JPH05188416A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH05188416A
JPH05188416A JP223992A JP223992A JPH05188416A JP H05188416 A JPH05188416 A JP H05188416A JP 223992 A JP223992 A JP 223992A JP 223992 A JP223992 A JP 223992A JP H05188416 A JPH05188416 A JP H05188416A
Authority
JP
Japan
Prior art keywords
butyl
nonlinear optical
optical material
wavelength
shg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP223992A
Other languages
Japanese (ja)
Inventor
Tetsuya Ide
哲也 井出
Yoshiyuki Tougaki
良之 東垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP223992A priority Critical patent/JPH05188416A/en
Publication of JPH05188416A publication Critical patent/JPH05188416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the org. nonlinear optical material which can form a crystal having SHG activity without having an object 2 center, has excellent transparency and has an absorption end wavelength in a short wavelength region by using a specific benzene deriv. as the optical material. CONSTITUTION:The 3, 5-di-t-butyl-4-hydroxybenzaldehyde expressed by formula I or the 3, 5-di-t-butyl-4-hydroxybenzoic acid expressed by formula II can form the single crystal which has no absorption at all in a visible region and has excellent thermal stability and the high SHG activity. Both are excellent in workability and high in the tolerance of phase matching conditions and are, therefore, utilizable advantageously for nonlinear optical devices, such as wavelength conversion elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機非線形光学材料に関
し、より詳細には光コンピュータ、光通信及び光情報記
録等、広範な分野で用いられる有機非線形光学材料に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic nonlinear optical material, and more particularly to an organic nonlinear optical material used in a wide range of fields such as optical computers, optical communications and optical information recording.

【0002】[0002]

【従来の技術】レーザー光で得られるような強い光電場
により、物質中に誘起される電気分極が光電場に比例す
ることを物質の線形光学応答、比例関係からはずれて光
電場の2乗、3乗等に比例することを非線形光学応答と
いい、非線形光学材料とは、この非線形光学応答から生
じる様々な効果をまとめた非線形光学効果を有する材料
のことを指す。この非線形光学材料は、散乱光の増幅、
発振、波長変換等のコヒーレント光の発生手段、波形、
スペクトル、ビーム空間特性、偏光、変調特性等の光の
特性制御等への応用が可能である。また、比較的新しい
応用としては非線形光学材料を用いた光の空間、時間的
無歪伝送媒体、メモリー、スイッチ等の光情報処理素子
が挙げられる。
2. Description of the Related Art The linear optical response of a substance indicates that the electric polarization induced in the substance is proportional to the photoelectric field due to a strong electric field obtained by laser light. Proportionality to the cube or the like is called a non-linear optical response, and a non-linear optical material refers to a material having a non-linear optical effect in which various effects generated from this non-linear optical response are summarized. This nonlinear optical material is used to amplify scattered light,
Generation means of coherent light such as oscillation and wavelength conversion, waveform,
It can be applied to control of light characteristics such as spectrum, beam space characteristics, polarization and modulation characteristics. In addition, relatively new applications include optical information processing elements such as optical space using a non-linear optical material, temporal distortion-free transmission medium, memory, and switch.

【0003】非線形光学効果を有する材料を用いた応用
可能な分野の一つにレーザー光の波長変換(第2高調波
発生:SHG)がある。この現象によると基本波レーザ
ー光の2倍の周波数を有し、基本波レーザー光と同等の
性質を有するコヒーレント光を容易に取り出すことが可
能となり、情報記録や画像処理、あるいはレーザー計測
等の広い分野でその応用が期待できる。
Wavelength conversion of laser light (second harmonic generation: SHG) is one of the applicable fields using materials having a nonlinear optical effect. According to this phenomenon, it is possible to easily take out coherent light having a frequency twice that of the fundamental wave laser light and having the same properties as the fundamental wave laser light, and it is possible to widely use for information recording, image processing, laser measurement and the like. Its application can be expected in the field.

