JPH0521767A - Manufacturing for semiconductor device - Google Patents

Manufacturing for semiconductor device

Info

Publication number
JPH0521767A
JPH0521767A JP17030091A JP17030091A JPH0521767A JP H0521767 A JPH0521767 A JP H0521767A JP 17030091 A JP17030091 A JP 17030091A JP 17030091 A JP17030091 A JP 17030091A JP H0521767 A JPH0521767 A JP H0521767A
Authority
JP
Japan
Prior art keywords
insulating layer
semiconductor substrate
channel region
silicon wafer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17030091A
Other languages
Japanese (ja)
Inventor
Hiromi Anzai
浩美 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17030091A priority Critical patent/JPH0521767A/en
Publication of JPH0521767A publication Critical patent/JPH0521767A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To form a channel region thinly up to a given thickness, by oxidizing a first silicon wafer selectively from the surface in thermal treatment so as to reduce an effective thickness of the channel region in the wafer. CONSTITUTION:A surface of a silicon wafer 1 is oxidized in thermal treatment so that a separation insulating layer 4 is formed. In a device region surrounded by the separation insulating layer 4, a mask 3 is removed from a channel region. The renewed face of the silicon wafer 1 is oxidized in thermal treatment so as to form an insulating layer 5 in the channel region. In this case, since the separation insulating layer 4 and the insulating layer 5 are different in thickness, these insulating layers have each different depth of interfacial places. Then, insulating layers 7 and 9 are put closely to each other so that the first silicon wafer 1 and a second silicon wafer 8 are bonded in thermal treatment. Moreover, the silicon wafer 1 is abraded from the rear side thereof until the separation insulating layer 4 appears on the surface. In this way, the wafer can be made thin up to a given thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は, シリコンウエハを絶縁
層を介して支持基板に接合した構造を有する基板を用い
て作製される半導体装置, とくに, 絶縁ゲート型の電界
効果型トランジスタ(IGFET) に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufactured by using a substrate having a structure in which a silicon wafer is bonded to a supporting substrate via an insulating layer, and more particularly, an insulated gate field effect transistor (IGFET). Regarding

【0002】[0002]

【従来の技術】SOI(silicon on insulator) 構造の構造
の半導体基板は, IGFET の寄生容量の低減や放射線耐性
の向上, さらには, CMOS構成の半導体装置のラッチアッ
プを防止可能であるため, 将来の高密度・高性能の半導
体集積回路を製造する基板として期待されている。
2. Description of the Related Art A semiconductor substrate having an SOI (silicon on insulator) structure can reduce the parasitic capacitance of the IGFET, improve radiation resistance, and prevent latch-up of a semiconductor device having a CMOS structure. Is expected as a substrate for manufacturing high-density and high-performance semiconductor integrated circuits.

【0003】現在のところ, 二枚のシリコンウエハを絶
縁層を介して張り合わせてSOI 基板を作製する方法が,
実用化に最も近いものの一つとして開発が進められてい
る。この張り合わせ技術によるSOI 基板においては, 一
方のシリコンウエハを数μm以下の厚さにする。
At present, there is a method of manufacturing an SOI substrate by bonding two silicon wafers with an insulating layer in between.
It is being developed as one of the closest to practical use. In the SOI substrate produced by this bonding technique, one silicon wafer has a thickness of several μm or less.

