JPH05190409A - Method and apparatus for control of temperature of member to be irradiated - Google Patents

Method and apparatus for control of temperature of member to be irradiated

Info

Publication number
JPH05190409A
JPH05190409A JP4023262A JP2326292A JPH05190409A JP H05190409 A JPH05190409 A JP H05190409A JP 4023262 A JP4023262 A JP 4023262A JP 2326292 A JP2326292 A JP 2326292A JP H05190409 A JPH05190409 A JP H05190409A
Authority
JP
Japan
Prior art keywords
illuminated
mirror
temperature
receiving surface
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4023262A
Other languages
Japanese (ja)
Other versions
JP3238737B2 (en
Inventor
Masami Hayashida
雅美 林田
Masato Niibe
正人 新部
Yoshiaki Fukuda
恵明 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP02326292A priority Critical patent/JP3238737B2/en
Priority to DE69220868T priority patent/DE69220868T2/en
Priority to EP92308030A priority patent/EP0532236B1/en
Priority to CA002077572A priority patent/CA2077572C/en
Publication of JPH05190409A publication Critical patent/JPH05190409A/en
Priority to US08/270,794 priority patent/US5390228A/en
Application granted granted Critical
Publication of JP3238737B2 publication Critical patent/JP3238737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent a beam of irradiation light from being changed by the thermal strain during a photodetection operation of photodetection faces at projection systems such as a mirror, a lens, a mask and the like. CONSTITUTION:In a semiconductor aligner, X-rays 3 are magnified by means of a convenx mirror 1 and a wafer 4 is exposed to light. In the semiconductor aligner, the photodetection face of the mirror 1 is heated by using an infrared heater 7 which has been combined with an aperture 8 which adjusts the distribution of supplied heat before an exposure operation by using the X-rays 3 is started, and a temperature distribution which is the same as the temperature distribution of the photodetection face during a photodetection operation is caused. The temperature distribution of the photodetection face of the mirror 1 is monitored by using an infrared camera 5 even during the exposure operation and the temperature distribution is maintained to be definite. Thereby, it is possible to prevent an irregularity in the exposure operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は理化学研究、分析装置、
半導体製造装置等に広く利用されるシンクロトロン放射
光または高強度レーザー光を照明光とするレンズ、ミラ
ー等の被照明部材の温度制御方法およびその装置に関
し、特に、照明光の強度分布等が、被照部材の熱歪によ
って変化するのを防ぐための被照明部材の温度制御方法
およびその装置に関するものである。
The present invention relates to physics and chemistry research, analytical equipment,
Lenses that use synchrotron radiation or high-intensity laser light as illumination light that is widely used in semiconductor manufacturing equipment, etc. The present invention relates to a method for controlling a temperature of a member to be illuminated and an apparatus for controlling the temperature of the member to be illuminated, which are prevented from being changed by thermal strain.

【0002】[0002]

【従来の技術】近年、シンクロトロン放射光やエキシマ
レーザー等の高強度の照明光が開発され、これを用いた
理化学研究、分析、製造技術等が注目され、それらの研
究開発が盛んになってきている。前記高強度の照明光を
用いる装置では、反射、透過、集光、発散、回折、分
光、偏光、結像等のために種々のレンズ、ミラー等を必
要とするが、使用される光線強度が高いため、多大な熱
負荷によるミラーやレンズ等の光学系の変形が問題とな
ってきた。
2. Description of the Related Art In recent years, high-intensity illumination light such as synchrotron radiation and excimer laser has been developed, and physicochemical research, analysis, manufacturing technology and the like using this have attracted attention, and their research and development have become popular. ing. The device using the high-intensity illumination light requires various lenses, mirrors, etc. for reflection, transmission, focusing, divergence, diffraction, spectroscopy, polarization, image formation, etc. Since it is expensive, deformation of optical systems such as mirrors and lenses due to a large heat load has become a problem.

【0003】特に、シンクロトロン放射光やエキシマレ
ーザー等の高強度の照明光を用いた半導体露光装置にお
いては、照明光の反射、収束および拡大等を行うミラー
やレンズ、さらにはレチクルやマスクの温度変化および
温度分布の変化による熱歪が、精度向上の大きな障害と
なる。特に、シンクロトロン放射光および真空紫外線等
の電磁波を利用する場合は、照明光のエネルギーの減衰
を防ぐために、ミラー、レンズ等の光学系およびマスク
は、真空室または減圧室内に配置されるのが一般的であ
り、照明光によって前記ミラー、レンズおよびマスク等
の被照明部材(以下、「被照明部材」という)が加熱さ
れると、雰囲気ガスによる伝導および対流による熱放散
がほとんどないために、温度上昇が著しく、温度変化お
よび温度分布の変化による熱歪が、照明光の強度分布等
を著しく変化させて、露光むらの原因となる。
Particularly, in a semiconductor exposure apparatus using high intensity illumination light such as synchrotron radiation or excimer laser, the temperature of mirrors and lenses for reflecting, converging and enlarging the illumination light, as well as the temperature of the reticle and mask. Thermal strain due to changes and changes in temperature distribution is a major obstacle to improving accuracy. In particular, when using electromagnetic waves such as synchrotron radiation and vacuum ultraviolet rays, the optical system such as mirrors and lenses and the mask are arranged in a vacuum chamber or a decompression chamber in order to prevent the energy of illumination light from being attenuated. Generally, when an illuminated member such as the mirror, lens and mask (hereinafter referred to as “illuminated member”) is heated by illumination light, there is almost no heat dissipation due to conduction and convection due to atmospheric gas. The temperature rises remarkably, and the thermal strain due to the temperature change and the temperature distribution change remarkably changes the intensity distribution of illumination light and the like, which causes uneven exposure.