【0004】従来の非線形光学材料としては、LiNb
3 (LN)、KTiOPO4 (KTP)、KH2 PO
4 (KDP)、NH4 2 PO4 (ADP)等の無機結
晶が用いられてきたが、光学的純度の高い単結晶が非常
に高価であること、潮解性を示すものがあり取扱に不便
であること、光損傷強度に乏しいこと、また、2次非線
形感受率が高くないこと等の問題点があった。これに対
して、最近では無機物よりも速い応答性、高い光学損傷
強度及び桁違いに大きい2次の非線形光学性能指数を持
つ有機系の光学材料への期待が高まっている。
As a conventional nonlinear optical material, LiNb is used.
O 3 (LN), KTiOPO 4 (KTP), KH 2 PO
Inorganic crystals such as 4 (KDP) and NH 4 H 2 PO 4 (ADP) have been used, but single crystals with high optical purity are extremely expensive, and some have deliquescent properties, which makes them inconvenient to handle. There was a problem that the optical damage intensity was poor, and the second-order nonlinear susceptibility was not high. On the other hand, recently, there is an increasing expectation for an organic optical material having a faster response than an inorganic material, a high optical damage strength, and a second-order nonlinear optical performance index that is an order of magnitude larger.

【0005】[0005]

【発明が解決しようとする課題】有機材料の分子レベル
での光学的非線形性(超分子分極率β)は分子軌道計算
から推定することができるが、分子レベルでの超分子分
極率βの値が大きな有機材料であっても、結晶化したと
きにその結晶が対称中心を有する場合には、結晶レベル
でSHG不活性となってしまう。従って、その有機材料
が高いSHG活性を示すかどうかは超分子分極率βの値
だけでは判断できず、実際に有機材料を合成し、結晶化
して評価することが課題となる。
The optical non-linearity (supramolecular polarizability β) at the molecular level of organic materials can be estimated from the molecular orbital calculation, but the value of the supramolecular polarizability β at the molecular level is obtained. , Even if it is a large organic material, becomes SHG-inactive at the crystal level if the crystal has a symmetric center when crystallized. Therefore, whether or not the organic material exhibits high SHG activity cannot be judged only by the value of the supramolecular polarizability β, and it is a problem to actually synthesize the organic material, crystallize it, and evaluate it.

【0006】また、尿素やアニリン化合物の有機結晶が
非線形光学材料として発表されているが、これら有機化
合物においてもいまだ十分満足しうる非線形及び線形光
学特性を有するものはなく、例えば、比較的高い非線形
光学定数を有するMNA(2−メチル−4−ニトロアニ
リン)においても、その光吸収端は長波長側(可視光領
域)にあるため着色しており、実際の波長変換素子とし
て使用するに際して、SHG光(特に青色光)の透過率
が低いため、波長範囲が極めて限定されるという欠点が
ある。
Although organic crystals of urea and aniline compounds have been announced as nonlinear optical materials, none of these organic compounds have sufficiently satisfactory nonlinear and linear optical characteristics. Even in MNA (2-methyl-4-nitroaniline) having an optical constant, its light absorption edge is colored because it is on the long wavelength side (visible light region), and when used as an actual wavelength conversion element, SHG Since the transmittance of light (especially blue light) is low, there is a drawback that the wavelength range is extremely limited.

【0007】さらに、有機材料を非線形光学材料として
実用化するにあたっては、上述の透過光領域の問題のほ
かに、室温で安定であるとともに、できるだけ大きな単
結晶を形成するものであることが望まれるが、一般に有
機非線形光学材料は、融点が低いことから熱的安定性に
劣り、寸法精度が低く、切断及び研磨等、結晶を加工し
たり、大きな単結晶を得るのが困難であるという課題が
あった。
Further, in the practical application of an organic material as a nonlinear optical material, in addition to the problem of the transmitted light region described above, it is desired that the organic material be stable at room temperature and form a single crystal as large as possible. However, in general, an organic nonlinear optical material is inferior in thermal stability due to a low melting point, has low dimensional accuracy, and has a problem that it is difficult to process a crystal such as cutting and polishing, or to obtain a large single crystal. there were.

