JPH05219012A - Demodulation device for synchronous type spread spectrum modulated wave - Google Patents

Demodulation device for synchronous type spread spectrum modulated wave

Info

Publication number
JPH05219012A
JPH05219012A JP4207292A JP4207292A JPH05219012A JP H05219012 A JPH05219012 A JP H05219012A JP 4207292 A JP4207292 A JP 4207292A JP 4207292 A JP4207292 A JP 4207292A JP H05219012 A JPH05219012 A JP H05219012A
Authority
JP
Japan
Prior art keywords
output
carrier
spread
modulated wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4207292A
Other languages
Japanese (ja)
Other versions
JP2689806B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Takahisa Matsumoto
卓久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4207292A priority Critical patent/JP2689806B2/en
Publication of JPH05219012A publication Critical patent/JPH05219012A/en
Application granted granted Critical
Publication of JP2689806B2 publication Critical patent/JP2689806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the demodulation device for the synchronous type SS modulated wave which eliminates the interference disturbance of conventional technology in principle. CONSTITUTION:This device is equipped with an inverse spreading means 3 which inversely spreads a spread spectrum modulated wave by multiplying it by a spread code outputted from a spread code generator 27, a synchronism detecting means 4 which detects the synchronism of the obtained inverse spread modulation output, and a carrier regenerating means 50 which regenerates a carrier according to the obtained inverse spread demodulation output. Further, the device is equipped with frequency dividing means 26 and 27 which divide the frequency of the regenerated carrier to generate clock signals for a spread code generator, suppressing means 49 and 41 which suppress and remove spread noise components in the synchronism detection output, a synchronism detecting means 34 which performs synchronism detection as sliding correlation synchronism acquisition for the output signals of the suppressing means, and control means 35 and Sw which control the number of frequency divisions of the regenerated carrier of the frequency dividing means by using the obtained synchronism detection signal as a control signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、キャリヤ変調された同
期型のスペクトル拡散(以下“SS”と略記する)変調
波を復調する復調装置に係り、特に、同期保持機能を不
要とした、同期型SS変調波の復調装置(以下単に「復
調装置」とも記述する)に関する。なお、以下の説明に
おいては、本発明の復調装置を、通信機器の受信部に適
用するものとし、必要に応じて送信部(変調回路)の説
明も行なうことにする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demodulator for demodulating a carrier-modulated synchronous spread spectrum (abbreviated as "SS" hereinafter) modulated wave, and more particularly to a synchronous demodulator that does not require a sync holding function. Type SS modulated wave demodulator (hereinafter also simply referred to as "demodulator"). In the following description, the demodulation device of the present invention is applied to the receiving section of communication equipment, and the transmitting section (modulation circuit) will be described as necessary.

【0002】[0002]

【技術的背景】近年になり、SS通信において、SS技
術による多元接続法を用いた移動体通信が実用域に達し
て来ている。その主な理由は、電波資源は有限なので周
波数を有効に利用する必要があり、これに対してSS信
号は技術の進歩により周波数利用効率の向上に寄与でき
ることが立証されつつあること等による。特に、SS信
号は広い周波数帯域に拡散されて、変調波のパワースペ
クトル密度が非常に小さいので、他の従来の通信電波等
に与える影響は少なく、従って既存の通信周波数帯での
混用が可能になるため、その面でのメリットも大きい。
これらの理由により、SSによる無線通信も身近になり
つつあり、今後、車両等に搭載しての移動体間通信応用
など、その将来性や発展性を待望されている。
TECHNICAL BACKGROUND In recent years, in SS communication, mobile communication using the multiple access method by SS technology has reached a practical range. The main reason for this is that it is necessary to effectively use the frequency because the radio wave resource is finite, whereas it is being proved that the SS signal can contribute to the improvement of the frequency utilization efficiency due to the progress of the technology. In particular, the SS signal is spread over a wide frequency band and the power spectrum density of the modulated wave is very small, so there is little effect on other conventional communication radio waves, etc. Therefore, it can be mixed in existing communication frequency bands. Therefore, the advantage in that respect is also great.
For these reasons, wireless communication by SS is becoming more and more familiar, and in the future, its future potential and developability such as application of communication between mobile bodies mounted on a vehicle are expected.

【0003】[0003]

【従来の技術】SS通信において、受信における同期捕
捉と同期保持は基本的に必要なものであり、今までに種
々の同期捕捉,保持方法が提案され、また、実用化され
ている。その中で、変調時に1次変調であるPSK(Pha
se Shift Keying)変調用キャリヤと、2次変調であるS
S変調に用いられる拡散符号用クロック信号とに同期関
係を持たせてSS変調を行う、同期型SS変調,復調方
式も、受信復調において回路構成を多少簡素化できる方
式として知られている。かかる従来技術について、図1
乃至図5を併せ参照して説明する。
2. Description of the Related Art In SS communication, synchronization acquisition and synchronization holding in reception are basically necessary, and various synchronization acquisition and holding methods have been proposed and put to practical use. Among them, PSK (Pha (Pha
se Shift Keying) Carrier for modulation and S that is secondary modulation
The synchronous SS modulation and demodulation method, in which the SS modulation is performed in a synchronous relationship with the spread code clock signal used for the S modulation, is also known as a method in which the circuit configuration can be somewhat simplified in the reception demodulation. Regarding such a conventional technique, FIG.
The description will be made with reference to FIGS.

【0004】図1は本復調装置用の送信信号を生成する
送信部側の変調装置の回路構成を、図2は従来の同期型
SS変調波の復調装置の回路構成を、図3はDLL(遅
延ロックループ)型同期保持回路の主要部となる信号処
理回路の具体的回路構成を、図4はDLL型同期保持回
路における同期保持特性を、図5はスライディング相関
型同期捕捉動作を示す相関特性を、夫々示している。
FIG. 1 shows a circuit configuration of a modulator on the side of a transmission section for generating a transmission signal for the present demodulator, FIG. 2 shows a circuit configuration of a conventional demodulator for a synchronous SS modulated wave, and FIG. FIG. 4 shows a specific circuit configuration of a signal processing circuit which is a main part of a delay lock loop) type synchronization holding circuit, FIG. 4 shows a synchronization holding characteristic in the DLL type synchronization holding circuit, and FIG. 5 shows a correlation characteristic showing a sliding correlation type synchronization acquisition operation. Are shown respectively.