【0004】そこで、前記被照明部材を水冷ジャケット
等によって、冷却する手段が種々開発され、1例として
T.Oversluizen,et al.Rev.S
ci.Instrum.60,1493(1989)に
記載されたものがある。
Therefore, various means for cooling the illuminated member with a water cooling jacket or the like have been developed, and as an example, T.I. Oversluizen, et al. Rev. S
ci. Instrum. 60 , 1493 (1989).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の技術においては、ミラー、レンズおよびマスク等の
被照明部材の、照明光が入射する表面すなわち受光面の
温度分布を制御することは不可能である。高精度の半導
体露光装置においては、前述のようにミラー、レンズあ
るいはマスク等の温度分布の変化が照明光の強度分布等
を変化させて、露光むらの原因となるため、上述のよう
に被照明部材の温度分布が変化するのを予測して設計上
の補正を行うか、あるいは光学系に機構上の補正手段を
加える等の工夫がなされているが、その装置は複雑であ
り、また補正の度ごとに長い熱的調整のための待機時間
を要する。1例として、照明光の照射開始時には、被照
明部材の熱的安定状態を得るために数分から長い場合に
は1時間以上の待機時間を必要とすることが報告されて
いる。{H.Maezawa,et al.Rev.S
ci.Instrum.60,1979 (198
9)}他方、非照射時にのみ被照明部材を加熱して照射
時と同様の温度に維持することで、立上りの待機時間を
短縮する方法が提案されているが(特開平2−2409
13参照)、これらは被照明部材の受光面の温度分布を
制御するものではない。
However, in the above-mentioned conventional technique, it is impossible to control the temperature distribution of the surface of the illuminated member such as the mirror, lens and mask on which the illumination light is incident, that is, the light receiving surface. is there. In a high-precision semiconductor exposure apparatus, changes in the temperature distribution of mirrors, lenses, masks, etc., as described above, change the intensity distribution of illumination light, etc., causing unevenness in exposure. The device is complicated and the correction of the design is made by predicting that the temperature distribution of the member changes, or the mechanical correction means is added to the optical system. Each time there is a long waiting time for thermal adjustment. As one example, it has been reported that at the start of irradiation of illumination light, a waiting time of 1 hour or more is required in order to obtain a thermally stable state of the illuminated member, if it is several minutes to a long time. {H. Maezawa, et al. Rev. S
ci. Instrum. 60 , 1979 (198
9)} On the other hand, there has been proposed a method of heating the member to be illuminated only during non-irradiation and maintaining the same temperature as that during irradiation to shorten the stand-by time for start-up (JP-A-2-2409).
13), these do not control the temperature distribution of the light receiving surface of the illuminated member.

【0006】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、照明光の照射開始時およ
びその照射中に、ミラー、レンズおよびマスク等の被照
明部材の受光面の熱歪によって、前記照明光の強度分布
等が変化するのを防止する被照明部材の温度制御方法お
よびその装置を提供することを目的とする。
The present invention has been made in view of the problems of the above-mentioned prior art, and it is intended that the light receiving surface of a member to be illuminated such as a mirror, a lens and a mask is started at the start of and during the irradiation of the illumination light. It is an object of the present invention to provide a temperature control method for a member to be illuminated and an apparatus thereof for preventing the intensity distribution of the illumination light from changing due to thermal strain.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の被照明部材の温度制御方法は、被照明部材
の受光面の受光中の熱歪を防止する被照明部材の温度制
御方法であって、少くとも前記受光面が受光を開始する
以前から、予め計測しておいた前記受光面の受光中の熱
的安定状態における温度分布と同様の温度分布を、前記
受光面に発生させることを特徴とする。
In order to achieve the above-mentioned object, a temperature control method for an illuminated member according to the present invention is a temperature control for an illuminated member which prevents thermal distortion during light reception on a light receiving surface of the illuminated member. A temperature distribution similar to the temperature distribution in a thermally stable state during light reception of the light-receiving surface measured at least before the light-receiving surface starts receiving light. It is characterized in that

【0008】また本発明の被照明部材の温度制御装置
は、被照明部材の受光面の受光中の温度分布を測定する
測定手段と、前記受光面を加熱する加熱手段と、前記測
定手段の出力に応じて、前記加熱手段によって加熱され
る前記受光面の温度分布を制御するための温度調節手段
とからなることを特徴とする。
Further, the temperature control device for the illuminated member of the present invention comprises a measuring means for measuring a temperature distribution during light reception on the light receiving surface of the illuminated member, a heating means for heating the light receiving surface, and an output of the measuring means. According to the above, it comprises a temperature adjusting means for controlling the temperature distribution of the light receiving surface heated by the heating means.