【0008】また、融点が低いと室温における屈折率の
変化が大きいので、位相整合条件の温度許容性が小さい
という課題があった。本発明は上記した課題を鑑みなさ
れたものであって、室温にて安定であるとともにSHG
活性を有し、対称中心を持たない結晶を形成することが
でき、しかも透明性に優れ、吸収端波長が短波長領域に
ある有機非線形光学材料を提供することを目的とする。
Further, if the melting point is low, the change in the refractive index at room temperature is large, so that there is a problem that the temperature tolerance of the phase matching condition is small. The present invention has been made in view of the above problems, and is stable at room temperature and SHG.
An object of the present invention is to provide an organic non-linear optical material which is active and can form a crystal having no center of symmetry, is excellent in transparency, and has an absorption edge wavelength in a short wavelength region.

【0009】[0009]

【課題を解決するための手段】本発明によれば、構造式
(I)あるいは(II)
According to the present invention, the structural formula (I) or (II)

【0010】[0010]

【化3】 [Chemical 3]

【0011】[0011]

【化4】 で表されるベンゼン誘導体からなる有機非線形光学材料
が提供される。
[Chemical 4] An organic nonlinear optical material comprising a benzene derivative represented by

【0012】本発明者らは、半経験的分子軌道法の1つ
であるPPP(パリザ−・パール・ポープル)法を用い
て、ベンズアルデヒドに種々のドナーを導入した場合の
超分子分極率βと極大吸収波長λmax を計算した。ま
た、対称中心を持たない、かさ高い置換基(t−ブチル
基)が結晶構造に与える影響、そのドナー性を検討した
結果、3,5−ジ−t−ブチル−4−ヒドロキシベンズ
アルデヒド及び3,5−ジ−t−ブチル−4−ヒドロキ
シ安息香酸が可視領域に全く吸収を持たず、熱安定性に
優れたSHG活性が大きな単結晶を形成することを見出
した。
The inventors of the present invention used a semi-empirical molecular orbital method, the PPP (Pariza-Pearl Pople) method, to obtain supramolecular polarizability β when various donors were introduced into benzaldehyde. The maximum absorption wavelength λ max was calculated. Moreover, as a result of examining the influence of a bulky substituent (t-butyl group) having no symmetry center on the crystal structure and its donor property, 3,5-di-t-butyl-4-hydroxybenzaldehyde and 3,5-di-t-butyl-4-hydroxybenzaldehyde It has been found that 5-di-t-butyl-4-hydroxybenzoic acid has no absorption in the visible region and forms a single crystal having excellent thermal stability and a large SHG activity.

【0013】本発明におけるこれらの化合物は公知の方
法で容易に合成することができる。例えば、3,5−ジ
−t−ブチル−4−ヒドロキシベンズアルデヒドは2,
6−ジ−t−ブチル−4−メチルフェノールを酸化する
ことによって、また、3,5−ジ−t−ブチル−4−ヒ
ドロキシ安息香酸は "Organic Syntheses", Col. Vol.
IV, p.919, John Wiley & Sons, New York (1963) の方
法を用いて、3,5−ジ−t−ブチル−4−ヒドロキシ
ベンズアルデヒドを酸化することによって合成すること
ができる。
These compounds in the present invention can be easily synthesized by known methods. For example, 3,5-di-t-butyl-4-hydroxybenzaldehyde is 2,
By oxidizing 6-di-t-butyl-4-methylphenol, also 3,5-di-t-butyl-4-hydroxybenzoic acid can be obtained from "Organic Syntheses", Col. Vol.
IV, p.919, John Wiley & Sons, New York (1963), can be used to synthesize 3,5-di-t-butyl-4-hydroxybenzaldehyde by oxidation.