【0005】先ず、図1に示したSS変調装置について
説明を行う。入力端子In1 からデータ等の情報信号d
(t) が、発振器19からはPSK変調用のキャリヤ cos
ωtが、夫々PSK変調用の乗算器9に供給され、ここ
で情報d(t) のPSK変調が行なわれて、PSK変調波
d(t)cosωtが得られる。更に、発振器出力を分周器2
5に供給してクロック信号を作り、これを基に拡散符号
発生器(PNG)48にて拡散符号p(t) を生成してい
る。従って、出力される拡散符号p(t) は、上記キャリ
ヤ cosωtと同期関係が保たれる。かかる拡散符号p
(t) は拡散変調用の乗算器10に供給され、ここでSS
(スペクトル拡散)変調が行なわれてSS変調波p(t)*
d(t)cosωtが生成され、BPF(帯域濾波器)11を
介して出力端子Out1より出力され、図示しないアンテナ
から発信される。
First, the SS modulator shown in FIG. 1 will be described. Information signal d such as data from the input terminal In1
(t) is the carrier cos for PSK modulation from the oscillator 19.
ωt is supplied to the multiplier 9 for PSK modulation, and the PSK modulation of the information d (t) is performed here, and the PSK modulated wave d (t) cosωt is obtained. Furthermore, the oscillator output is divided by the frequency divider 2
5, a clock signal is generated, and a spread code generator (PNG) 48 generates a spread code p (t) based on the clock signal. Therefore, the spread code p (t) that is output is kept in synchronization with the carrier cosωt. Spread code p
(t) is supplied to the multiplier 10 for spread modulation, where SS
(Spread spectrum) modulation is performed and SS modulated wave p (t) *
d (t) cosωt is generated, is output from the output terminal Out1 via the BPF (bandpass filter) 11, and is transmitted from an antenna (not shown).

【0006】次に復調動作について、図2を参照し乍ら
説明する。上記SS変調波は受信機側のアンテナ(図示
せず)で受信されて、入力端子In2 よりBPF12を介
して、スライディング相関及び逆拡散復調兼用の乗算器
3と、DLL型同期保持用信号処理回路(以下単に「D
LL用信号処理回路」等と記載する)36に供給され
る。乗算器3にはPNG(拡散符号発生器)47にて生
成される拡散符号も供給されており、この拡散符号用の
クロック信号は、同期捕捉されるまでには同期保持時に
比較してやゝ高めにVCO(電圧制御発振器)21より
設定されている。従って、スライディング相関と逆拡散
復調は時系列的に行なわれる。
Next, the demodulation operation will be described with reference to FIG. The SS modulated wave is received by an antenna (not shown) on the receiver side, and a multiplier 3 for both sliding correlation and despreading demodulation via an input terminal In2 and a BPF 12 and a DLL-type synchronization holding signal processing circuit. (Hereafter, simply "D
LL signal processing circuit "). A spreading code generated by a PNG (spreading code generator) 47 is also supplied to the multiplier 3, and the clock signal for this spreading code is slightly higher than that at the time of holding the synchronization until the synchronization is acquired. It is set by a VCO (voltage controlled oscillator) 21. Therefore, the sliding correlation and the despread demodulation are performed in time series.

【0007】ここで、同期捕捉(確立)に至る動作を説
明する。BPF12にて不要な周波数帯域成分を減衰乃
至除去された入力SS変調波p(t)*d(t)cosωtは、乗
算器3において拡散符号発生器47からの拡散符号p
(t) との乗算による相関が行われる。この拡散符号p
(t) は受信側のPNG48で生成される拡散符号p(t)
に比べ、実際には時間τの遅延を有するp(t−τ)であ
り、これをp(t) の文字pの上にΛ(ハット)を付けて
表記するが、ここでは電子出願における使用可能文字の
制約上から、“ρ(t) ”で表わすことにする。従って、
乗算器3からの乗算出力はp(t)*ρ(t)*d(t)cosωtと
なる。
The operation leading to synchronization acquisition (establishment) will now be described. The input SS modulated wave p (t) * d (t) cosωt from which unnecessary frequency band components have been attenuated or removed by the BPF 12 is used by the spread code p from the spread code generator 47 in the multiplier 3.
Correlation is performed by multiplication with (t). This spreading code p
(t) is the spread code p (t) generated by the PNG 48 on the receiving side.
Is actually p (t−τ) having a delay of time τ, and is represented by adding Λ (hat) on the letter p of p (t), but here it is used in electronic applications. Due to the restriction of possible characters, it is represented by "ρ (t)". Therefore,
The multiplication output from the multiplier 3 is p (t) * ρ (t) * d (t) cosωt.