【0004】微細なIGFET における短チャネル効果を防
止するために, 通常のバルクIGFETにおいては, ソース
・ドレイン領域における接合を浅くするとともに, パン
チスルー防止用の高濃度の領域(retrograded well)を,
前記接合の深さ程度の部分に設けることが一般に行われ
ている。SOI 基板においては, シリコン層の下地が絶縁
層であるから, このような高濃度領域を設けなくてもパ
ンチスルーを生じ難い。また, シリコン層の厚さを小さ
くすれば,接合の深さはこの厚さによって決まり, 自ず
から浅い接合が形成でき, バルクIGFET に比べて容易に
短チャネル化できる可能性を有する。
In order to prevent the short channel effect in a fine IGFET, in a normal bulk IGFET, the junction in the source / drain region is made shallow and a high concentration region (retrograded well) for preventing punch through is formed.
It is generally performed to provide a portion having a depth of the junction. In the SOI substrate, since the underlying layer of the silicon layer is the insulating layer, punch through does not easily occur without providing such a high concentration region. Also, if the thickness of the silicon layer is reduced, the junction depth is determined by this thickness, and a shallow junction can be formed by itself, and there is a possibility that the channel can be shortened more easily than in a bulk IGFET.

【0005】このために必要なシリコン層の厚さは, 短
チャネル効果を防止する目的のみからは, 数/10 ミクロ
ン程度であればよい。しかし, 例えばフローティングボ
ディー効果(例えばI-V 特性におけるキンクが発生す
る)を抑制するために, 完全空乏型(full-depletion ty
pe) のIGFET とする必要があるが, この場合にはさらに
薄く, 例えば0.1 μm 以下の厚さであることが望まし
い。
The thickness of the silicon layer required for this purpose may be about several tens of microns only for the purpose of preventing the short channel effect. However, in order to suppress, for example, the floating body effect (eg, kink in the IV characteristic), the full-depletion type
pe) IGFET, but in this case, it is desirable that the thickness is even thinner, for example, 0.1 μm or less.

【0006】図4は, 表面ポテンシャルが 2φf (φf
は後述する不純物濃度 Nsub のシリコン層のフェルミポ
テンシャル) になる電圧(Vth) で空乏化されるSOI構造
のシリコン層の厚さを求めたシミュレーションの結果を
示すグラフであって, 横軸はシリコン層の厚さ(tSi;n
m), 縦軸は不純物濃度(Nsub ; cm-3) を示し, 曲線の下
側が空乏化する領域である。例えば, 不純物濃度が3×
1017 (cm-3) のシリコン層に完全空乏型のIGFET を形成
する場合には, このシリコン層の厚さを60nm程度以下に
すれば, 上記電圧 Vthでチャネル領域が厚さ方向全体に
空乏化される。したがって, フローティングボディ効果
が抑制された, かつ, 高駆動能力を有するIGFET を得る
ことができる。
FIG. 4 shows that the surface potential is 2φ ff
Is a graph showing the result of a simulation in which the thickness of the silicon layer of the SOI structure that is depleted at the voltage (V th ) that becomes the Fermi potential of the silicon layer with the impurity concentration N sub , which will be described later, is obtained. Silicon layer thickness (t Si ; n
m), the vertical axis represents the impurity concentration (N sub ; cm -3 ), and the lower side of the curve is the depleted region. For example, if the impurity concentration is 3 ×
When forming a fully depleted IGFET in a silicon layer of 10 17 (cm -3 ), if the thickness of this silicon layer is set to about 60 nm or less, the channel region will be spread over the entire thickness direction at the above voltage V th. Be depleted. Therefore, it is possible to obtain an IGFET in which the floating body effect is suppressed and which has high driving capability.

【0007】[0007]

【発明が解決しようとする課題】しかし, シリコン層を
薄くすると, ソース・ドレイン領域のシート抵抗が増大
し, 良好なトランジスタ特性を維持できなくなってしま
う。例えばバルクIGFETにおけるイオン注入により0.1
μm の深さに形成したソース・ドレイン領域の抵抗に比
べ, 厚さ0.05μm のシリコン層を有するSOI 構造のIGFE
T のソース・ドレイン抵抗は約2倍になる。また, SOI
構造においては, シリコン層の下地である絶縁層は通常
非晶質であるために, イオン注入により非晶質化したこ
のシリコン層がその後のアニールによって再結晶化する
過程において多結晶となり, シート抵抗がさらに大きく
なる。
However, if the silicon layer is made thin, the sheet resistance of the source / drain regions increases, and good transistor characteristics cannot be maintained. For example, 0.1 by ion implantation in bulk IGFET
Compared with the resistance of the source / drain region formed to a depth of μm, the IGFE of the SOI structure having a silicon layer with a thickness of 0.05 μm
The source / drain resistance of T is doubled. Also, SOI
In the structure, the insulating layer that is the base of the silicon layer is usually amorphous, so this silicon layer, which has been made amorphous by ion implantation, becomes polycrystalline in the process of recrystallization by subsequent annealing, and the sheet resistance Will be even larger.