【0014】本発明の化合物は粗生成物を公知の方法、
例えば、再結晶法、昇華法等により精製することによっ
て、非線形光学材料として使用することができる。
The compound of the present invention is a crude product obtained by a known method,
For example, it can be used as a nonlinear optical material by being purified by a recrystallization method, a sublimation method, or the like.

【0015】[0015]

【実施例】本発明を実施例により更に詳細に説明する。 実施例1 まず、2,6−ジ−t−ブチル−4−メチルフェノール
20gを氷酢酸200ccに溶解し、さらに純水50c
cを加え、そしてこの溶液へ攪拌しながら臭素10cc
を2時間かけて滴下した。1時間攪拌したのち、溶液を
125ccの氷水で薄め、3時間、0℃にて冷却し、結
晶を得た。これをろ過し、酢酸、水で洗浄したのち、ヘ
キサンで再結晶を行い、3,5−ジ−t−ブチル−4−
ヒドロキシベンズアルデヒドを得た。収率は68%であ
った。
EXAMPLES The present invention will be described in more detail by way of examples. Example 1 First, 20 g of 2,6-di-t-butyl-4-methylphenol was dissolved in 200 cc of glacial acetic acid, and 50 c of pure water was further added.
c and bromine 10 cc with stirring to this solution
Was added dropwise over 2 hours. After stirring for 1 hour, the solution was diluted with 125 cc of ice water and cooled at 0 ° C. for 3 hours to obtain crystals. This was filtered, washed with acetic acid and water, and then recrystallized from hexane to give 3,5-di-t-butyl-4-.
Hydroxybenzaldehyde was obtained. The yield was 68%.

【0016】本実施例により得られた3,5−ジ−t−
ブチル−4−ヒドロキシベンズアルデヒドの可視紫外線
領域のスペクトルを図1に示す。極大吸収波長は278
nm(1,4−ジオキサン中)であった。図1より明ら
かなように、半導体レーザ830nmのSHG光である
415nmの波長領域で十分透光性が高いことを示し、
さらに、短波長の誘起光源を用いても十分な透光性を有
していることを示している。
3,5-di-t-obtained according to this example
The spectrum of butyl-4-hydroxybenzaldehyde in the visible ultraviolet region is shown in FIG. The maximum absorption wavelength is 278
nm (in 1,4-dioxane). As is clear from FIG. 1, it is shown that the semiconductor laser has a sufficiently high translucency in the wavelength region of 415 nm which is the SHG light of 830 nm,
Furthermore, it is shown that even if an inductive light source with a short wavelength is used, it has sufficient translucency.

【0017】また、3,5−ジ−t−ブチル−4−ヒド
ロキシベンズアルデヒドの融点はDSCの測定より18
8℃であった。これは、代表的なSHG材料であるMA
P(メチル−(2,4−ジニトロフェニル)−アミノプ
ロパノエイト)の融点、69℃と比較して極めて高いも
のであるので、従来のSHG材料よりも加工性に優れ、
位相整合条件の許容性が大きいという優位性がある。
The melting point of 3,5-di-t-butyl-4-hydroxybenzaldehyde was determined by DSC to be 18
It was 8 ° C. This is a typical SHG material, MA.
The melting point of P (methyl- (2,4-dinitrophenyl) -aminopropanoate), which is extremely higher than 69 ° C., is superior in processability to conventional SHG materials,
It has the advantage that the phase matching condition has a large tolerance.

【0018】次に、得られた3,5−ジ−t−ブチル−
4−ヒドロキシベンズアルデヒドのSHGの評価を粉末
法により行った。直径100μm前後に粒状化した試料
をスライドガラスに挟み、この試料にNd−YAGレー
ザ(波長=1.064μm)を照射すると入射光の1/
2の波長(532nm)の緑色光を観測し、試料より発
生した第2高調波をフォトマルにより検知した。標準試
料には同様に粒状化した尿素を用い、尿素の第2高調波
強度を1とし、相対比較を行った。その結果、尿素の5
倍のSHG活性を示すことが分かった。
Next, the obtained 3,5-di-t-butyl-
The SHG of 4-hydroxybenzaldehyde was evaluated by the powder method. A sample granulated to a diameter of around 100 μm is sandwiched between slide glasses, and this sample is irradiated with an Nd-YAG laser (wavelength = 1.064 μm), then
Green light with a wavelength of 2 (532 nm) was observed, and the second harmonic generated from the sample was detected by Photomul. Similarly, granular urea was used as the standard sample, and the second harmonic intensity of urea was set to 1, and relative comparison was performed. As a result, 5 of urea
It was found to show double the SHG activity.

【0019】さらに、3,5−ジ−t−ブチル−4−ヒ
ドロキシベンズアルデヒドは、結晶性が良好であり、室
温で安定である。 実施例2 実施例1で得られた3,5−ジ−t−ブチル−4−ヒド
ロキシベンズアルデヒドと酸化銀との反応から3,5−
ジ−t−ブチル−4−ヒドロキシ安息香酸を得た。収率
は72%であった。
Furthermore, 3,5-di-t-butyl-4-hydroxybenzaldehyde has good crystallinity and is stable at room temperature. Example 2 From the reaction of 3,5-di-t-butyl-4-hydroxybenzaldehyde obtained in Example 1 with silver oxide, 3,5-
Di-t-butyl-4-hydroxybenzoic acid was obtained. The yield was 72%.

【0020】本実施例により得られた3,5−ジ−t−
ブチル−4−ヒドロキシ安息香酸の可視紫外線領域のス
ペクトルを図2に示す。極大吸収波長は258nm
(1,4−ジオキサン中)であった。図2より明らかな
ように、半導体レーザ830nmのSHG光である41
5nmの波長領域で十分透光性が高いことを示し、さら
に、短波長の誘起光源を用いても十分な透光性を有して
いることを示している。
3,5-di-t-obtained according to this example
The spectrum of butyl-4-hydroxybenzoic acid in the visible ultraviolet region is shown in FIG. Maximum absorption wavelength is 258 nm
(In 1,4-dioxane). As is clear from FIG. 2, the semiconductor laser 830 nm SHG light 41
It shows that the light-transmitting property is sufficiently high in the wavelength region of 5 nm, and further that the light-transmitting property is sufficient even when an inductive light source with a short wavelength is used.

【0021】また、3,5−ジ−t−ブチル−4−ヒド
ロキシ安息香酸の融点はDSCの測定より208℃であ
った。これは、代表的なSHG材料であるMAPの融
点、69℃と比較して極めて高いものであるので、従来
のSHG材料よりも加工性に優れ、位相整合条件の許容
性が大きいという優位性がある。次に、得られた3,5
−ジ−t−ブチル−4−ヒドロキシ安息香酸のSHGの
評価を実施例1と同様の方法で行った。その結果、この
試料にNd−YAGレーザ(波長=1.064μm)を
照射すると入射光の1/2の波長(532nm)の緑色
光を観測し、尿素の3倍のSHG活性を示すことが分か
った。
The melting point of 3,5-di-t-butyl-4-hydroxybenzoic acid was 208 ° C. as measured by DSC. This is extremely higher than the melting point of MAP, which is a typical SHG material, which is 69 ° C., so that it is superior to conventional SHG materials in workability and has a large tolerance for phase matching conditions. is there. Then obtained 3,5
Evaluation of SHG of -di-t-butyl-4-hydroxybenzoic acid was performed in the same manner as in Example 1. As a result, when this sample was irradiated with an Nd-YAG laser (wavelength = 1.064 μm), green light with a wavelength (532 nm) that was half the incident light was observed, and it was found that SHG activity that is three times that of urea is exhibited. It was

【0022】さらに、3,5−ジ−t−ブチル−4−ヒ
ドロキシ安息香酸は、結晶性が良好であり、室温で安定
である。
Furthermore, 3,5-di-t-butyl-4-hydroxybenzoic acid has good crystallinity and is stable at room temperature.

