must be despread. For this despreading, the spreading code generated on the receiving side must be multiplied by the spreading code in the received signal (reception spreading code) in synchronization. As a circuit for despreading such a received signal, there is one called a DLL (delay lock loop) as shown in FIG. In FIG. 2, the received signal whose frequency has been converted by the frequency conversion circuit (1) is the multiplier (2).
And (3) and multiplied by the first PN code from the PN (pseudo noise) code generator (6) and the second PN code one bit before the first PN code, respectively. Multiplier (2)
The outputs of (3) and (3) are detected by the envelope detectors (4) and (5), respectively, and then applied to the comparator (7), and the output according to the comparison result of the comparator (7) is LPF ( It is applied to a VCXO (voltage controlled crystal oscillator) (9) via a low pass filter (8). Furthermore, VCXO (9)
The output signal of is applied to the PN code generator (6). The first PN code is delayed by T / 2 in the delay circuit (10) and then applied to the multiplier (11) to be multiplied by the received signal to perform spectrum despreading. Note that T is the time corresponding to one bit of the PN code.

【0004】ところで、包路線検波器(4)及び(5)
の出力はそれぞれ図4(イ)及び(ロ)に示すように、
同期がとれている場合に高レベルになり、1ビット以上
ずれた時に出力が0になる三角波であり、両出力が印加
される比較器(7)の出力は図4(ハ)のような波形と
なる。尚、図4(ハ)の(a)点はPN符号発生器
(6)の2出力の同期の中間点である。よって、図2の
回路は、LPF(8)の出力レベルが図4(ハ)の
(a)点の如き0レベルとなるように、VCXO(9)
の出力信号の周波数が変化し、ロック状態となる。
By the way, the envelope detectors (4) and (5)
The output of is as shown in FIG. 4 (a) and (b), respectively.
It is a triangular wave which becomes high level when synchronized and becomes 0 when the output is shifted by 1 bit or more. The output of the comparator (7) to which both outputs are applied is the waveform as shown in FIG. Becomes The point (a) in FIG. 4C is an intermediate point between the two outputs of the PN code generator (6). Therefore, in the circuit of FIG. 2, the VCXO (9) is set so that the output level of the LPF (8) becomes 0 level such as the point (a) of FIG. 4C.
The frequency of the output signal of changes, and it becomes a lock state.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図2の
如き回路では、包路線検波器(4)及び(5)の出力が
1ビット以上の周期外れ時に0になるので、VCXO
(9)の入力信号が無くなり、図2の回路が同期状態に
なるまでに長時間を要していた。そこで、スライディン
グ相関器等の回路を付加して、図2の回路が短時間に同
期状態となるようにしていた為、回路が複雑になるとい
う問題があった。
However, in the circuit as shown in FIG. 2, since the outputs of the envelope detectors (4) and (5) become 0 when the cycle is out of one bit or more, the VCXO
It takes a long time for the circuit of FIG. 2 to become in a synchronous state because the input signal of (9) is lost. Therefore, since a circuit such as a sliding correlator is added so that the circuit of FIG. 2 is brought into a synchronized state in a short time, there is a problem that the circuit becomes complicated.

【0006】また、図2において、2つの乗算器(2)
及び(3)を用いた2つのループが構成されるので、ル
ープ利得が異っていると、比較器(7)の出力信号にオ
フセットが生じる。その為、図2のDLLがロックして
も、図4(ハ)の(a)点はPN符号発生器(6)の2
出力の同期点の中間にならないので、PN符号は受信信
号に同期せず、正しくスペクトル逆拡散が行えなかっ
た。
Further, in FIG. 2, two multipliers (2) are provided.
Since two loops using (3) and (3) are configured, if the loop gains are different, an offset occurs in the output signal of the comparator (7). Therefore, even if the DLL in FIG. 2 is locked, the point (a) in FIG. 4C is 2 in the PN code generator (6).
Since it was not in the middle of the output synchronization point, the PN code was not synchronized with the received signal and the spectrum despreading could not be performed correctly.

【0007】さらに、電界強度の強い受信信号が受信さ
れると、包路線検波器(4)及び(5)の出力が図4
(ニ)の如き波形となり同期点が検出されにくくなる。
そこで、前記出力が三角波出力となるように、受信信号
の電界強度を適当なレベルに調整するAGC回路を設け
る必要があった。その為、図2の回路は複雑になるとい
う問題があった。
Further, when a received signal having a strong electric field strength is received, the outputs of the envelope detectors (4) and (5) are changed to those shown in FIG.
The waveform becomes as shown in (d), and it becomes difficult to detect the synchronization point.
Therefore, it is necessary to provide an AGC circuit for adjusting the electric field strength of the received signal to an appropriate level so that the output becomes a triangular wave output. Therefore, there is a problem that the circuit of FIG. 2 becomes complicated.