【0008】本発明は, チャネル領域におけるシリコン
層の厚さを選択的に薄くし, ソース・ドレイン領域にお
ける厚さは, 充分に低いシート抵抗が得られる厚さを有
するIGFET をSOI 基板に形成可能とすることを目的とす
る。
According to the present invention, the thickness of the silicon layer in the channel region can be selectively reduced, and the thickness of the source / drain regions can form an IGFET on the SOI substrate having a sufficiently low sheet resistance. The purpose is to

【0009】[0009]

【課題を解決するための手段】上記目的は, 半導体基板
の一表面に画定されたチャネル領域における該半導体基
板の実効的厚さを小さくする構造的手段を該表面に形成
し, 該構造的手段が形成された該表面に該表面を平坦に
する絶縁層を形成し, 該絶縁層を介して該半導体基板を
支持基板と接合し,該支持基板と接合された該半導体基
板の他方の表面を平坦に除去し, 該半導体基板における
該平坦に除去された他方の表面にゲート絶縁層を形成
し,該ゲート絶縁層を介して該チャネル領域に対向する
ゲート電極を該他方の表面に形成し, 該ゲート電極の両
側に表出する該半導体基板に不純物を導入してソース・
ドレイン領域を形成する諸工程を含むこと, とくに, 該
チャネル領域における該半導体基板の前記一表面を選択
的に酸化して形成された酸化膜によって前記チャネル領
域における半導体基板の実効的厚さを小さくすることを
特徴とする本発明に係る半導体装置の製造方法によって
達成される。
The above-mentioned object is to form a structural means on the surface of the semiconductor substrate for reducing the effective thickness of the semiconductor substrate in a channel region defined on the one surface of the semiconductor substrate. An insulating layer for flattening the surface is formed on the surface on which the semiconductor substrate is bonded to the supporting substrate through the insulating layer, and the other surface of the semiconductor substrate bonded to the supporting substrate is attached to the supporting substrate. Forming a gate insulating layer on the other surface of the semiconductor substrate that has been removed flat, and forming a gate electrode facing the channel region on the other surface of the semiconductor substrate through the gate insulating layer; Impurities are introduced into the semiconductor substrate exposed on both sides of the gate electrode to form a source.
Including various steps of forming a drain region, in particular, reducing the effective thickness of the semiconductor substrate in the channel region by an oxide film formed by selectively oxidizing the one surface of the semiconductor substrate in the channel region. This is achieved by the method for manufacturing a semiconductor device according to the present invention.

【0010】[0010]

【作用】二枚のシリコンウエハを絶縁層を介して張り合
わせてSOI 基板を作製する際に, 将来半導体装置が形成
される能動層となる第1のシリコンウエハを,例えばそ
の表面から選択的に熱酸化してチャネル領域におけるウ
エハの実効的厚さを小さくしておく。少なくとも一方の
シリコンウエハの表面に絶縁層を形成したのち両シリコ
ンウエハを張り合わせる。そして,第1のシリコンウエ
ハを研磨等によって薄くする。このようにして,チャネ
ル領域が所望の値に薄層化され,ソース・ドレイン領域
が,充分に低いシート抵抗を有する層厚に維持される。
[Operation] When two silicon wafers are bonded to each other via the insulating layer to manufacture an SOI substrate, the first silicon wafer, which will be an active layer in which a semiconductor device is formed in the future, is selectively heated from its surface, for example. Oxidation keeps the effective thickness of the wafer in the channel region small. After forming an insulating layer on the surface of at least one silicon wafer, both silicon wafers are bonded together. Then, the first silicon wafer is thinned by polishing or the like. In this way, the channel region is thinned to a desired value, and the source / drain regions are maintained at a layer thickness having a sufficiently low sheet resistance.