【0009】[0009]

【作用】ミラー、レンズ、マスクおよびレチクル等の被
照明部材の受光面を、照明光の照射開始前に、受光中の
温度分布と同様の温度分布に加熱しておくことによっ
て、照明光の照射開始時に、受光面の熱歪によって、受
光面の焦点距離や照明光の強度分布が変化するのを防止
する。
The irradiation of the illumination light is performed by heating the light receiving surface of the illuminated member such as the mirror, the lens, the mask and the reticle to a temperature distribution similar to the temperature distribution during the reception of the illumination light before starting the irradiation of the illumination light. At the time of starting, the focal length of the light receiving surface and the intensity distribution of the illumination light are prevented from changing due to thermal strain of the light receiving surface.

【0010】また、照明光の照射中に、照明光の全体強
度が変化しても、受光面の温度分布を一定に保つことに
よって、受光面に熱歪が発生するのを防止する。
Further, even if the total intensity of the illumination light changes during the irradiation of the illumination light, the temperature distribution on the light receiving surface is kept constant to prevent the occurrence of thermal strain on the light receiving surface.

【0011】[0011]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0012】図1は、第1実施例を示す模式図であっ
て、X線露光装置の被照明部材である凸状のミラー1
は、冷媒流路2aをもつミラー保持器2によってその反
射面を下向きに支持される。荷電粒子蓄積リング(以
下、「SORリング」という)の発光点(図示せず)か
ら引出されたシンクロトロン放射光(以下、「X線」と
いう)3は、上記反射面によって反射、拡大され、拡大
されたX線は、垂直に保持されたウエハ4を露光する。
なお、上記ウエハ4の露光量を調節する露光時間制御シ
ャッターおよびマスクについては周知の通りであり、図
1においては省略する。
FIG. 1 is a schematic view showing a first embodiment, which is a convex mirror 1 which is an illuminated member of an X-ray exposure apparatus.
Is supported by the mirror holder 2 having the coolant channel 2a with its reflection surface facing downward. Synchrotron radiation light (hereinafter, referred to as “X-ray”) 3 extracted from an emission point (not shown) of a charged particle storage ring (hereinafter, referred to as “SOR ring”) is reflected and expanded by the reflection surface, The magnified X-ray exposes the wafer 4 held vertically.
The exposure time control shutter and the mask for adjusting the exposure amount of the wafer 4 are well known, and are omitted in FIG.

【0013】ミラー1の反射面の温度分布は、測定手段
である赤外線カメラ5によって検出し、その検出結果
は、ミラー1の反射面のX線が入射しない部分に取付け
られた熱電対6によってより正確な値に補正される。ミ
ラー1の反射面の温度分布を制御する温度制御装置は、
加熱手段である赤外線ヒーター7、反射板7aおよび温
度調節手段であるアパーチャ8からなり、アパーチャ8
は、調節自在な開口部および該開口部に設けられた調節
自在なフィルターである赤外線吸収フィルター(図示せ
ず)によって、赤外線ヒーター7から放出される熱を部
分的に減量または遮断する。上記開口部および赤外線吸
収フィルターは、赤外線カメラ5および熱電対6の検出
値に応じて制御され、赤外線ヒーター7から、ミラー1
の反射面に到達する熱量の分布を制御することで、ミラ
ー1の反射面に所定の温度分布を発生させる。制御回路
9は、赤外線カメラ5および熱電対6の出力に応じて赤
外線ヒーター7の出力を制御する。
The temperature distribution on the reflecting surface of the mirror 1 is detected by an infrared camera 5 which is a measuring means, and the detection result is obtained by a thermocouple 6 attached to a portion of the reflecting surface of the mirror 1 where X-rays do not enter. Corrected to an accurate value. The temperature control device that controls the temperature distribution on the reflecting surface of the mirror 1 is
An infrared heater 7 as a heating means, a reflector 7a, and an aperture 8 as a temperature adjusting means are provided.
Partially reduces or blocks the heat emitted from the infrared heater 7 by an adjustable opening and an infrared absorption filter (not shown) which is an adjustable filter provided in the opening. The opening and the infrared absorption filter are controlled according to the detection values of the infrared camera 5 and the thermocouple 6, and the infrared heater 7 causes the mirror 1 to move.
By controlling the distribution of the amount of heat reaching the reflecting surface of the mirror 1, a predetermined temperature distribution is generated on the reflecting surface of the mirror 1. The control circuit 9 controls the output of the infrared heater 7 according to the outputs of the infrared camera 5 and the thermocouple 6.

【0014】次に図1の装置を用いて行った実験例を説
明する。
Next, an example of an experiment conducted by using the apparatus shown in FIG. 1 will be described.