【0008】かかる乗算出力は乗算器7,8に供給さ
れ、乗算器7ではVCO22からの再生キャリヤ cos
(ωt-φ)との乗算による同期検波が行われる。従っ
て、乗算器7からは(1/2)p(t)*ρ(t)*d(t)*{cosφ+c
os(2ωt-φ)}なる信号が出力され、次段のLPF(低域
濾波器)15でp(t)*ρ(t)*d(t)cos(2ωt-φ)/2成
分が除去されて、p(t)*ρ(t)*d(t)cosφとなる。φの
値が0に近い値であれば、LPF15出力p(t)*ρ(t)*
d(t)cosφはほぼ 1/2のレベルとなる。一方、乗算器5
には、電圧制御発振器(VCO)22よりの再生キャリ
ヤ cos(ωt-φ)が、π/2位相シフト回路23にて位相
をπ/2シフトされたsin(ωt-φ)なるキャリヤが供給さ
れている。
The multiplication output is supplied to the multipliers 7 and 8, and the reproduction carrier cos from the VCO 22 is supplied to the multiplier 7.
Synchronous detection is performed by multiplication with (ωt-φ). Therefore, from the multiplier 7, (1/2) p (t) * ρ (t) * d (t) * {cosφ + c
os (2ωt-φ)} is output, and the LPF (low-pass filter) 15 at the next stage removes p (t) * ρ (t) * d (t) cos (2ωt-φ) / 2 components. As a result, p (t) * ρ (t) * d (t) cosφ is obtained. If the value of φ is close to 0, the LPF15 output p (t) * ρ (t) *
The level of d (t) cosφ is about 1/2. On the other hand, the multiplier 5
Is supplied with a carrier of regenerated carrier cos (ωt-φ) from the voltage controlled oscillator (VCO) 22 and sin (ωt-φ) whose phase is shifted by π / 2 in the π / 2 phase shift circuit 23. ing.

【0009】従って、乗算器5の出力は(−1/2)p(t)*
ρ(t)d(t)*{sinφ+sin(2ωt-φ)}となり、LPF16
からは−p(t)*ρ(t)sinφが出力されるが、実際のレベ
ルは0に近くなっている。LPF15とLPF16の出
力は共に乗算器6に供給され、ここで乗算が行なわれ
て、その出力はp2 (t)ρ2 (t)*d2 (t)*(-1/2)sin2φ
なる誤差信号として得られる。かかる誤差信号は、更に
ループの応答時定数を決めるループフィルタ24にて−
Ksin2φなる誤差信号に変換された後、VCO22に制
御用信号として供給される。このような一巡の位相同期
ループからなるキャリヤ再生回路50では、入力キャリ
ヤに同期してPSK復調を同時に行うことができるわけ
である。
Therefore, the output of the multiplier 5 is (-1/2) p (t) *.
ρ (t) d (t) * {sinφ + sin (2ωt-φ)}, and LPF16
Outputs -p (t) * ρ (t) sin φ, but the actual level is close to zero. The outputs of the LPF 15 and LPF 16 are both supplied to the multiplier 6, where multiplication is performed and the output is p 2 (t) ρ 2 (t) * d 2 (t) * (-1/2) sin2φ
Is obtained as an error signal. Such an error signal is further reduced by the loop filter 24 which determines the response time constant of the loop.
After being converted into an error signal of Ksin2φ, it is supplied to the VCO 22 as a control signal. In the carrier reproducing circuit 50 composed of such a round of phase locked loop, PSK demodulation can be simultaneously performed in synchronization with the input carrier.

【0010】通信装置における受信部の電源オン後、最
初に働きだすのはこのキャリヤ再生回路50であり、従
って、キャリヤ再生の後、LPF15より得られる相関
出力p(t)*ρ(t) 、即ち、図5のt0 点を中心とする3
角出力特性に基づく出力は、スライディング相関の同期
捕捉用のスレシュホールドレベル検出回路34に供給さ
れ、ここで同期捕捉点SHL を検出された後、更に出力
(波形)整形回路35に供給され、同期捕捉時より一定
の直流出力を得ている。この直流出力は加算回路42に
供給され、ここでDLL用信号処理回路36からの相関
出力と加算された後、VCO21に供給される。得られ
た加算出力によってVCO21は制御され、制御された
電圧制御発振出力は、正規の同期保持時の拡散符号を発
生させるためのクロック信号となる。
It is this carrier regeneration circuit 50 that first starts to work after the power of the receiving section in the communication device is turned on. Therefore, after carrier regeneration, the correlation output p (t) * ρ (t) obtained from the LPF 15, That is, 3 centered at the point t 0 in FIG.
The output based on the angular output characteristic is supplied to the threshold level detection circuit 34 for synchronous acquisition of sliding correlation, and after the synchronous acquisition point SHL is detected here, the output is further supplied to the output (waveform) shaping circuit 35 for synchronization. A constant DC output is obtained from the time of capture. This DC output is supplied to the adder circuit 42, where it is added to the correlation output from the DLL signal processing circuit 36 and then supplied to the VCO 21. The VCO 21 is controlled by the obtained addition output, and the controlled voltage-controlled oscillation output becomes a clock signal for generating the spread code at the time of normal synchronization holding.

【0011】次に、同期保持動作について説明する。入
力SS変調波はBPF12を介してDLL用信号処理回
路36に供給されるが、ここで、DLL用信号処理回路
36の具体的回路例を図3に示して、機能,動作を説明
する。上記SS変調波は入力端子In3 より乗算器7,8
に供給される。一方、入力端子In4 には、前記乗算器3
に供給される正規の拡散符号p(t) よりも位相がΔt早
いp(t−Δt)なる拡散符号(イ)が、入力端子In5 には
Δt遅いp(t+Δt)なる拡散符号(ロ)が、PNG47
より夫々供給されている。なお、ΔtはSS方式では拡
散符号の1ビット分の時間,即ち1チップ時間なので、
乗算器7の出力は正規動作時の逆拡散出力であるPSK
変調波であり、これを伝送できる狭帯域特性のBPF4
3を介して絶対値回路(又はエンベロープ検出回路)3
8に供給される。
Next, the synchronization holding operation will be described. The input SS modulated wave is supplied to the DLL signal processing circuit 36 via the BPF 12. Here, a specific circuit example of the DLL signal processing circuit 36 is shown in FIG. The SS modulated wave is input from the input terminal In3 to the multipliers 7 and 8
Is supplied to. On the other hand, the multiplier 3 is connected to the input terminal In4.
The spread code (a) whose phase is Δt earlier than that of the regular spread code p (t) supplied to (a) and the spread code (b) which is delayed by Δt p (t + Δt) are input terminal In5. , PNG47
More supplied respectively. In the SS method, Δt is the time for one bit of the spread code, that is, one chip time, so
The output of the multiplier 7 is PSK which is the despreading output during normal operation.
It is a modulated wave, and it has a narrow band characteristic that can be transmitted.
Absolute value circuit (or envelope detection circuit) 3
8 are supplied.