【0011】[0011]

【実施例】以下に, 本発明の一実施例の工程説明を図1
を参照して説明する。図1(a) に示すように, 例えば第
1のシリコンウエハ1の表面に画定された素子領域を,
窒化シリコン(Si3N4 )から成るマスク3で覆う。同図
において符号2は,シリコンウエハ1表面を熱酸化して
形成したSiO2から成る厚さ約0.01μmのパッド酸化膜で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A process description of an embodiment of the present invention will be described below with reference to FIG.
Will be described with reference to. As shown in FIG. 1 (a), for example, an element region defined on the surface of the first silicon wafer 1 is
Cover with a mask 3 made of silicon nitride (Si 3 N 4 ). In the figure, reference numeral 2 is a pad oxide film of SiO 2 having a thickness of about 0.01 μm formed by thermally oxidizing the surface of the silicon wafer 1.

【0012】次いで,マスク3から表出しているシリコ
ンウエハ1表面を熱酸化し,厚さ約0.1 μm の分離絶縁
層4を形成する。この厚さにより, シリコンウエハ1と
分離絶縁層4との界面とシリコンウエハ1表面との間に
は約0.05μm の段差(x1)が生じる。以上の工程は,通常
のLOCOS(local oxidation of silicon) 法と同一であ
る。上記厚さの分離絶縁層4を形成するための条件の例
は, シリコンウエハ1を,ウエット雰囲気中,950 ℃で
の30分間加熱である。
Next, the surface of the silicon wafer 1 exposed from the mask 3 is thermally oxidized to form an isolation insulating layer 4 having a thickness of about 0.1 μm. Due to this thickness, a step difference (x 1 ) of about 0.05 μm occurs between the interface between the silicon wafer 1 and the isolation insulating layer 4 and the surface of the silicon wafer 1. The above steps are the same as in the normal LOCOS (local oxidation of silicon) method. An example of the conditions for forming the isolation insulating layer 4 having the above thickness is heating the silicon wafer 1 in a wet atmosphere at 950 ° C. for 30 minutes.

【0013】次いで,図1(b) に示すように, 分離絶縁
層4によって囲まれた素子領域中のチャネル領域上のマ
スク3を選択的に除去する。この除去は,フォトレジス
トを用いる周知のリソグラフ技術を適用し, Si3N4 マス
ク3は熱燐酸溶液を用いてエッチングすればよい。な
お,分離絶縁層4の形成のための上記LOCOS 工程におい
て用いられたSi3N4 マスク3を除去し, これに代わる新
たなSi3N4 層から成るマスクを形成してもよい。
Next, as shown in FIG. 1B, the mask 3 on the channel region in the element region surrounded by the isolation insulating layer 4 is selectively removed. For this removal, a well-known lithographic technique using a photoresist is applied, and the Si 3 N 4 mask 3 may be etched using a hot phosphoric acid solution. The Si 3 N 4 mask 3 used in the LOCOS process for forming the isolation insulating layer 4 may be removed and a new Si 3 N 4 layer mask may be formed instead.