【0023】[0023]

【発明の効果】本発明による3,5−ジ−t−ブチル−
4−ヒドロキシベンズアルデヒド及び3,5−ジ−t−
ブチル−4−ヒドロキシ安息香酸から選択された化合物
は、室温で安定であるとともに結晶性が良好で、SHG
活性が比較的大きく、かつ透明性に優れ、吸収短波長が
比較的短波長領域にある有機非線形光学材料である。従
って、波長変換素子を初めとする種々の非線形光学デバ
イスに利用可能であり、実用上重要な材料である。
According to the present invention, 3,5-di-t-butyl-
4-hydroxybenzaldehyde and 3,5-di-t-
The compound selected from butyl-4-hydroxybenzoic acid is stable at room temperature and has good crystallinity, and SHG
It is an organic nonlinear optical material having a relatively large activity, excellent transparency, and an absorption short wavelength in a relatively short wavelength region. Therefore, it can be used for various nonlinear optical devices such as a wavelength conversion element and is an important material for practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による3,5−ジ−t−ブチル−4−ヒ
ドロキシベンズアルデヒドの波長と吸光度との関係を示
す図である。
FIG. 1 is a diagram showing the relationship between wavelength and absorbance of 3,5-di-t-butyl-4-hydroxybenzaldehyde according to the present invention.

【図2】本発明による3,5−ジ−t−ブチル−4−ヒ
ドロキシ安息香酸の波長と吸光度との関係を示す図であ
る。
FIG. 2 is a graph showing the relationship between wavelength and absorbance of 3,5-di-t-butyl-4-hydroxybenzoic acid according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 構造式(I)あるいは(II) 【化1】 【化2】 で表されるベンゼン誘導体からなる有機非線形光学材
料。
1. A structural formula (I) or (II): [Chemical 2] An organic nonlinear optical material consisting of a benzene derivative represented by.
JP223992A 1992-01-09 1992-01-09 Organic nonlinear optical material Pending JPH05188416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP223992A JPH05188416A (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP223992A JPH05188416A (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH05188416A true JPH05188416A (en) 1993-07-30

Family

ID=11523810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP223992A Pending JPH05188416A (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH05188416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332495B1 (en) * 1999-12-02 2002-04-17 채문식 Octupolar Molecules for Nonlinear Optics and the Method Producing Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332495B1 (en) * 1999-12-02 2002-04-17 채문식 Octupolar Molecules for Nonlinear Optics and the Method Producing Thereof

Similar Documents

Publication Publication Date Title
JPH0377923A (en) Organic nonlinear optical material
JPH05188416A (en) Organic nonlinear optical material
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JP2725929B2 (en) Organic nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JP2685380B2 (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JP2725935B2 (en) Organic nonlinear optical material
JPH0580374A (en) Organic nonlinear optical material
JP2776694B2 (en) Organic nonlinear optical material
JPH0532587A (en) New aromatic compound and nonlinear optical material
JPH06184081A (en) Organic nonlinear optical material
JPH03194519A (en) Nonlinear optical material
JPH05196975A (en) Organic nonlinear optical material
JPH08184866A (en) Stilbene derivative for organic nonlinear optical material and its use
JPH0572580A (en) Nonlinear optical material
JPH0719003B2 (en) Non-linear optical material
JPH03112982A (en) Benzalacetophenone and nonlinear optical material
JPH07209679A (en) Organic nonlinear optical material
JPH03181919A (en) Organic nonlinear optical material
JPH07107012B2 (en) Novel organic compound
JPH04261524A (en) Nonlinear optical material
JPH0643508A (en) Organic nonlinear optical material
JPH03293334A (en) Nonlinear optical material