【0012】同様に、乗算器8の出力もBPF44を介
して絶対値回路39に供給されている。従って、絶対値
回路38の出力は、近似的にキャリヤ周波数の2倍の成
分にp(t)*p(t−Δt)が乗じられた信号となり、絶対値
回路39出力も同様にキャリヤ周波数の2倍の成分にp
(t)*p(t+Δt)が乗じられた信号として得られる。夫々
の出力信号は引算回路40に供給されて引算出力される
が、その特性は図4に示す逆S字型の相関特性となり、
点(C) は同期保持点である。このようにして得られた相
関出力は、これを制御信号に加工するためのループフィ
ルタ28を介して出力端子Out3より出力され、図2の加
算回路42にて前記波形整形回路35の出力と加算され
た後VCO21に供給され、同期の保持が行われる。
Similarly, the output of the multiplier 8 is also supplied to the absolute value circuit 39 via the BPF 44. Therefore, the output of the absolute value circuit 38 becomes a signal which is obtained by multiplying the component of twice the carrier frequency by p (t) * p (t-Δt), and the output of the absolute value circuit 39 similarly shows the carrier frequency. P for double component
It is obtained as a signal multiplied by (t) * p (t + Δt). The respective output signals are supplied to the subtraction circuit 40 to be subtracted, and the characteristics thereof are inverse S-shaped correlation characteristics shown in FIG.
Point (C) is a synchronization holding point. The correlation output thus obtained is output from the output terminal Out3 via the loop filter 28 for processing this into a control signal, and is added to the output of the waveform shaping circuit 35 by the adder circuit 42 of FIG. After that, it is supplied to the VCO 21 and the synchronization is maintained.

【0013】[0013]

【発明が解決しようとする課題】かかる従来の復調装置
では、キャリヤ再生用のVCO22とクロック発生用V
CO21の双方に発振器を必要とし、又、同期保持回路
も併用しなければならない等、回路の複雑化や回路規模
の増大化などにより、回路を安定に動作させるのが困難
になる等の課題が生じていた。
In such a conventional demodulator, the VCO 22 for carrier reproduction and the VCO for clock generation are used.
There is a problem that it is difficult to operate the circuit stably due to the complexity of the circuit and the increase of the circuit scale because an oscillator is required for both of the CO 21 and a synchronization holding circuit must be used together. It was happening.

【0014】[0014]

【課題を解決するための手段】本発明の復調装置は、ス
ペクトル拡散変調波を拡散符号発生器より出力される拡
散符号と乗算することにより逆拡散する逆拡散手段と、
得られた逆拡散復調出力の同期検波を行なう同期検波手
段と、得られた逆拡散復調出力を基にキャリヤを再生す
るキャリヤ再生手段と、得られた再生キャリヤを分周し
て拡散符号発生器用のクロック信号を生成する分周手段
と、上記同期検波出力中の拡散ノイズ成分を抑圧乃至除
去する抑圧手段と、抑圧手段の出力信号のスライディン
グ相関同期捕捉としての同期検出を行なう同期検出手段
と、得られた同期検出信号を制御信号として上記分周手
段の再生キャリヤ分周数を制御する制御手段とを備えて
構成することにより、前記課題を解消した。
A demodulation device of the present invention comprises despreading means for despreading by multiplying a spread spectrum modulated wave by a spread code output from a spread code generator,
Synchronous detection means for performing synchronous detection of the obtained despread demodulation output, carrier reproduction means for reproducing a carrier based on the obtained despread demodulation output, and for the spreading code generator by dividing the obtained reproduced carrier. A frequency dividing means for generating a clock signal, a suppressing means for suppressing or eliminating a diffusion noise component in the synchronous detection output, a synchronous detecting means for performing synchronous detection as a sliding correlation synchronous acquisition of the output signal of the suppressing means, The above-mentioned problem is solved by comprising the control means for controlling the reproduction carrier frequency division number of the frequency division means by using the obtained synchronization detection signal as a control signal.

【0015】[0015]

【実施例】本発明の復調装置の一実施例の構成及び動作
について、図6に示した構成例に沿って、図8の拡散ノ
イズ抑圧動作説明用スペクトル図と共に説明する。図6
において、19は補正フィルタ(通常LPFを使用)、
20は逆数化回路、Swは切換えスイッチ、26,27は
入力信号を夫々1/N1 及び1/N2 に分周する分周器、4
9は拡散ノイズ再生部であり、図2に示した従来装置と
同一構成部分には同一符号を付してその詳細な説明を省
略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and operation of one embodiment of the demodulation device of the present invention will be described along with the configuration example shown in FIG. 6 together with the spectrum diagram for explaining the spreading noise suppressing operation of FIG. Figure 6
In, 19 is a correction filter (usually using LPF),
Reference numeral 20 is an inverse circuit, Sw is a changeover switch, 26 and 27 are frequency dividers for dividing the input signal into 1 / N 1 and 1 / N 2 , respectively.
Reference numeral 9 is a diffused noise reproducing unit, and the same components as those of the conventional apparatus shown in FIG.