【0014】次いで, 上記のようにしてエッチングされ
たマスク3から表出するシリコンウエハ1表面を熱酸化
して, 図1(c) に示すように, チャネル領域に厚さ約0.
07μm の絶縁層5を形成する。絶縁層5を形成するため
の条件の例は, シリコンウエハ1を, ウエット雰囲気
中,950 ℃で17分間加熱である。上記分離絶縁層4およ
び絶縁層5の厚さにより, これら絶縁層とシリコンウエ
ハ1とのそれぞれの界面の間には, 約0.015 μm の高さ
の差(x2)が生じる。
Next, the surface of the silicon wafer 1 exposed from the mask 3 etched as described above is thermally oxidized, and as shown in FIG. 1 (c), a thickness of about 0.
An insulating layer 5 of 07 μm is formed. An example of the conditions for forming the insulating layer 5 is heating the silicon wafer 1 in a wet atmosphere at 950 ° C. for 17 minutes. Due to the thicknesses of the isolation insulating layer 4 and the insulating layer 5, a height difference (x 2 ) of about 0.015 μm is generated between the respective interfaces between these insulating layers and the silicon wafer 1.

【0015】なお, 選択酸化によって絶縁層5を形成す
る代わりに, 図1(d) に示すように, チャネル領域に溝
6を形成してもよい。溝6の深さは, 分離絶縁層4とシ
リコンウエハ1との界面と溝6の底との間に上記と同じ
高さの差(x2)が生じるように決める。
Instead of forming the insulating layer 5 by selective oxidation, a groove 6 may be formed in the channel region as shown in FIG. 1 (d). The depth of the groove 6 is determined so that the same height difference (x 2 ) as described above occurs between the interface between the isolation insulating layer 4 and the silicon wafer 1 and the bottom of the groove 6.

【0016】次いで, マスク3を除去したのち, 図2
(e) に示すように, シリコンウエハ1表面に, 例えばSi
O2から成る厚さ約1μm の絶縁層7を堆積する。この堆
積は,例えば周知のCVD(化学気相成長) 法を用い, 絶縁
層7表面が平坦になる条件を選んで行うと都合がよい。
必要に応じて絶縁層7表面を鏡面研磨して平坦化する。
なお, 図1(d) に示すように溝6を設けた場合にも, 溝
6内に絶縁層7が埋め込まれる。また, 必要に応じて溝
6を埋め込む絶縁層7の表面を鏡面研磨して平坦化す
る。
Then, after removing the mask 3, FIG.
As shown in (e), on the surface of the silicon wafer 1, for example, Si
An insulating layer 7 made of O 2 and having a thickness of about 1 μm is deposited. It is convenient to carry out this deposition by using, for example, a well-known CVD (Chemical Vapor Deposition) method and selecting a condition under which the surface of the insulating layer 7 becomes flat.
If necessary, the surface of the insulating layer 7 is mirror-polished to be flat.
Even when the groove 6 is provided as shown in FIG. 1D, the insulating layer 7 is embedded in the groove 6. If necessary, the surface of the insulating layer 7 filling the groove 6 is mirror-polished to be flat.

【0017】一方, 図2(f) に示すように, 例えばSiO2
から成る厚さ約数/10 〜1μm の絶縁層9が一表面に形
成されたほぼ同一の直径を有する第2のシリコンウエハ
8を用意する。そして, 図2(e) に示すシリコンウエハ
1と第2のシリコンウエハ8とを, 各々における絶縁層
7と絶縁層9とが接するようにして重ね合わせた状態で
熱処理して, 図2(g) に示すように, 両シリコンウエハ
を接合する。この熱処理条件の例は, 例えばドライ雰囲
気中,1000℃での12分間加熱である。なお, 上記絶縁層
9の形成は省略しても差支えはない。また, シリコンウ
エハ8は支持基板であるので,シリコンウエハ1との上
記接合や, その後の熱処理条件において適合するもので
あれば材料を選ばない。
On the other hand, as shown in FIG. 2 (f), for example, SiO 2
A second silicon wafer 8 having substantially the same diameter is prepared on one surface of which an insulating layer 9 having a thickness of about several tens to 1 .mu.m is formed. Then, the silicon wafer 1 and the second silicon wafer 8 shown in FIG. 2 (e) are heat-treated in a state of being superposed so that the insulating layer 7 and the insulating layer 9 in each are in contact with each other. ) Bond both silicon wafers. An example of this heat treatment condition is heating at 1000 ° C for 12 minutes in a dry atmosphere. Incidentally, there is no problem even if the formation of the insulating layer 9 is omitted. Further, since the silicon wafer 8 is a supporting substrate, any material can be selected as long as it is compatible with the above-mentioned bonding with the silicon wafer 1 and the subsequent heat treatment conditions.