【0008】[0008]

【課題を解決するための手段】本発明は上述の点に鑑み
成されたものであり、拡散符号によりスペクトル拡散さ
れた信号を逆拡散するスペクトル逆拡散回路において、
制御可能な発振器と、前記発振器の出力信号がクロック
として印加され、前記クロックに基づいて拡散符号を発
生する拡散符号発生回路と、前記拡散符号と前記発振器
の出力信号とを乗算する第1乗算器と、前記第1乗算器
の出力信号と受信信号との位相を比較し、前記発振器の
為の制御信号を発生する位相比較器と、前記受信信号と
前記拡散符号とを乗算する第2乗算器とを備えたことを
特徴とする。また、前記位相比較器、発振器及び第1乗
算器はPLLを構成することを特徴とする。
The present invention has been made in view of the above points, and in a spectrum despreading circuit for despreading a signal spread spectrum by a spread code,
A controllable oscillator, a spread code generating circuit for generating a spread code based on the clock, to which an output signal of the oscillator is applied, and a first multiplier for multiplying the spread code by the output signal of the oscillator. And a phase comparator for comparing the phases of the output signal of the first multiplier and the received signal to generate a control signal for the oscillator, and a second multiplier for multiplying the received signal and the spread code. It is characterized by having and. Further, the phase comparator, the oscillator, and the first multiplier form a PLL.

【0009】[0009]

【作用】本発明に依れば、第1乗算器の出力信号と受信
信号とが位相比較器に印加され、両信号の位相が比較さ
れる。比較差に応じた位相比較器の出力信号は発振器に
印加され、発振器が制御される。発振器の出力信号はク
ロックとして拡散符号発生回路に印加され、拡散符号発
生回路から拡散符号が発生する。前記拡散符号は第1乗
算器に印加され、発振器の出力信号と乗算されると共
に、第2乗算器に印加され、受信信号と乗算される。拡
散符号は受信信号に同期しているので、受信信号を正し
くスペクトル逆拡散できる。
According to the present invention, the output signal of the first multiplier and the received signal are applied to the phase comparator, and the phases of both signals are compared. The output signal of the phase comparator according to the comparison difference is applied to the oscillator to control the oscillator. The output signal of the oscillator is applied as a clock to the spread code generation circuit, and the spread code generation circuit generates the spread code. The spreading code is applied to the first multiplier and is multiplied by the output signal of the oscillator, and is also applied to the second multiplier and is multiplied by the received signal. Since the spreading code is synchronized with the received signal, the received signal can be correctly spectrum despread.

【0010】[0010]

【実施例】図1は本発明の一実施例を示す図であり、
(13)は位相比較器、(14)はLPF、(15)は
LPF(14)の出力信号によって制御されるVCX
O、(16)はVCXO(15)の出力信号を分周する
分周器、(17)は拡散符号を発生する拡散符号発生回
路、(18)は拡散符号とVCXO(15)の出力信号
とを乗算する第1乗算器、(19)は拡散符号と受信信
号とを乗算する第2乗算器、(20)は第2乗算器(1
9)の出力信号を復調する一次復調回路である。尚、従
来と同一の回路については、従来と同一符号を付し、説
明を省略する。
FIG. 1 is a diagram showing an embodiment of the present invention,
(13) is a phase comparator, (14) is an LPF, and (15) is a VCX controlled by the output signal of the LPF (14).
O, (16) is a frequency divider that divides the output signal of the VCXO (15), (17) is a spreading code generation circuit that generates a spreading code, and (18) is a spreading code and the output signal of the VCXO (15). A first multiplier for multiplying by, a (19) second multiplier for multiplying a spread code by a received signal, and (20) a second multiplier (1
It is a primary demodulation circuit for demodulating the output signal of 9). The same circuits as those in the related art are denoted by the same reference numerals as those in the related art, and description thereof will be omitted.