【0015】実験例 蓄積電流215mAのSORリングから引出されたX線
を入射角2°で曲率50mのミラーの反射面に入射さ
せ、照射開始後、約1時間経過した時、ミラーの反射面
の温度分布および該反射面によって拡大されたX線の強
度分布をウエハ4の位置において測定した結果を、それ
ぞれ図2の実線による曲線a、図3の実線による曲線c
で示す。このときミラーに吸収されるエネルギーは平均
50mW/mm2 であった。
Experimental Example X-rays extracted from an SOR ring with a stored current of 215 mA were made incident on the reflecting surface of a mirror having a curvature of 50 m at an incident angle of 2 °, and about 1 hour after the start of irradiation, the reflecting surface of the mirror The results obtained by measuring the temperature distribution and the intensity distribution of the X-rays magnified by the reflecting surface at the position of the wafer 4 are shown by a solid curve a in FIG. 2 and a solid curve c in FIG. 3, respectively.
Indicate. The energy absorbed by the mirror at this time was 50 mW / mm 2 on average.

【0016】次に、X線の照射を停止してミラーを常温
にもどし、図2の曲線aに基づいて、アパーチャの開口
部および赤外線吸収フィルターをそれぞれ調節した後、
赤外線ヒーターによってミラーの反射面を加熱した。該
反射面の温度分布が図2の曲線aに一致した状態で熱的
に安定したのを確認の後、X線の照射を再開し、同時に
赤外線ヒーターによる加熱を停止した。この直後に再び
ミラーの反射面の温度分布とX線の強度分布を測定し
た。温度分布の測定結果は図2の破線による曲線bに示
す。X線の強度分布の測定結果は、図3の実線による曲
線Cとほぼ完全に一致した。このときSORリングの蓄
積電流は207mA、ミラーに吸収されるエネルギーは
平均48mW/mm2 であった。
Next, the irradiation of X-rays is stopped, the mirror is returned to room temperature, and the aperture of the aperture and the infrared absorption filter are respectively adjusted based on the curve a in FIG.
The reflective surface of the mirror was heated by an infrared heater. After confirming that the temperature distribution of the reflecting surface was thermally stable in the state of matching with the curve a in FIG. 2, the X-ray irradiation was restarted, and at the same time, the heating by the infrared heater was stopped. Immediately after this, the temperature distribution on the reflecting surface of the mirror and the X-ray intensity distribution were measured again. The measurement result of the temperature distribution is shown by the curved line b in FIG. The measurement result of the X-ray intensity distribution almost completely coincided with the solid curve C in FIG. At this time, the accumulated current of the SOR ring was 207 mA, and the energy absorbed by the mirror was 48 mW / mm 2 on average.

【0017】上記の実験例から、X線の照射開始時に、
ミラーの反射面の温度分布が上述の熱的に安定した状態
に到達していれば、熱的調整のために長い待機時間を必
要とすることなく、所定のX線の強度分布を得ることが
できる。
From the above experimental example, at the start of X-ray irradiation,
When the temperature distribution on the reflecting surface of the mirror reaches the above-mentioned thermally stable state, a predetermined X-ray intensity distribution can be obtained without requiring a long waiting time for thermal adjustment. it can.

【0018】また、X線の露光を継続すると、SORリ
ングの蓄積電流の減衰によって、X線の強度が全体的に
低下するが、本実施例においては、X線の露光中、赤外
線カメラおよび熱電対によってミラーの反射面の温度を
連続的にモニターして、該反射面の温度低下を検出し、
制御回路によって赤外線ヒーターからの熱を付加するこ
とによって、上記反射面の熱歪による変化を防ぐ。
Further, when the X-ray exposure is continued, the X-ray intensity is lowered as a whole due to the attenuation of the accumulated current of the SOR ring. However, in this embodiment, the infrared camera and the thermoelectric generator are used during the X-ray exposure. The temperature of the reflecting surface of the mirror is continuously monitored by a pair to detect the temperature drop of the reflecting surface,
By applying heat from the infrared heater by the control circuit, the change due to thermal strain of the reflecting surface is prevented.

【0019】X線の強度が全体的に低下した場合は、ミ
ラーの反射面における全体温度は下降するが温度分布の
曲線形状はほとんど変化しないため、赤外線ヒーターの
出力を増加させるだけでよい。
When the intensity of the X-rays is totally lowered, the total temperature on the reflecting surface of the mirror is lowered but the curve shape of the temperature distribution hardly changes. Therefore, it is only necessary to increase the output of the infrared heater.

【0020】図4は第2実施例を示す模式図であって、
本実施例においては、第1実施例と同様に、X線露光装
置のミラーの温度分布を制御するとともに、前記ミラー
の反射面の温度分布を制御する手段と同様の手段を用い
て、被照明部材であるマスクの熱歪による精度低下を防
止するものである。
FIG. 4 is a schematic diagram showing a second embodiment,
In this embodiment, as in the first embodiment, the temperature distribution of the mirror of the X-ray exposure apparatus is controlled, and the same means as the means for controlling the temperature distribution of the reflecting surface of the mirror is used to illuminate the object to be illuminated. It is intended to prevent the accuracy deterioration due to the thermal strain of the mask which is a member.