【0018】次いで, 図2(h) に示すように, シリコン
ウエハ1の裏面を, 分離絶縁層4が表出するまで研磨す
る。その結果, シリコンウエハ1は, 分離絶縁層4によ
って素子領域ごとに分離された島となる。このようにし
て, 島状に分離されたシリコン層12を有するSOI 基板が
得られる。この島状のシリコンウエハ1の厚さは,絶縁
層5上のチャネル領域においては前記高さの差(x2)に等
しく, その両側のソース・ドレインとなる領域において
は前記段差(x1)に等しい。
Next, as shown in FIG. 2H, the back surface of the silicon wafer 1 is polished until the isolation insulating layer 4 is exposed. As a result, the silicon wafer 1 becomes islands separated by the isolation insulating layer 4 for each element region. Thus, the SOI substrate having the island-shaped separated silicon layer 12 is obtained. The thickness of the island-shaped silicon wafer 1 is equal to the height difference (x 2 ) in the channel region on the insulating layer 5, and the step difference (x 1 ) in the source / drain regions on both sides thereof. be equivalent to.

【0019】上記のようにして作製されたSOI 基板にお
ける各々の島状のシリコン層に, 通常のIGFET の製造工
程にしたがって, 図3に示すようにゲート絶縁層10を形
成したのち, チャネル領域上にゲート電極11を形成す
る。そして, ゲート電極11をマスクとして, その両側に
表出するシリコン層12に不純物をイオン注入して, ソー
ス・ドレイン領域13を形成してIGFET が完成する。
A gate insulating layer 10 is formed on each of the island-shaped silicon layers of the SOI substrate manufactured as described above according to a normal IGFET manufacturing process, as shown in FIG. A gate electrode 11 is formed on. Then, using the gate electrode 11 as a mask, impurities are ion-implanted into the silicon layer 12 exposed on both sides of the gate electrode 11 to form source / drain regions 13 to complete the IGFET.

【0020】上記実施例において, SOI 基板におけるシ
リコン層の厚さを, 図4を参照して説明したような Vth
においてチャネル領域が完全に空乏化する厚さに制御す
ることによって, 高駆動能力を有する完全空乏型の微細
IGFET を得ることができる。本発明に係る構造の上記SO
I 基板における任意の島状のシリコン層12に, 例えばエ
ンハンスメント型のIGFET や高耐圧のIGFET を形成して
も差支えない。
In the above embodiment, the thickness of the silicon layer on the SOI substrate is set to V th as described with reference to FIG.
By controlling the thickness to fully deplete the channel region in the
You can get IGFET. The SO of the structure according to the present invention
For example, an enhancement type IGFET or a high breakdown voltage IGFET may be formed on any island-shaped silicon layer 12 of the I substrate.

【0021】[0021]

【発明の効果】本発明によれば, SOI 基板を用いて作製
されるIGFET のチャネル領域におけるシリコン層を短チ
ャネル効果の防止に有効な程度に薄くし, 一方, ソース
・ドレイン領域におけるシリコン層を充分低いシート抵
抗が得られるように厚くすることが可能となり, 高密度
・高性能の半導体集積回路, とくに, 高駆動能力を有す
る完全空乏型のIGFET から成る半導体集積回路の製造に
寄与するところが大きい。
According to the present invention, the silicon layer in the channel region of the IGFET manufactured using the SOI substrate is thinned to the extent effective for preventing the short channel effect, while the silicon layer in the source / drain region is reduced. It is possible to increase the thickness so that a sufficiently low sheet resistance can be obtained, which contributes greatly to the manufacture of high-density and high-performance semiconductor integrated circuits, especially semiconductor integrated circuits composed of fully depleted IGFETs with high drive capability. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の工程説明図(その1)FIG. 1 is a process explanatory diagram of an embodiment of the present invention (No. 1)

【図2】 本発明の実施例の工程説明図(その2)FIG. 2 is a process explanatory view of the embodiment of the present invention (No. 2)

【図3】 本発明の一実施例説明図FIG. 3 is an explanatory diagram of an embodiment of the present invention.

【図4】 本発明の一実施例の条件を決めるためのデー
タ例
FIG. 4 is an example of data for determining conditions of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 8 シリコンウエハ 2 パッド酸化膜 9 絶縁層 3 マスク 10 ゲート絶縁層 4 分離絶縁層 11 ゲート電極 5 絶縁層 12 シリコン層 6 溝 13 ソース・ドレイ
ン領域 7 絶縁層
1 Silicon Wafer 8 Silicon Wafer 2 Pad Oxide Film 9 Insulating Layer 3 Mask 10 Gate Insulating Layer 4 Isolation Insulating Layer 11 Gate Electrode 5 Insulating Layer 12 Silicon Layer 6 Groove 13 Source / Drain Region 7 Insulating Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一表面に画定されたチャネ
ル領域における該半導体基板の実効的厚さを小さくする
構造的手段を該表面に形成する工程と,該構造的手段が
形成された該表面を覆い且つ該平坦な上表面を有する絶
縁層を形成する工程と, 該絶縁層を介して該半導体基板を支持基板と接合する工
程と, 該支持基板と接合された該半導体基板の他方の表面を平
坦に除去する工程と,該半導体基板における該平坦に除
去された他方の表面にゲート絶縁層を形成する工程と, 該ゲート絶縁層を介して該チャネル領域に対向するゲー
ト電極を該他方の表面に形成する工程と, 該ゲート電極の両側に表出する該半導体基板に不純物を
導入してソース・ドレイン領域を形成する工程とを含む
ことを特徴とする半導体装置の製造方法。
1. A step of forming a structural means on a surface of the semiconductor substrate for reducing an effective thickness of the semiconductor substrate in a channel region defined on the surface, and the surface on which the structural means is formed. A step of forming an insulating layer that covers the substrate and has the flat upper surface, a step of joining the semiconductor substrate to a supporting substrate through the insulating layer, and the other surface of the semiconductor substrate joined to the supporting substrate. To remove the gate electrode flatly, a step of forming a gate insulating layer on the other surface of the semiconductor substrate that has been removed flat, and a gate electrode facing the channel region through the gate insulating layer. A method of manufacturing a semiconductor device, comprising: a step of forming on a surface; and a step of introducing an impurity into the semiconductor substrate exposed on both sides of the gate electrode to form a source / drain region.
【請求項2】 前記チャネル領域における半導体基板の
実効的厚さを小さくする手段は該チャネル領域における
該半導体基板の前記一表面を選択的に酸化して形成され
た酸化膜であることを特徴とする請求項1記載の半導体
装置の製造方法。
2. A means for reducing the effective thickness of the semiconductor substrate in the channel region is an oxide film formed by selectively oxidizing the one surface of the semiconductor substrate in the channel region. The method of manufacturing a semiconductor device according to claim 1.
【請求項3】 半導体基板の一表面に画定されたチャネ
ル領域における該半導体基板の実効的厚さを小さくする
構造的手段を該表面に形成する工程と,該構造的手段が
形成された該表面を平坦化するための絶縁層を形成する
工程と, 該絶縁層が形成された該半導体基板表面を第2の絶縁層
を介して支持基板の一表面と接合する工程と, 該支持基板と接合された該半導体基板の他方の表面を平
坦に除去する工程と,該半導体基板における該平坦に除
去された他方の表面にゲート絶縁層を形成する工程と, 該ゲート絶縁層を介して該チャネル領域に対向するゲー
ト電極を該他方の表面に形成する工程と, 該ゲート電極の両側に表出する該半導体基板に不純物を
導入してソース・ドレイン領域を形成する工程とを含む
ことを特徴とする半導体装置の製造方法。
3. A step of forming structural means on the surface for reducing the effective thickness of the semiconductor substrate in a channel region defined on one surface of the semiconductor substrate, and the surface on which the structural means is formed. Forming an insulating layer for planarizing the surface of the semiconductor substrate, joining the surface of the semiconductor substrate on which the insulating layer is formed to one surface of the supporting substrate through the second insulating layer, and joining the supporting substrate Removing the other surface of the semiconductor substrate flattened, forming a gate insulating layer on the other surface of the semiconductor substrate removed flat, and the channel region via the gate insulating layer. And a step of forming a source / drain region by introducing impurities into the semiconductor substrate exposed on both sides of the gate electrode. Semiconductor device Manufacturing method.
【請求項4】 前記チャネル領域における半導体基板の
実効的厚さを小さくする手段は該チャネル領域における
該半導体基板の前記一表面を選択的に酸化して形成され
た酸化膜であることを特徴とする請求項3記載の半導体
装置の製造方法。
4. The means for reducing the effective thickness of the semiconductor substrate in the channel region is an oxide film formed by selectively oxidizing the one surface of the semiconductor substrate in the channel region. The method for manufacturing a semiconductor device according to claim 3, wherein
JP17030091A 1991-07-11 1991-07-11 Manufacturing for semiconductor device Withdrawn JPH0521767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17030091A JPH0521767A (en) 1991-07-11 1991-07-11 Manufacturing for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17030091A JPH0521767A (en) 1991-07-11 1991-07-11 Manufacturing for semiconductor device

Publications (1)

Publication Number Publication Date
JPH0521767A true JPH0521767A (en) 1993-01-29

Family

ID=15902414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17030091A Withdrawn JPH0521767A (en) 1991-07-11 1991-07-11 Manufacturing for semiconductor device

Country Status (1)

Country Link
JP (1) JPH0521767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221318A (en) * 1994-02-03 1995-08-18 Nec Corp Thin film transistor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221318A (en) * 1994-02-03 1995-08-18 Nec Corp Thin film transistor and its manufacture

Similar Documents

Publication Publication Date Title
JP2831745B2 (en) Semiconductor device and manufacturing method thereof
US5238865A (en) Process for producing laminated semiconductor substrate
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPH07153835A (en) Junction soi semiconductor device and its manufacture
JPH03129765A (en) Semiconductor device and manufacture thereof
JP3120275B2 (en) Method for manufacturing SOI substrate
JPH0883837A (en) Semiconductor device and manufacture thereof
JPH10125881A (en) Laminated soi substrate, its forming method and mos transistor formed on the substrate
US6169000B1 (en) Process for the production of semiconductor substrate having silicon-on-insulating structure and process for the production of semiconductor device
JPH09260679A (en) Semiconductor device and manufacture thereof
JP2763107B2 (en) Dielectric-isolated semiconductor substrate and method of manufacturing the same
JPH0521767A (en) Manufacturing for semiconductor device
US6214693B1 (en) Process for the production of semiconductor device
JP2002057309A (en) Method of forming soi substrate
JP2839088B2 (en) Semiconductor device
JPH06163677A (en) Manufacture of semiconductor device
JPH10125880A (en) Method of forming laminated soi substrate
JPH04199632A (en) Soi wafer and manufacture thereof
JPH07226433A (en) Manufacture of semiconductor device
JPH05326962A (en) Semiconductor device and manufacture thereof
JPH08162640A (en) Manufacture of semiconductor device
JP2963353B2 (en) Manufacturing method of dielectric isolation substrate and dielectric isolation substrate
JPS63107161A (en) Manufacture of semiconductor element
JP3016512B2 (en) Method for manufacturing dielectric-separated semiconductor substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008