【0016】図6に示す復調装置1の入力端子In2 に入
来するSS信号には、時としてBPF12でも除去され
ない干渉波が伝送中に混入{図8(A) 参照}することが
ある。かかる干渉波をI(t)= cosεtとすると、入力S
S信号はp(t)*d(t)cosωt+ cosεtとなり、BPF
12にて拡散変調波の高域成分等が除去されて{p(t)-
p'(t)}*d(t)cosωt+cosεtとなり、逆拡散及びスラ
イディング相関兼用の乗算器3に供給される。
Interference waves that are not removed even by the BPF 12 may sometimes be mixed into the SS signal coming into the input terminal In2 of the demodulator 1 shown in FIG. 6 during transmission {see FIG. 8 (A)}. If such an interference wave is I (t) = cosεt, the input S
The S signal is p (t) * d (t) cosωt + cosεt, and the BPF
At 12, the high frequency components of the spread modulated wave are removed and {p (t)-
p ′ (t)} * d (t) cosωt + cosεt, which is supplied to the multiplier 3 which also serves as despreading and sliding correlation.

【0017】復調装置1における同期が確立した場合に
は、PNG47にて生成される拡散符号はp(t) であ
り、補正フィルタ19により{p(t)-p'(t)}となり、
更に逆数化回路20にて{p(t)-p'(t)}-1とされて、
乗算器3に供給される。従って、乗算器3の出力はd
(t)cosωt+ cosεt/{p(t)-p'(t)}{図8(B) 参
照}となって、同期検波用の乗算器4及び狭帯域通過特
性を有するBPF13に供給される。
When synchronization is established in the demodulator 1, the spreading code generated by the PNG 47 is p (t), and the correction filter 19 produces {p (t) -p '(t)}.
Further, in the reciprocal conversion circuit 20, it is set to {p (t) -p '(t)} -1 ,
It is supplied to the multiplier 3. Therefore, the output of the multiplier 3 is d
(t) cosωt + coseqt / {p (t) -p '(t)} (see FIG. 8B) is supplied to the multiplier 4 for synchronous detection and the BPF 13 having a narrow band pass characteristic.

【0018】乗算器4ではVCO22より出力される同
期検波用キャリヤ cos(ωt-φ)との乗算が行なわれ
て、d(t)cosωφ+ cos(ωt−εt+φ)/{p(t)-
p'(t)}となり、LPF17を介して拡散ノイズ再生部
49及び引算回路41に出力される。なお、LPF17
の遮断周波数は拡散周波数帯域を十分伝送できる周波数
に選定されている。また、上記信号式中の振幅の変化に
ついては、便宜上省略している。
The multiplier 4 multiplies the carrier for coherence detection cos (ωt-φ) output from the VCO 22 and d (t) cosωφ + cos (ωt-εt + φ) / {p (t)-
p ′ (t)}, and is output to the diffusion noise reproducing unit 49 and the subtraction circuit 41 via the LPF 17. In addition, LPF17
The cutoff frequency of is selected as a frequency that can sufficiently transmit the spread frequency band. Further, the change in the amplitude in the above signal expression is omitted for convenience.

【0019】ここで、拡散ノイズ再生部49の具体的構
成及び機能について、図7を併せ参照して説明する。図
7は拡散ノイズ再生部49の一構成例を示すブロック図
であり、図7における各入力信号 (a)〜(c) は図6に記
載のものと対応している。図7において、30は復調情
報除去用の高域濾波器(HPF)、31はイコライザ等
を含んで構成される周波数特性補正回路である。
Here, the specific structure and function of the diffused noise reproducing section 49 will be described with reference to FIG. FIG. 7 is a block diagram showing an example of the configuration of the diffusion noise reproducing section 49, and the input signals (a) to (c) in FIG. 7 correspond to those shown in FIG. In FIG. 7, reference numeral 30 is a high-pass filter (HPF) for demodulation information removal, and 31 is a frequency characteristic correction circuit including an equalizer and the like.

【0020】上記LPF17からの出力は、入力端子In
6 を介してHPF30に供給される。HPF30では、
復調情報の周波数帯に存在する全ての信号成分が除去さ
れ{図8(C) 参照}、乗算器29に出力される。乗算器
29では補正フィルタ19の出力{p(t)-p'(t)}との
乗算が行われ{図8(D) 参照}、乗算器28の一方の入
力端子に出力される。乗算器28の他方の入力端子に
は、LPF14を通過した逆数化拡散符号{p(t)-p'
(t)}-1が供給されている。LPF14は逆数化拡散符
号の周波数スペクトルのメインローブの高域部及びサイ
ドローブを除去するために用いている。従って、逆数化
拡散符号のメインローブの中低域成分{図8(E)参照}
のみが乗算器28には供給されることになり、従って、
乗算器28からは、HPF30により損失している復調
情報の周波数帯域成分が部分的に復元されたもの{図8
(F) 参照}が出力される。
The output from the LPF 17 is the input terminal In
It is supplied to the HPF 30 via 6. In HPF30,
All signal components existing in the frequency band of the demodulation information are removed {see FIG. 8 (C)} and output to the multiplier 29. The multiplier 29 multiplies the output of the correction filter 19 {p (t) -p '(t)} (see FIG. 8D) and outputs the result to one input terminal of the multiplier 28. At the other input terminal of the multiplier 28, the reciprocal spread code {p (t) -p ′ that has passed through the LPF 14 is sent.
(t)} -1 is supplied. The LPF 14 is used to remove the high band part and the side lobe of the main lobe of the frequency spectrum of the reciprocal spread code. Therefore, the low- and middle-frequency components of the main lobe of the reciprocal spreading code {see FIG. 8 (E)}
Only the multiplier 28 will be fed to it, thus
The frequency band component of the demodulation information lost by the HPF 30 is partially restored from the multiplier 28 (FIG. 8).
(F) Reference} is output.