【0021】第1実施例と同様のミラー(図示せず)に
よって拡大されたX線13は露光時間制御シャッター2
1の開口を経て、X線透過膜22aおよびX線吸収体2
2bからなるマスク22を照射し、マスクパターン22
bをウエハ14のレジスト14aに焼付ける。マスク2
2は、マスク支持体23によって支持されており、マス
ク22の受光面の温度分布を制御する温度制御装置は、
測定手段である赤外線カメラ等の温度分布を検出する装
置(図示せず)、加熱手段である1対の赤外線ヒーター
24,25,各赤外線ヒーター24,25にそれぞれ設
けられた反射板24a,25a,温度調節手段であるア
パーチャ24b,25bおよびシャッター24c,25
cからなる。上記各アパーチャ24b,25bはいずれ
も第1実施例のアパーチャと同様のものであり、上述の
赤外線カメラ等の検出装置の出力によって制御され、各
赤外線ヒーター24,25から供給される熱を部分的に
遮断または削減することで、マスク22の受光面に所定
の温度分布を発生させる。
The X-ray 13 magnified by the same mirror (not shown) as in the first embodiment is used as the exposure time control shutter 2.
X-ray transmission film 22a and X-ray absorber 2 through the opening 1.
Irradiate the mask 22 composed of 2b to form the mask pattern 22.
b is baked on the resist 14a of the wafer 14. Mask 2
2 is supported by a mask support 23, and a temperature control device for controlling the temperature distribution of the light receiving surface of the mask 22 is
A device (not shown) for detecting temperature distribution such as an infrared camera which is a measuring means, a pair of infrared heaters 24 and 25 which is a heating means, and reflection plates 24a and 25a provided on the infrared heaters 24 and 25, respectively. Apertures 24b and 25b and shutters 24c and 25 which are temperature adjusting means
It consists of c. Each of the apertures 24b and 25b is similar to the aperture of the first embodiment, and is controlled by the output of the detection device such as the infrared camera described above to partially heat the infrared heaters 24 and 25. By shutting off or reducing it, a predetermined temperature distribution is generated on the light receiving surface of the mask 22.

【0022】また各シャッター24c,25cは、マス
ク22の各点の露光時間を制御する露光時間制御シャッ
ター21と連動して移動するもので、該露光時間制御シ
ャッター21によってX線が遮断されたマスク22の表
面部分のみが、選択的に各赤外線ヒーター24,25に
よって加熱されるように制御される。
The shutters 24c and 25c move in conjunction with an exposure time control shutter 21 that controls the exposure time of each point on the mask 22, and the masks whose X-rays are blocked by the exposure time control shutter 21. Only the surface portion of 22 is controlled to be selectively heated by each infrared heater 24, 25.

【0023】すなわち、露光時間制御シャッター21に
よってマスク22の受光面に周期的に発生する温度むら
が、各赤外線ヒーター24,25にそれぞれ附属するシ
ャッター24c,25cによって補正される。
That is, the temperature unevenness periodically generated on the light receiving surface of the mask 22 by the exposure time control shutter 21 is corrected by the shutters 24c and 25c attached to the infrared heaters 24 and 25, respectively.

【0024】実験例 本実施例の装置を用いて窒化シリコン2μm厚さのX線
透過膜上に金の吸収体パターンを形成したマスクを用
い、マスク、ウエハ間距離を70μmとして露光を行っ
た。露光されたウエハのパターン歪は0.08μmであ
った。
Experimental Example Using the apparatus of this example, a mask having a gold absorber pattern formed on an X-ray transparent film having a thickness of 2 μm of silicon nitride was used, and exposure was performed with a mask-wafer distance of 70 μm. The pattern distortion of the exposed wafer was 0.08 μm.

【0025】次にマスクの温度分布を制御する手段を用
いることなく、上記と同じ条件で実験を行ったところ、
パターン歪は0.023μmであった。
Next, an experiment was conducted under the same conditions as described above without using a means for controlling the temperature distribution of the mask.
The pattern distortion was 0.023 μm.

【0026】図5は第3実施例を示す説明図であって、
本実施例の被照明部材は軟X線縮小投影露光装置の縮小
ミラーである。
FIG. 5 is an explanatory view showing the third embodiment,
The illuminated member of this embodiment is a reduction mirror of a soft X-ray reduction projection exposure apparatus.