【0011】次に、図1の動作を図3の波形図を参照し
ながら説明する。送信側において所定の拡散符号を搬送
波信号に同期または非同期して発生させ、1次変調信号
を拡散符号によってスペクトル拡散された信号は、受信
側のアンテナを介して周波数変換器(1)に印加され
る。周波数変換器(1)で、受信信号は後段の回路で処
理され易いように、例えば、低い周波数に変換される。
周波数変換された信号SPS(図3(a))は、位相比
較器(13)及び第2乗算器(19)に印加される。こ
こで、信号SPSは、上述の如く、情報信号と拡散符
号、例えばPN符号を乗算した信号であり、正弦波の情
報信号に「1」又は「0」から成るPN符号を乗算すれ
ば、図3(a)の如き波形となる。
Next, the operation of FIG. 1 will be described with reference to the waveform chart of FIG. A signal in which a predetermined spreading code is generated at the transmitting side in synchronization with or asynchronously with a carrier signal and the primary modulation signal is spectrum-spread by the spreading code is applied to the frequency converter (1) via the antenna on the receiving side. It In the frequency converter (1), the received signal is converted into, for example, a low frequency so that it can be easily processed by the circuit in the subsequent stage.
The frequency-converted signal SPS (FIG. 3A) is applied to the phase comparator (13) and the second multiplier (19). Here, the signal SPS is a signal obtained by multiplying an information signal by a spread code, for example, a PN code as described above. If the sine wave information signal is multiplied by a PN code consisting of "1" or "0", The waveform is as shown in 3 (a).

【0012】位相比較器(13)において、信号SPS
と第1乗算器(18)の出力信号との位相が比較され、
位相差に応じた出力信号が発生する。位相比較器(1
3)の出力信号は、LPF(14)において平滑され、
制御信号としてVCXO(15)に印加される。VCX
O(15)から正弦波の信号CS(図3(b))が発生
し、制御信号に応じて信号CSの周波数が変化する。
尚、VCXO(15)の出力信号は正弦波だけでなく、
矩形波、三角波等であってもよい。
In the phase comparator (13), the signal SPS
And the phase of the output signal of the first multiplier (18) are compared,
An output signal is generated according to the phase difference. Phase comparator (1
The output signal of 3) is smoothed in the LPF (14),
It is applied to the VCXO (15) as a control signal. VCX
A sine wave signal CS (FIG. 3B) is generated from O (15), and the frequency of the signal CS changes according to the control signal.
The output signal of the VCXO (15) is not limited to a sine wave,
It may be a rectangular wave, a triangular wave, or the like.

【0013】その後、信号CSは分周器(16)及び第
1乗算器(18)に印加される。分周器(16)に印加
された信号CSは、所定の分周比で分周された後、拡散
符号発生回路(17)に印加される。拡散符号発生回路
(17)は、例えば、nビットのシフトレジスタから成
り、入力クロックとして印加された分周器(16)の出
力信号に応じて、記録されたデータを循環してシフトす
ることにより、拡張符号となるPN符号(図3(c))
を左端のシフトレジスタから発生する。PN符号は、さ
らに、第1及び第2乗算器(18)及び(19)に印加
される。
The signal CS is then applied to the frequency divider (16) and the first multiplier (18). The signal CS applied to the frequency divider (16) is frequency-divided at a predetermined frequency division ratio and then applied to the spread code generation circuit (17). The spread code generating circuit (17) is composed of, for example, an n-bit shift register, and circulates and shifts the recorded data according to the output signal of the frequency divider (16) applied as an input clock. , A PN code as an extension code (FIG. 3 (c))
From the leftmost shift register. The PN code is further applied to the first and second multipliers (18) and (19).

【0014】第1乗算器(18)において、VCXO
(15)からの信号CSと拡散符号発生回路(17)か
らのPN符号とが乗算される。PN符号は信号CSに基
づいて生成されているので、PN符号は信号CSと同期
している。よって、第1乗算器(18)から発生する信
号DS(図3(d))PN符号が送信側のPN符号と同
一にすれば、スペクトル拡散された信号、即ち、受信信
号SPSと同一な信号になる。信号DSは、図3(d)
の如く、方形波として第1乗算器(18)から発生し、
位相比較器(13)に印加される。その為、位相比較器
(13)においては、受信信号SPSと第1乗算器(1
8)の出力信号DSとが位相比較される。位相比較器
(13)、LPF(14)、VCXO(15)及び乗算
器(18)はPLLを構成し、PLLは位相比較器(1
3)の2つの入力信号SPSとDSとの位相が同期する
ように動作する。信号SPSと信号DSとが同期すれ
ば、PN符号が拡散符号発生器(7)から受信信号SP
Sに同期することになる。
In the first multiplier (18), VCXO
The signal CS from (15) is multiplied by the PN code from the spread code generating circuit (17). Since the PN code is generated based on the signal CS, the PN code is synchronized with the signal CS. Therefore, if the PN code of the signal DS (FIG. 3 (d)) generated from the first multiplier (18) is the same as the PN code of the transmission side, the spectrum-spread signal, that is, the same signal as the reception signal SPS. become. The signal DS is shown in FIG.
Generated as a square wave from the first multiplier (18),
It is applied to the phase comparator (13). Therefore, in the phase comparator (13), the received signal SPS and the first multiplier (1
The output signal DS of 8) is compared in phase. The phase comparator (13), the LPF (14), the VCXO (15) and the multiplier (18) form a PLL, and the PLL is the phase comparator (1
It operates so that the phases of the two input signals SPS and DS of 3) are synchronized. If the signal SPS and the signal DS are synchronized, the PN code is received from the spread code generator (7) by the received signal SP.
It will be synchronized with S.

【0015】第2乗算器(19)において、受信信号S
PSとPN符号とが乗算されることによって、スペクト
ル逆拡散が行われる。PN符号は上述の如き動作により
受信信号と同期が取られているので、第2乗算器(1
9)において、正しく逆拡散が行われ、さらに、逆拡散
された信号は1次復調回路で復調され、正しく情報信号
を得ることができる。
In the second multiplier (19), the received signal S
The spectrum despreading is performed by multiplying the PS and the PN code. Since the PN code is synchronized with the received signal by the operation as described above, the second multiplier (1
In 9), despreading is performed correctly, and the despread signal is demodulated by the primary demodulation circuit, so that an information signal can be correctly obtained.

【0016】ところで、受信側のPN符号が送信側のP
N符号と異っていると、信号DNは受信信号SPSと全
く異なる信号となる。その為、前記信号DNと信号SP
Sとが入力信号として位相比較器(13)に印加されて
も位相同期せず、拡散符号発生回路からのPN符号は受
信信号SPSに同期しない。従って、受信機は自己のP
N符号に等しいPN符号を有する受信信号のみを逆拡散
することができ、自他の識別能力を有する。
By the way, the PN code on the receiving side is the P code on the transmitting side.
If it is different from the N code, the signal DN becomes a completely different signal from the received signal SPS. Therefore, the signal DN and the signal SP
Even if S and S are applied as input signals to the phase comparator (13), the phases are not synchronized with each other, and the PN code from the spread code generation circuit is not synchronized with the received signal SPS. Therefore, the receiver has its own P
Only a received signal having a PN code equal to the N code can be despread, and it has its own discrimination capability.

【0017】また、受信信号と拡散符号とを同期させる
ために、広く一般に知られたPLLの手法を用いている
ので、スペクトル逆拡散回路の回路構成を簡単にするこ
とができる。そして、PLLのロックアップ時間を短く
することによって、同期するまでの時間を短くすること
ができる。さらに、位相比較器(13)としては、受信
信号のデューティが50%でないので、エッジ検出型の
ディジタル位相比較器を用いるとよい。
Since a widely known PLL method is used to synchronize the received signal and the spread code, the circuit configuration of the spectrum despreading circuit can be simplified. Then, by shortening the lockup time of the PLL, the time until the synchronization can be shortened. Further, as the phase comparator (13), since the duty of the received signal is not 50%, it is preferable to use an edge detection type digital phase comparator.

【0018】[0018]

【発明の効果】本発明に依れば、受信信号と同一の信号
を生成し、前記信号と受信信号との位相を一致させるこ
とにより、拡散符号を受信信号に同期させているので、
受信信号とPN符号とが1ビット以上外れていても、差
が発生する為、本願の回路は短時間で同期状態となるこ
とができ、また、簡単な回路を構成することができる。
According to the present invention, since the same signal as the received signal is generated and the phases of the signal and the received signal are matched, the spread code is synchronized with the received signal.
Even if the received signal and the PN code are deviated from each other by 1 bit or more, a difference occurs, so that the circuit of the present application can be brought into a synchronized state in a short time, and a simple circuit can be configured.

【0019】また、受信信号とそれに同一な信号との位
相を一致させるループが1つだけなので、ループゲイン
の差に起因するオフセットの問題が生じない。
Further, since there is only one loop for matching the phases of the received signal and the same signal, the problem of offset caused by the difference in loop gain does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】従来例を示すブロック図である。FIG. 2 is a block diagram showing a conventional example.

【図3】図1の各部の出力波形を示す波形図である。FIG. 3 is a waveform diagram showing output waveforms of respective parts of FIG.

【図4】図2の各部の出力波形を示す波形図である。FIG. 4 is a waveform diagram showing output waveforms of respective parts of FIG.

【符号の説明】[Explanation of symbols]

13 位相比較器 14 LPF 15 VCXO 16 分周器 17 拡散符号発生回路 18 第1乗算器 19 第2乗算器 13 phase comparator 14 LPF 15 VCXO 16 frequency divider 17 spreading code generation circuit 18 first multiplier 19 second multiplier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 拡散符号によりスペクトル拡散された信
号を逆拡散するスペクトル逆拡散回路において、 制御可能な発振器と、 前記発振器の出力信号がクロックとして印加され、前記
クロックに基づいて拡散符号を発生する拡散符号発生回
路と、 前記拡散符号と前記発振器の出力信号とを乗算する第1
乗算器と、 前記第1乗算器の出力信号と受信信号との位相を比較
し、前記発振器の為の制御信号を発生する位相比較器
と、 前記受信信号と前記拡散符号とを乗算する第2乗算器と
を備えたことを特徴とするスペクトル逆拡散回路。
1. A spectrum despreading circuit for despreading a signal spread spectrum by a spread code, wherein a controllable oscillator and an output signal of said oscillator are applied as a clock, and a spread code is generated based on said clock. A spreading code generating circuit, and a first multiplying the spreading code and an output signal of the oscillator
A multiplier, a phase comparator for comparing the phases of the output signal of the first multiplier and the received signal, and generating a control signal for the oscillator, and a second comparator for multiplying the received signal by the spread code. A spectrum despreading circuit comprising a multiplier.
【請求項2】 前記位相比較器、発振器及び第1乗算器
はPLLを構成することを特徴とする請求項1記載のス
ペクトル逆拡散回路。
2. The spectrum despreading circuit according to claim 1, wherein the phase comparator, the oscillator, and the first multiplier form a PLL.
JP6030306A 1994-02-28 1994-02-28 Inverse spread spectrum circuit Pending JPH07240700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030306A JPH07240700A (en) 1994-02-28 1994-02-28 Inverse spread spectrum circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030306A JPH07240700A (en) 1994-02-28 1994-02-28 Inverse spread spectrum circuit

Publications (1)

Publication Number Publication Date
JPH07240700A true JPH07240700A (en) 1995-09-12

Family

ID=12300089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030306A Pending JPH07240700A (en) 1994-02-28 1994-02-28 Inverse spread spectrum circuit

Country Status (1)

Country Link
JP (1) JPH07240700A (en)

Similar Documents

Publication Publication Date Title
US5793794A (en) Spread spectrum receiving apparatus
US5303258A (en) Spread spectrum communications system
US5375141A (en) Synchronizing circuit in a spread spectrum communications system
US5903593A (en) Spread spectrum signal receiver
JPH07240700A (en) Inverse spread spectrum circuit
JPH07297757A (en) Spread spectrum receiver
JP2732102B2 (en) Spread spectrum communication equipment
JP3183492B2 (en) Spread spectrum receiver
JP3183493B2 (en) Spread spectrum receiver
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2770995B2 (en) Receiver for spread spectrum communication
KR950006699B1 (en) The timing reconstruction circuit of asynchronious ds/ss system receiver
KR950011080B1 (en) The asynchronic digital receving system of spread-spectrum communication method
JP3234446B2 (en) Spread spectrum signal demodulator
JPH11122216A (en) Spread spectrum communication receiver and its synchronization establishment method
JP2682363B2 (en) Spread spectrum modulation and / or demodulation device
JPH07240701A (en) Spread spectrum circuit and inverse spread spectrum circuit
JPH07297756A (en) Spread spectrum receiver
JPH07154296A (en) Spread spectrum communication system and spread spectrum receiver
JPH07297755A (en) Spread spectrum receiver
JPH07170211A (en) Code synchronizing circuit
JP2591401B2 (en) Spread spectrum wireless communication equipment
JPH07154295A (en) Spread spectrum communication system and spread spectrum receiver
JPH07154293A (en) Spread spectrum signal demodulator
JPH09270738A (en) Spread spectrum receiver