【0021】かかる部分復元出力は周波数特性補正回路
31に供給され、ここで必要周波数帯域における部分復
元を完全復元に補正されて、復元複合成分{図8(G) 参
照}として出力される。この復元された複合成分は出力
端子Out4を介して図6の引算回路41に供給され、ここ
で上記乗算器4(LPF17)からのスライディング相
関出力との引算が行われ、複合成分は相殺されて大幅に
減衰される{図8(H)参照}。即ち、相関時の相関出力
と相関動作時間に生じる複合成分(拡散ノイズ)より、
拡散ノイズの抑圧されたCN比(信号対雑音比)の良い
相関出力が得られ、更にLPF18にて拡散ノイズは略
完全に除去されて{図8(I) 参照}端子Out2より出力さ
れると共に、同期判定回路(同期捕捉用スレシュホール
ドレベル検出回路)34に供給される。
The partial restoration output is supplied to the frequency characteristic correction circuit 31, where the partial restoration in the required frequency band is corrected to complete restoration and is output as a restored composite component {see FIG. 8 (G)}. This restored composite component is supplied to the subtraction circuit 41 of FIG. 6 through the output terminal Out4, where it is subtracted from the sliding correlation output from the multiplier 4 (LPF17) to cancel the composite component. And is greatly attenuated (see FIG. 8 (H)). That is, from the complex output (diffuse noise) generated in the correlation output and the correlation operation time at the time of correlation,
A good correlation output with a CN ratio (signal-to-noise ratio) in which the spread noise is suppressed is obtained, and the spread noise is almost completely removed by the LPF 18, and is output from the terminal Out2 of {see FIG. 8 (I)}. , To a synchronization determination circuit (synchronization acquisition threshold level detection circuit) 34.

【0022】同期判定回路34では同期捕捉点SHL(図5
参照)を検出した後、これを整形回路35に供給して、
同期捕捉時より一定の直流出力を得ている。この直流出
力は切換えスイッチSwの切換え動作制御信号用として用
いられており、直流出力が発生するとスイッチSwを分周
器26側に接続して、分周器26からの正規のクロック
信号を拡散符号発生器(PNG)47に供給するように
なる。これによりPNG47より出力される拡散符号は
p(t) となり、乗算器3において正規の逆拡散が行われ
るようになる。
In the synchronization determination circuit 34, the synchronization acquisition point SHL (see FIG.
(See reference), and then supplies this to the shaping circuit 35,
A constant DC output is obtained from the time of synchronization acquisition. This DC output is used for the switching operation control signal of the changeover switch Sw. When the DC output is generated, the switch Sw is connected to the frequency divider 26 side, and the regular clock signal from the frequency divider 26 is spread coded. It is supplied to the generator (PNG) 47. As a result, the spreading code output from the PNG 47 becomes p (t), and the normal despreading is performed in the multiplier 3.

【0023】即ち、整形回路35の出力信号はSS同期
が確立しているときに発生し、非同期時には発生しな
い。このような機能により、SS変調波に何等かの強烈
な妨害が発生して、SS方式のプロセス利得を超えるよ
うな事態が生じた場合には、SS同期は保持されなくな
り、妨害波のレベルがSS同期レベル(同期捕捉点SHL)
まで下がった際に、スライディング相関動作に切り替え
るよう動作する。
That is, the output signal of the shaping circuit 35 is generated when SS synchronization is established, and is not generated when it is asynchronous. With such a function, if some kind of strong disturbance occurs in the SS modulated wave and the process gain of the SS system is exceeded, the SS synchronization is not maintained and the level of the disturbance wave is reduced. SS sync level (sync capture point SHL)
When it goes down, it operates to switch to the sliding correlation operation.

【0024】最後に、キャリア再生動作について説明す
る。図6の乗算器3の出力信号中より、d(t)cosωt又
は cosωt成分を、狭帯域特性のBPF13にて抽出
し、これをキャリア再生の乗算器2,5に供給する。乗
算器2にはVCO22より発振信号が直接、乗算器5に
は更にπ/2位相シフト回路23で位相をπ/2だけシフト
された信号が供給されているので、夫々BPF13出力
との乗算が行なわれて、cos(ωt-φ)及びsin(ωt-φ)
成分を含む信号となった後、LPF15,16を夫々介
して乗算器6に出力される。従って、乗算器6の出力は
2 (t)*ρ2 (t)*d2 (t)sin2φとなり、ループフィル
タ24にてKsin2φなる誤差信号電圧に変換されてVC
O22に供給され、発振周波数が制御される。
Finally, the carrier reproducing operation will be described. The d (t) cosωt or cosωt component is extracted from the output signal of the multiplier 3 in FIG. 6 by the narrow band characteristic BPF 13 and is supplied to the multipliers 2 and 5 for carrier regeneration. Since the oscillation signal is directly supplied from the VCO 22 to the multiplier 2 and the signal whose phase is further shifted by π / 2 by the π / 2 phase shift circuit 23 is supplied to the multiplier 5, multiplication with the output of the BPF 13 is performed. Performed, cos (ωt-φ) and sin (ωt-φ)
After it becomes a signal including components, it is output to the multiplier 6 via the LPFs 15 and 16, respectively. Therefore, the output of the multiplier 6 becomes p 2 (t) * ρ 2 (t) * d 2 (t) sin2φ, which is converted into an error signal voltage of Ksin2φ by the loop filter 24 and VC
It is supplied to O22 and the oscillation frequency is controlled.

【0025】VCO22より出力されるキャリヤcos(ω
t-φ)は、1/N1 なる分周器26,27に供給されて
いる。分周器26は前述の如く、拡散符号の同期が確立
された場合の正規のクロック信号にVCO出力を変換し
ている。分周器27は1/N2 なる分周を行っており、
分周器26よりも分周数を少なくしているので、分周器
27より出力されるクロック信号周波数は、SS同期時
よりも高い周波数となっている。両分周器26,27の
出力は切換えスイッチSwに供給されるが、SS同期確立
前においては、分周器27の出力がクロック信号として
選択され、PNG47に供給される。
Carrier cos (ω output from VCO 22
t-φ) is supplied to the frequency dividers 26 and 27 of 1 / N 1 . As described above, the frequency divider 26 converts the VCO output into a regular clock signal when the spread code synchronization is established. The frequency divider 27 performs a frequency division of 1 / N 2 .
Since the number of frequency divisions is smaller than that of the frequency divider 26, the frequency of the clock signal output from the frequency divider 27 is higher than that during SS synchronization. The outputs of the frequency dividers 26 and 27 are supplied to the changeover switch Sw, but before the SS synchronization is established, the output of the frequency divider 27 is selected as a clock signal and supplied to the PNG 47.

【0026】[0026]

【発明の効果】以上説明したように、本発明の復調装置
は、キャリア再生と同期検波を独立に行なうよう構成し
たので、キャリヤ再生回路50入力段のBPF13は狭
帯域化を実現でき、これにより情報変調波中のノイズレ
ベルは小さくなり、入力信号中のノイズによるジッタの
影響を殆ど被らないキャリア再生を達成できる。また、
再生キャリアを2種類の分周出力より選択して、スライ
ディング相関用拡散符号と正規の逆拡散用拡散符号を得
ているので、従来のDLL回路で代表される同期保持回
路が不要となり、動作の一層の安定化に寄与し得る。
As described above, since the demodulator of the present invention is configured to carry out carrier regeneration and synchronous detection independently, the BPF 13 at the input stage of the carrier regeneration circuit 50 can realize a narrow band, which allows The noise level in the information-modulated wave is reduced, and carrier reproduction can be achieved which is hardly affected by jitter due to noise in the input signal. Also,
Since the reproduction carrier is selected from the two types of frequency division outputs to obtain the sliding correlation spreading code and the regular despreading spreading code, the synchronization holding circuit typified by the conventional DLL circuit becomes unnecessary, and It can contribute to further stabilization.

【0027】更に、再生キャリア出力中のジッタが少な
いと、拡散符号発生器へ供給されるクロック信号のジッ
タも少なくなるので、ジッタの少ない良質の拡散符号を
PNGにて生成できる。更にまた、逆拡散用の回路部
に、拡散ノイズ再生部49や引算回路41等よりなる拡
散ノイズ抑圧回路を設けたので、SS信号中に混入する
干渉波のレベルが大きくても、妨害問題が原理的に無く
なって動作の安定性に寄与し、全体の回路構成も簡単化
され、コスト的にも有利となるという優れた特長を有す
る。
Furthermore, if the jitter in the output of the reproduced carrier is small, the jitter of the clock signal supplied to the spread code generator is also small, so that a good spread code with little jitter can be generated by PNG. Furthermore, the despreading circuit section is provided with the spreading noise suppressing circuit including the spreading noise reproducing section 49 and the subtraction circuit 41, so that even if the level of the interference wave mixed in the SS signal is large, there is a problem of interference. In principle, it contributes to the stability of the operation, the overall circuit configuration is simplified, and it is also advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】送信用信号を生成する同期型SS変調装置のブ
ロック図。
FIG. 1 is a block diagram of a synchronous SS modulator that generates a transmission signal.

【図2】従来の同期型SS変調波の復調装置のブロック
構成図。
FIG. 2 is a block configuration diagram of a conventional demodulator for a synchronous SS modulated wave.

【図3】従来装置の主要部であるDLL型同期保持用信
号処理回路の具体的構成図。
FIG. 3 is a specific configuration diagram of a DLL-type synchronization holding signal processing circuit which is a main part of a conventional device.

【図4】DLL型同期保持用信号処理回路における同期
保持特性を示す特性図。
FIG. 4 is a characteristic diagram showing a sync holding characteristic in a DLL-type sync holding signal processing circuit.

【図5】スライディング相関型同期捕捉動作の説明用相
関特性図。
FIG. 5 is a correlation characteristic diagram for explaining a sliding correlation type synchronous capturing operation.

【図6】本発明の復調装置の一実施例を示すブロック構
成図。
FIG. 6 is a block diagram showing an embodiment of a demodulation device of the present invention.

【図7】本発明装置における拡散ノイズ再生部の具体的
回路構成図。
FIG. 7 is a specific circuit configuration diagram of a diffused noise reproducing unit in the device of the present invention.

【図8】本発明装置における拡散ノイズ抑圧(除去)動
作説明用スペクトル図。
FIG. 8 is a spectrum diagram for explaining a diffusion noise suppressing (removing) operation in the device of the present invention.

【符号の説明】[Explanation of symbols]

1 復調装置 2〜10,28,29 乗算器 11〜13,43,44 BPF(帯域濾波器) 14〜18 LPF(低域濾波器) 19 補正フィルタ(LPF) 20 逆数化回路 21,22 VCO(電圧制御発振器) 23 π/2位相シフト回路 24 ループフィルタ 25〜27 分周器 30 HPF(高域濾波器) 31 周波数特性補正回路 34 同期判定回路(スレシュホールドレベル検出回
路) 35 出力整形回路 36 DLL型同期保持用信号処理回路 38,39 絶対値回路(エンベロープ検出回路) 40,41 引算回路 42 加算回路 47,48 PNG(拡散符号発生器) 49 拡散ノイズ再生部 50 キャリヤ再生回路 Sw 切換えスイッチ
1 Demodulator 2-10, 28, 29 Multiplier 11-11, 43, 44 BPF (bandpass filter) 14-18 LPF (low-pass filter) 19 Correction filter (LPF) 20 Inverse circuit 21,22 VCO ( Voltage controlled oscillator) 23 π / 2 phase shift circuit 24 Loop filter 25-27 frequency divider 30 HPF (high-pass filter) 31 Frequency characteristic correction circuit 34 Synchronization determination circuit (threshold level detection circuit) 35 Output shaping circuit 36 DLL Type synchronization holding signal processing circuit 38, 39 Absolute value circuit (envelope detection circuit) 40, 41 Subtraction circuit 42 Addition circuit 47, 48 PNG (spreading code generator) 49 Spreading noise reproducing unit 50 Carrier reproducing circuit Sw changeover switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】PSK変調用のキャリヤと拡散符号発生器
用のクロック信号とに同期関係を持たせたスペクトル拡
散変調波を受信して復調する復調装置において、 該スペクトル拡散変調波を拡散符号発生器より出力され
る拡散符号と乗算することにより逆拡散する逆拡散手段
と、得られた逆拡散復調出力の同期検波を行なう同期検
波手段と、得られた逆拡散復調出力を基にキャリヤを再
生するキャリヤ再生手段と、該再生キャリヤを分周して
拡散符号発生器用のクロック信号を生成する分周手段
と、上記同期検波出力中の拡散ノイズ成分を抑圧乃至除
去する抑圧手段と、該抑圧手段の出力信号のスライディ
ング相関同期捕捉としての同期検出を行なう同期検出手
段と、得られた同期検出信号を制御信号として上記分周
手段の再生キャリヤ分周数を制御する制御手段とを備え
て構成した、同期型スペクトル拡散変調波の復調装置。
1. A demodulator for receiving and demodulating a spread spectrum modulated wave in which a carrier for PSK modulation and a clock signal for a spread code generator have a synchronous relationship, and the spread code modulated wave is used for the spread spectrum modulated wave. Despreading means for despreading by multiplying by the output spreading code, synchronous detection means for performing synchronous detection of the obtained despread demodulation output, and carrier regeneration based on the obtained despread demodulation output. Carrier reproducing means, frequency dividing means for dividing the reproduced carrier to generate a clock signal for a spread code generator, suppressing means for suppressing or removing the spread noise component in the synchronous detection output, and the suppressing means. A synchronization detecting means for performing synchronization detection as a sliding correlation synchronization acquisition of the output signal, and a reproduction carrier frequency division number of the frequency dividing means using the obtained synchronization detection signal as a control signal. And a control means for controlling the above.
【請求項2】キャリヤ再生手段及び同期検波手段は、逆
拡散復調出力中の情報変調波を狭帯域特性の帯域濾波器
を介して第1,第2の乗算器に供給し、該第1の乗算器
では電圧制御発振器からの再生キャリヤとの乗算を行な
って第1の低域濾波器に供給し、上記第2の乗算器では
上記再生キャリヤの位相をπ/2シフトしてから乗算を行
なって第2の低域濾波器に供給し、更にこれら2つの低
域濾波器の出力を第3の乗算器で乗算を行なった後、ル
ープの応答時定数を付与するループフィルタに供給し、
該ループフィルタ出力を基に上記電圧制御発振器にてキ
ャリヤ信号を再生して第4の乗算器に供給し、該第4の
乗算器にて上記逆拡散復調出力と乗算することにより同
期検波を行なうよう構成したものである、請求項1記載
の同期型スペクトル拡散変調波の復調装置。
2. The carrier reproducing means and the coherent detection means supply the information modulated wave in the despread demodulation output to the first and second multipliers via a bandpass filter having a narrow band characteristic, and the first and second multipliers. The multiplier multiplies the regenerated carrier from the voltage controlled oscillator and supplies it to the first low pass filter, and the second multiplier shifts the phase of the regenerated carrier by π / 2 before multiplication. To a second low-pass filter, the outputs of these two low-pass filters are multiplied by a third multiplier, and then supplied to a loop filter which gives a response time constant of the loop.
A carrier signal is regenerated by the voltage controlled oscillator based on the output of the loop filter and supplied to a fourth multiplier, and the fourth multiplier multiplies the carrier signal by the despread demodulation output to perform synchronous detection. The demodulator of the synchronous spread spectrum modulated wave according to claim 1, which is configured as described above.
JP4207292A 1992-01-31 1992-01-31 Synchronous spread spectrum modulated wave demodulator Expired - Lifetime JP2689806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207292A JP2689806B2 (en) 1992-01-31 1992-01-31 Synchronous spread spectrum modulated wave demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207292A JP2689806B2 (en) 1992-01-31 1992-01-31 Synchronous spread spectrum modulated wave demodulator

Publications (2)

Publication Number Publication Date
JPH05219012A true JPH05219012A (en) 1993-08-27
JP2689806B2 JP2689806B2 (en) 1997-12-10

Family

ID=12625869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207292A Expired - Lifetime JP2689806B2 (en) 1992-01-31 1992-01-31 Synchronous spread spectrum modulated wave demodulator

Country Status (1)

Country Link
JP (1) JP2689806B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication

Also Published As

Publication number Publication date
JP2689806B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
EP0555089B1 (en) Spread spectrum communication system
JP3280141B2 (en) Spread spectrum receiver
JP3307217B2 (en) Receiver for spread spectrum communication system
JPH0542863B2 (en)
US6704344B1 (en) Broad-brand MPSK spread spectrum communications receiver with carrier recovery and tracking using correlation techniques
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2714226B2 (en) Spread spectrum communication system
JP2650550B2 (en) Synchronous spread spectrum modulated wave demodulator
JP3669799B2 (en) Differential phase modulation receiver
JP2591398B2 (en) Spread spectrum wireless communication equipment
JP2650556B2 (en) Synchronous spread spectrum modulation demodulator
JP2650553B2 (en) Spread spectrum demodulator
JPH07177057A (en) Spread spectrum modulator and/or demodulator
JP2682363B2 (en) Spread spectrum modulation and / or demodulation device
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator
JP3457099B2 (en) Parallel combination spread spectrum transmission and reception system.
JP2591401B2 (en) Spread spectrum wireless communication equipment
JP2785009B2 (en) Spread spectrum reception method
JPH1188290A (en) Spread spectrum communication system
JP2570042B2 (en) Synchronous acquisition method of spread spectrum signal
JP2777993B2 (en) Spread spectrum communication equipment
JP2667895B2 (en) Spread spectrum communication equipment
JP2839973B2 (en) Spread spectrum communication equipment