【0027】エキシマレーザー光線31は、レンズ32
で集光され、サマリウムSm材料のターゲット33に照
射され、ターゲット33より、レーザープラズマのX線
34が発生する。シリコンのフィルタ35およびアパー
チャ36を通過したX線34は反射型マスク37に照射
され、さらに該反射型マスク37から反射したX線34
は縮小ミラー38で反射され、シャッター39aを経
て、ウエハ39に反射型マスク37の像を結ぶ。反射型
マスク37のホルダー40は、該反射型マスク37を冷
却するための冷媒流路41を備えている。縮小ミラー3
8も同様にミラーホルダー42の冷媒流路43によって
間接的に冷却されている。
The excimer laser beam 31 has a lens 32.
Then, the target 33 made of samarium Sm material is irradiated with the light, and X-rays 34 of laser plasma are generated from the target 33. The X-rays 34 that have passed through the silicon filter 35 and the aperture 36 are applied to the reflective mask 37, and the X-rays 34 reflected from the reflective mask 37 are also reflected.
Is reflected by the reduction mirror 38, passes through the shutter 39a, and forms an image of the reflective mask 37 on the wafer 39. The holder 40 of the reflective mask 37 has a coolant channel 41 for cooling the reflective mask 37. Reduction mirror 3
Similarly, 8 is indirectly cooled by the coolant passage 43 of the mirror holder 42.

【0028】縮小ミラー38の受光面の温度分布は、測
定手段である赤外線カメラ46によって測定され、その
測定値は、縮小ミラー38の受光面に隣接して配置され
た熱電対47によって補正される。加熱手段であるグロ
ーバーランプ44は、縮小ミラー38の受光面を加熱す
るもので、グローバーランプ44から放射される熱は、
第1実施例のアパーチャと同様のアパーチャ45によっ
て部分的に遮断または削減されて、縮小ミラー38の受
光面に所定の温度分布を発生させる。
The temperature distribution on the light receiving surface of the reduction mirror 38 is measured by an infrared camera 46 which is a measuring means, and the measured value is corrected by a thermocouple 47 arranged adjacent to the light reception surface of the reduction mirror 38. .. The glow bar lamp 44, which is a heating means, heats the light receiving surface of the reduction mirror 38, and the heat emitted from the glow bar lamp 44 is
An aperture 45 similar to the aperture of the first embodiment partially blocks or reduces the aperture to generate a predetermined temperature distribution on the light receiving surface of the reduction mirror 38.

【0029】本実施例の操作は次のとおりである。The operation of this embodiment is as follows.

【0030】まず実験によって、ウエハ39を露光中の
縮小ミラー38の熱的安定状態における該縮小ミラーの
受光面の温度分布を、赤外線カメラ46および熱電体4
7によって測定する。また、この状態における縮小ミラ
ー38の熱歪による焦点位置のずれも測定する。ウエハ
39の露光開始に当っては、前記実験によって測定され
た縮小ミラーの受光面の温度分布に応じてアパーチャ4
5を調節するとともに、上記の縮小ミラー38の焦点位
置のずれに応じてウエハ39の位置を調整する。グロー
バーランプ44の加熱によって縮小ミラー38の受光面
が所定の温度分布に到達したのを確認した後、露光を開
始する。
First, by an experiment, the temperature distribution of the light receiving surface of the reduction mirror 38 during the exposure of the wafer 39 in a thermally stable state is shown by the infrared camera 46 and the thermoelectric body 4.
Measure by 7. Further, the shift of the focal position due to the thermal strain of the reduction mirror 38 in this state is also measured. When the exposure of the wafer 39 is started, the aperture 4 is adjusted according to the temperature distribution of the light receiving surface of the reduction mirror measured by the experiment.
5 is adjusted, and the position of the wafer 39 is adjusted according to the shift of the focal position of the reduction mirror 38. After confirming that the light receiving surface of the reduction mirror 38 has reached a predetermined temperature distribution by heating the glow bar lamp 44, exposure is started.

【0031】露光の開始時に、縮小ミラーはほぼ熱的安
定状態にあるため、熱的調整のための待機時間をほとん
ど必要とせず、加えて予め縮小ミラーの熱歪による焦点
の位置ずれを補正してあるため、転写パターンの焦点ぼ
けが発生することはない。
At the start of exposure, the reduction mirror is in a substantially thermally stable state, so that it requires almost no waiting time for thermal adjustment. In addition, the focal position shift due to thermal distortion of the reduction mirror is corrected in advance. Therefore, defocus of the transfer pattern does not occur.

【0032】なお、上述の第1および第2の実施例にお
いては、被照明部材であるミラーおよびマスクが炭化ケ
イ素(SiC)を素材とするものであるため、赤外線ヒ
ーターとして2μmから30μmの波長の赤外線を放射
する赤外線ランプを使用することで、上記被照明部材の
受光面を効果的に加熱することができる。
In the first and second embodiments described above, since the mirror and the mask, which are the members to be illuminated, are made of silicon carbide (SiC), the infrared heater has a wavelength of 2 μm to 30 μm. By using an infrared lamp that emits infrared rays, the light receiving surface of the illuminated member can be effectively heated.

【0033】また、第3の実施例においては、被照明部
材である縮小ミラーが石英で作られているため、4μm
以上の波長の赤外線を放射するグローバーランプを用い
ることで、熱伝導率の低い石英を効果的に加熱する。
Further, in the third embodiment, since the reduction mirror as the illuminated member is made of quartz, it is 4 μm.
By using a glow bar lamp that emits infrared rays having the above wavelength, quartz having low thermal conductivity is effectively heated.

【0034】[0034]

【発明の効果】本発明は、上述のとおり構成されている
ので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0035】照明光の照射開始時およびその照射中に、
ミラー、レンズ、マスク、レチクル等の被照明部材の受
光面の熱歪によって前記照明光の強度分布等が変化する
のを防ぐことができる。従って、照明光の照射開始直後
から安定した照明光を得ることができる。
At the start and during the irradiation of the illumination light,
It is possible to prevent the intensity distribution and the like of the illumination light from changing due to thermal strain of the light receiving surface of the illuminated member such as a mirror, a lens, a mask, and a reticle. Therefore, stable illumination light can be obtained immediately after the start of illumination light irradiation.

【0036】また上記被照明部材を用いる半導体露光装
置等の、照明光の強度むら等による精度の低下を防ぐこ
とができる。
Further, it is possible to prevent deterioration of accuracy due to unevenness of the intensity of illumination light in a semiconductor exposure apparatus using the above-mentioned illuminated member.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例を説明する模式図である。FIG. 1 is a schematic diagram illustrating a first embodiment.

【図2】第1実施例のミラーの反射面の温度分布を示す
図である。
FIG. 2 is a diagram showing a temperature distribution on a reflecting surface of the mirror of the first embodiment.

【図3】第1実施例のウエハ上のX線強度分布を示す図
である。
FIG. 3 is a diagram showing an X-ray intensity distribution on a wafer according to the first embodiment.

【図4】第2実施例を説明する模式図である。FIG. 4 is a schematic diagram illustrating a second embodiment.

【図5】第3実施例を説明する模式図である。FIG. 5 is a schematic diagram illustrating a third embodiment.

【符号の説明】 1 ミラー 3,13,34 X線 4,14,39 ウエハ 5,46 赤外線カメラ 7,24,25 赤外線ヒーター 8,24a,25a,45 アパーチャ 9 制御回路 21 露光時間制御シャッター 22 マスク 24c,25c シャッター 37 反射型マスク 38 縮小ミラー 44 グローバーランプ[Explanation of reference numerals] 1 mirror 3,13,34 X-ray 4,14,39 wafer 5,46 infrared camera 7,24,25 infrared heater 8,24a, 25a, 45 aperture 9 control circuit 21 exposure time control shutter 22 mask 24c, 25c Shutter 37 Reflective mask 38 Reduction mirror 44 Grover lamp

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被照明部材の受光面の受光中の熱歪を防
止する被照明部材の温度制御方法であって、少くとも前
記受光面が受光を開始する以前から、予め計測しておい
た前記受光面の受光中の熱的安定状態における温度分布
と同様の温度分布を、前記受光面に発生させることを特
徴とする被照明部材の温度制御方法。
1. A method for controlling a temperature of a member to be illuminated for preventing thermal strain during light reception of a light receiving surface of the member to be illuminated, which is measured in advance at least before the light receiving surface starts to receive light. A temperature control method for an illuminated member, wherein a temperature distribution similar to that in a thermally stable state during light reception on the light receiving surface is generated on the light receiving surface.
【請求項2】 被照明部材の受光面の受光中の温度分布
を測定する測定手段と、前記受光面を加熱する加熱手段
と、前記測定手段の出力に応じて、前記加熱手段によっ
て加熱される前記受光面の温度分布を制御するための温
度調節手段とからなる被照明部材の温度制御装置。
2. A measuring means for measuring a temperature distribution of a light receiving surface of a member to be illuminated during light reception, a heating means for heating the light receiving surface, and heating by the heating means according to an output of the measuring means. A temperature control device for a member to be illuminated, comprising: a temperature adjusting means for controlling the temperature distribution of the light receiving surface.
【請求項3】 温度調節手段が、加熱手段から供給され
る熱の一部を選択的に吸収する調節自在なフィルターを
備えたアパーチャからなることを特徴とする請求項2記
載の被照明部材の温度制御装置。
3. The illuminated member according to claim 2, wherein the temperature adjusting means comprises an aperture provided with an adjustable filter that selectively absorbs a part of the heat supplied from the heating means. Temperature control device.
【請求項4】 被照明部材が、半導体露光装置の露光光
を反射するミラーであることを特徴とする請求項2また
は3記載の被照明部材の温度制御装置。
4. The temperature control device for an illuminated member according to claim 2, wherein the illuminated member is a mirror that reflects the exposure light of the semiconductor exposure apparatus.
【請求項5】 被照明部材が、半導体露光装置のマスク
であって、温度調節手段が、前記半導体露光装置の露光
時間制御シャッターと連動するシャッターを有すること
を特徴とする請求項2または3記載の被照明部材の温度
制御装置。
5. The member to be illuminated is a mask for a semiconductor exposure apparatus, and the temperature adjusting means has a shutter that is interlocked with an exposure time control shutter of the semiconductor exposure apparatus. Control device for the illuminated member.
JP02326292A 1991-09-07 1992-01-13 Method and apparatus for controlling temperature of illuminated member Expired - Fee Related JP3238737B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02326292A JP3238737B2 (en) 1992-01-13 1992-01-13 Method and apparatus for controlling temperature of illuminated member
DE69220868T DE69220868T2 (en) 1991-09-07 1992-09-04 System for stabilizing the shapes of optical elements, exposure device using this system and method for manufacturing semiconductor devices
EP92308030A EP0532236B1 (en) 1991-09-07 1992-09-04 System for stabilizing the shapes of optical elements, exposure apparatus using this system and method of manufacturing semiconductor devices
CA002077572A CA2077572C (en) 1991-09-07 1992-09-04 Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductr devices
US08/270,794 US5390228A (en) 1991-09-07 1994-07-05 Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02326292A JP3238737B2 (en) 1992-01-13 1992-01-13 Method and apparatus for controlling temperature of illuminated member

Publications (2)

Publication Number Publication Date
JPH05190409A true JPH05190409A (en) 1993-07-30
JP3238737B2 JP3238737B2 (en) 2001-12-17

Family

ID=12105691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02326292A Expired - Fee Related JP3238737B2 (en) 1991-09-07 1992-01-13 Method and apparatus for controlling temperature of illuminated member

Country Status (1)

Country Link
JP (1) JP3238737B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175255A (en) * 2003-12-12 2005-06-30 Canon Inc Exposure device
JPWO2005022614A1 (en) * 2003-08-28 2007-11-01 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP2007536754A (en) * 2004-05-06 2007-12-13 カール ツァイス レーザー オプティクス ゲーエムベーハー Optical components with improved thermal behavior
JP2009081419A (en) * 2007-08-14 2009-04-16 Asml Netherlands Bv Lithographic equipment and control method of thermal optical manipulator
JP2012527099A (en) * 2009-05-16 2012-11-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure apparatus for semiconductor lithography comprising an optical correction structure
JP2013502063A (en) * 2009-08-11 2013-01-17 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for maintaining a constant mask size

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005022614A1 (en) * 2003-08-28 2007-11-01 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP2005175255A (en) * 2003-12-12 2005-06-30 Canon Inc Exposure device
JP4666908B2 (en) * 2003-12-12 2011-04-06 キヤノン株式会社 Exposure apparatus, measurement method, and device manufacturing method
JP2007536754A (en) * 2004-05-06 2007-12-13 カール ツァイス レーザー オプティクス ゲーエムベーハー Optical components with improved thermal behavior
JP2009081419A (en) * 2007-08-14 2009-04-16 Asml Netherlands Bv Lithographic equipment and control method of thermal optical manipulator
JP2011211237A (en) * 2007-08-14 2011-10-20 Asml Netherlands Bv Lithographic projection apparatus
US8064151B2 (en) 2007-08-14 2011-11-22 Asml Netherlands B.V. Lithographic apparatus and thermal optical manipulator control method
US8861102B2 (en) 2007-08-14 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and thermal optical manipulator control method
JP2012527099A (en) * 2009-05-16 2012-11-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure apparatus for semiconductor lithography comprising an optical correction structure
US9366977B2 (en) 2009-05-16 2016-06-14 Carl Zeiss Smt Gmbh Semiconductor microlithography projection exposure apparatus
JP2013502063A (en) * 2009-08-11 2013-01-17 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for maintaining a constant mask size

Also Published As

Publication number Publication date
JP3238737B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
CA2077572C (en) Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductr devices
US7091507B2 (en) Light generator and exposure apparatus
US5121160A (en) Exposure method and apparatus
EP1387054B1 (en) Cooling apparatus for an optical element, exposure apparatus comprising said cooling apparatus, and device fabrication method
US7250616B2 (en) Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
TWI345139B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7145632B2 (en) Cooling apparatus
US5719991A (en) System for compensating against wafer edge heat loss in rapid thermal processing
KR101452534B1 (en) Method for improving imaging properties of an optical system, and optical system
JP3017475B2 (en) Stepper or scanner with two energy monitors for the laser
JP2004031958A (en) Control system of thermal deformation of reflecting mirror and exposure device
TW539925B (en) Lithographic projection apparatus and device manufacturing method
US7360366B2 (en) Cooling apparatus, exposure apparatus, and device fabrication method
TW202129432A (en) Projection exposure apparatus for semiconductor lithography
US7319505B2 (en) Exposure apparatus and device fabrication method
JP3238737B2 (en) Method and apparatus for controlling temperature of illuminated member
US6211947B1 (en) Illuminance distribution measuring method, exposing method and device manufacturing method
US20230288260A1 (en) Method and device for determining the heating state of an optical element in an optical system
JP3132086B2 (en) Optical element shape control method and exposure apparatus
JPH10284390A (en) Form control equipment of reflecting mirror, form control method and aligner
JP2004080025A (en) Cooling device and method therefor, and aligner therewith
JP4366098B2 (en) Projection exposure apparatus and method, and device manufacturing method
JPH09246178A (en) Method for exposing
JP2001525605A (en) UV optical system with low deterioration
JPS60257519A (en) Printer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees