JP2763224B2 - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JP2763224B2
JP2763224B2 JP4002238A JP223892A JP2763224B2 JP 2763224 B2 JP2763224 B2 JP 2763224B2 JP 4002238 A JP4002238 A JP 4002238A JP 223892 A JP223892 A JP 223892A JP 2763224 B2 JP2763224 B2 JP 2763224B2
Authority
JP
Japan
Prior art keywords
nonlinear optical
nitrobenzene
optical material
light
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4002238A
Other languages
Japanese (ja)
Other versions
JPH05188418A (en
Inventor
哲也 井出
良之 東垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP4002238A priority Critical patent/JP2763224B2/en
Publication of JPH05188418A publication Critical patent/JPH05188418A/en
Application granted granted Critical
Publication of JP2763224B2 publication Critical patent/JP2763224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機非線形光学材料に関
し、より詳細には光コンピュータ、光通信及び光情報記
録等、広範な分野で用いられる有機非線形光学材料に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic nonlinear optical material, and more particularly, to an organic nonlinear optical material used in a wide range of fields such as optical computers, optical communication and optical information recording.

【0002】[0002]

【従来の技術】非線形光学材料は、散乱光の増幅、発
振、波長変換等のコヒーレント光の発生手段、波形、ス
ペクトル、ビーム空間特性、偏光、変調特性等の光の特
性制御等への応用が可能である。また、比較的新しい応
用としては非線形光学材料を用いた光の空間、時間的無
歪伝送媒体、メモリー、スイッチ等の光情報処理素子が
挙げられる。
2. Description of the Related Art Nonlinear optical materials are applied to means for generating coherent light such as amplification, oscillation and wavelength conversion of scattered light, and control of light characteristics such as waveform, spectrum, beam space characteristics, polarization and modulation characteristics. It is possible. Further, as a relatively new application, there are optical information processing elements such as a light space using a non-linear optical material, a temporally distortion-free transmission medium, a memory, and a switch.

【0003】非線形光学効果を有する材料を用いた応用
可能な分野の一つにレーザー光の波長変換(第2高調波
発生:SHG)がある。この現象によると基本波レーザ
ー光の2倍の周波数を有し、基本波レーザー光と同等の
性質を有するコヒーレント光を容易に取り出すことが可
能となり、情報記録や画像処理、あるいはレーザー計測
等の広い分野でその応用が期待できる。
One of the applicable fields using a material having a nonlinear optical effect is wavelength conversion of laser light (second harmonic generation: SHG). According to this phenomenon, it is possible to easily extract coherent light having a frequency twice that of the fundamental wave laser light and having the same properties as the fundamental wave laser light, and is widely used for information recording, image processing, laser measurement, and the like. The application can be expected in the field.

【0004】従来の非線形光学材料としては、LiNb
3 (LN)、KTiOPO4 (KTP)、KH2 PO
4 (KDP)、NH4 2 PO4 (ADP)等の無機結
晶が用いられてきたが、光学的純度の高い単結晶が非常
に高価であること、潮解性を示すものがあり取扱に不便
であること、光損傷強度に乏しいこと、また、2次非線
形感受率が高くないこと等の問題点があった。これに対
して、最近では無機物よりも速い応答性、高い光学損傷
強度及び桁違いに大きい2次の非線形光学性能指数を持
つ有機系の光学材料への期待が高まっており、例えば、
特開平1−281438号公報、特開平2−13242
3号公報、特開平2−171730号公報等に可視領域
に吸収を持たず、高い非線形光学効果を示す化合物が開
示されている。また、特開平3−146928号公報、
特開平3−81746号公報等には安定で大きな単結晶
を成長させやすい非線形光学材料が開示されている。
As a conventional nonlinear optical material, LiNb is used.
O 3 (LN), KTiOPO 4 (KTP), KH 2 PO
Inorganic crystals such as 4 (KDP) and NH 4 H 2 PO 4 (ADP) have been used, but single crystals with high optical purity are very expensive, and some show deliquescent, which is inconvenient to handle. However, there are problems such as poor optical damage intensity and a low second-order nonlinear susceptibility. On the other hand, recently, expectations are growing for organic optical materials having faster response, higher optical damage strength, and an order of magnitude larger nonlinear optical performance index than inorganic substances, for example,
JP-A-1-281438, JP-A-2-13242
No. 3, JP-A-2-171730 and the like disclose a compound having no absorption in the visible region and exhibiting a high nonlinear optical effect. Also, JP-A-3-14628,
Japanese Unexamined Patent Publication No. 3-81746 discloses a nonlinear optical material in which a stable and large single crystal can be easily grown.

【0005】[0005]

【発明が解決しようとする課題】有機材料の分子レベル
での光学的非線形性(超分子分極率β)は分子軌道計算
から推定することができるが、分子レベルでの超分子分
極率βの値が大きな有機材料であっても、結晶化したと
きにその結晶が対称中心を有する場合には、結晶レベル
でSHG不活性となってしまう。従って、その有機材料
が高いSHG活性を示すかどうかは超分子分極率βの値
だけでは判断できず、実際に有機材料を合成し、結晶化
して評価することが課題となる。
The optical non-linearity (supramolecular polarizability β) at the molecular level of an organic material can be estimated from molecular orbital calculations, but the value of the supramolecular polarizability β at the molecular level can be estimated. Even if the organic material is large, if the crystal has a center of symmetry when crystallized, it becomes inactive at the crystal level. Therefore, whether or not the organic material exhibits high SHG activity cannot be determined only by the value of the supramolecular polarizability β, and it is a problem to actually synthesize and crystallize the organic material for evaluation.

【0006】また、尿素やアニリン化合物の有機結晶が
非線形光学材料として発表されているが、これら有機化
合物においてもいまだ十分満足しうる非線形及び線形光
学特性を有するものはなく、例えば、比較的高い非線形
光学定数を有するMNA(2−メチル−4−ニトロアニ
リン)においても、その光吸収端は長波長側(可視光領
域)にあるため着色しており、実際の波長変換素子とし
て使用するに際して、SHG光(特に青色光)の透過率
が低いため、波長範囲が極めて限定されるという欠点が
ある。
Also, organic crystals of urea and aniline compounds have been announced as nonlinear optical materials, but none of these organic compounds have sufficiently satisfactory nonlinear and linear optical characteristics. MNA (2-methyl-4-nitroaniline) having an optical constant is also colored because its light absorption edge is on the long wavelength side (visible light region). Since the transmittance of light (particularly, blue light) is low, there is a disadvantage that the wavelength range is extremely limited.

【0007】さらに、有機材料を非線形光学材料として
実用化するにあたっては、上述の透過光領域の問題のほ
かに、室温で安定であるとともに、できるだけ大きな単
結晶を形成するものであることが望まれるが、一般に有
機非線形光学材料は、融点が低いことから熱的安定性に
劣り、寸法精度が低く、切断及び研磨等、結晶を加工し
たり、大きな単結晶を得るのが困難であるという課題が
あった。
Further, in putting an organic material into practical use as a nonlinear optical material, in addition to the above-mentioned problem of the transmitted light region, it is desired that the material be stable at room temperature and form a single crystal as large as possible. However, organic non-linear optical materials generally have poor thermal stability due to their low melting points, low dimensional accuracy, and difficulties in processing crystals, such as cutting and polishing, and in obtaining large single crystals. there were.

【0008】また、融点が低いと室温における屈折率の
変化が大きいので、位相整合条件の温度許容性が小さい
という課題があった。本発明は上記した課題を鑑みなさ
れたものであって、室温にて安定であるとともにSHG
活性を有し、対称中心を持たない結晶を形成することが
でき、しかも透明性に優れ、吸収端波長が短波長領域に
ある有機非線形光学材料を提供することを目的とする。
Further, when the melting point is low, the change in the refractive index at room temperature is large, so that there is a problem that the temperature tolerance of the phase matching condition is small. The present invention has been made in view of the above-mentioned problems, and is stable at room temperature and has SHG.
It is an object of the present invention to provide an organic nonlinear optical material having activity, capable of forming a crystal having no center of symmetry, excellent in transparency, and having an absorption edge wavelength in a short wavelength region.

【0009】[0009]

【課題を解決するための手段】本発明によれば、構造式
(I)
According to the present invention, structural formula (I)

【0010】本発明によれば、式(I)According to the present invention, formula (I)

【化2】 で表わされる単結晶のニトロベンゼン誘導体からなる有
機非線形光学材料が提供される。
Embedded image The present invention provides an organic nonlinear optical material comprising a single crystal nitrobenzene derivative represented by the following formula:

【0011】本発明者らは、半経験的分子軌道法の1つ
であるPPP(パリザ−・パール・ポープル)法を用い
て、ベンゼン環に種々のアクセプタ及びドナーを導入し
た場合の超分子分極率βと極大吸収波長λmax を計算
し、粉末法により結晶状態でのSHG活性の評価を行っ
た結果、1,2−ジヒドロキシ−4−ニトロベンゼン
が、半導体レーザを用いた場合におけるSHG光の波長
領域に大きな吸収を持たず、熱安定性に優れ、SHG活
性が大きい単結晶を形成することを見出した。
The present inventors have proposed a supramolecular polarization method in which various acceptors and donors are introduced into a benzene ring by using a PPP (Pariser-Pearl Popple) method, which is one of semi-empirical molecular orbital methods. The β ratio and the maximum absorption wavelength λ max were calculated, and the SHG activity in a crystalline state was evaluated by the powder method. As a result, 1,2-dihydroxy-4-nitrobenzene showed a wavelength of SHG light when a semiconductor laser was used. It has been found that a single crystal having no large absorption in the region, having excellent thermal stability, and having high SHG activity is formed.

【0012】本発明における1,2−ジヒドロキシ−4
−ニトロベンゼンは公知の方法で容易に合成することが
できる。例えば、カテコール(1,2−ジヒドロキシベ
ンゼン)をエーテル中で硝酸でニトロ化することにより
合成することができる。この反応は、15〜20℃の温
度範囲内で、2〜3時間行うことが好ましい。
1,2-dihydroxy-4 according to the present invention
-Nitrobenzene can be easily synthesized by a known method. For example, it can be synthesized by nitrating catechol (1,2-dihydroxybenzene) with nitric acid in ether. This reaction is preferably performed within a temperature range of 15 to 20 ° C for 2 to 3 hours.

【0013】本発明の化合物は粗生成物を公知の方法、
例えば、再結晶法、昇華法等により精製することによっ
て、非線形光学材料として使用することができる。
The compound of the present invention can be prepared by a method known in the art,
For example, it can be used as a nonlinear optical material by purifying it by a recrystallization method, a sublimation method, or the like.

【0014】[0014]

【実施例】本発明を実施例によりさらに詳細に説明す
る。まず、1,2−ジヒドロキシベンゼンをジエチルエ
ーテルに溶解し、この溶液へ攪拌しながら硝酸を滴下し
た。2時間攪拌したのち、溶液を冷却し、結晶を得た。
これをろ過し、ジエチルエーテルで洗浄したのち、エタ
ノールで再結晶を行い、1,2−ジヒドロキシー4−ニ
トロベンゼンの単結晶を得た。また、同様の方法によ
り、2−ニトロレゾルシノール、
EXAMPLES The present invention will be described in more detail with reference to Examples. First, 1,2-dihydroxybenzene was dissolved in diethyl ether, and nitric acid was added dropwise to this solution with stirring. After stirring for 2 hours, the solution was cooled to obtain crystals.
This was filtered, washed with diethyl ether, and then recrystallized with ethanol to obtain a single crystal of 1,2-dihydroxy-4-nitrobenzene. Further, by the same method, 2-nitroresorcinol,

【0015】[0015]

【化3】 1,2−ジメトキシ−4−ニトロベンゼン、Embedded image 1,2-dimethoxy-4-nitrobenzene,

【0016】[0016]

【化4】 1,4−ジメトキシ−2−ニトロベンゼン、Embedded image 1,4-dimethoxy-2-nitrobenzene,

【0017】[0017]

【化5】 1−メトキシ−2−ヒドロキシ−4−ニトロベンゼン
(特開平2−171730号公報)、
Embedded image 1-methoxy-2-hydroxy-4-nitrobenzene (JP-A-2-171730),

【0018】[0018]

【化6】 を合成した。Embedded image Was synthesized.

【0019】本実施例により得られた1,2−ジヒドロ
キシ−4−ニトロベンゼン及びニトロベンゼン誘導体の
可視紫外線領域のスペクトル、融点及びSHG強度の測
定を行った。その結果を表1に示す。
The spectrum, melting point and SHG intensity of the visible ultraviolet region of the 1,2-dihydroxy-4-nitrobenzene and nitrobenzene derivatives obtained in this example were measured. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】また、本実施例により得られた1,2−ジ
ヒドロキシ−4−ニトロベンゼンの可視紫外線領域のス
ペクトルを図1に示す。極大吸収波長は335nm
(1,4−ジオキサン中)であった。表1及び図1より
明らかなように、半導体レーザ830nmのSHG光で
ある415nmの波長領域で十分透光性が高いことを示
し、さらに、短波長の誘起光源を用いても十分な透光性
を有していることを示している。
FIG. 1 shows the spectrum of 1,2-dihydroxy-4-nitrobenzene obtained in this example in the visible ultraviolet region. Maximum absorption wavelength is 335nm
(In 1,4-dioxane). As is clear from Table 1 and FIG. 1, it is shown that the transmissivity is sufficiently high in the wavelength range of 415 nm, which is the SHG light of the semiconductor laser 830 nm, and that the transmissivity is sufficient even when a short wavelength induction light source is used. Has been shown.

【0022】また、1,2−ジヒドロキシ−4−ニトロ
ベンゼンの融点はDSCの測定より175℃であった。
これは、他の1ヒドロキシ−4−ニトロベンゼン誘導体
と比較して熱安定性が著しく向上している。このことか
ら、分子間水素結合により熱安定性が向上したと考察す
ることができる。次に、得られた1,2−ジヒドロキシ
−4−ニトロベンゼンのSHGの評価を粉末法により行
った。直径100μm前後に粒状化した試料をスライド
ガラスに挟み、この試料にNd−YAGレーザ(波長=
1.064μm)を照射すると入射光の1/2の波長
(532nm)の緑色光を観測し、試料より発生した第
2高調波をフォトマルにより検知した。標準試料には同
様に粒状化した尿素を用い、尿素の第2高調波強度を1
とし、相対比較を行った。その結果、尿素の10倍のS
HG活性を示すことが分かった。
The melting point of 1,2-dihydroxy-4-nitrobenzene was 175 ° C. as measured by DSC.
This has significantly improved thermal stability as compared with other 1-hydroxy-4-nitrobenzene derivatives. From this, it can be considered that the thermal stability was improved by the intermolecular hydrogen bonding. Next, SHG of the obtained 1,2-dihydroxy-4-nitrobenzene was evaluated by a powder method. A sample granulated to a diameter of about 100 μm is sandwiched between slide glasses, and this sample is placed on a Nd-YAG laser (wavelength =
(1.064 μm), green light having a half wavelength (532 nm) of the incident light was observed, and the second harmonic generated from the sample was detected by photomultiplier. Similarly, granulated urea was used as a standard sample, and the second harmonic intensity of urea was set to 1
And a relative comparison was made. As a result, 10 times the S of urea
It was found to show HG activity.

【0023】さらに、1,2−ジヒドロキシ−4−ニト
ロベンゼンは、結晶性が良好であり、室温で安定であ
る。
Further, 1,2-dihydroxy-4-nitrobenzene has good crystallinity and is stable at room temperature.

【0024】[0024]

【発明の効果】本発明による1,2−ジヒドロキシ−4
−ニトロベンゼンは、室温で安定であるとともに結晶性
が良好で、SHG活性が比較的大きく、かつ透明性に優
れ、吸収短波長が比較的短波長領域にある有機非線形光
学材料である。従って、波長変換素子を初めとする種々
の非線形光学デバイスに利用可能であり、実用上重要な
材料である。
The 1,2-dihydroxy-4 according to the present invention
-Nitrobenzene is an organic nonlinear optical material that is stable at room temperature, has good crystallinity, has relatively high SHG activity, has excellent transparency, and has a short absorption wavelength in a relatively short wavelength region. Therefore, it can be used for various nonlinear optical devices including a wavelength conversion element, and is an important material for practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による1,2−ジヒドロキシ−4−ニト
ロベンゼンの波長と吸光度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the wavelength and the absorbance of 1,2-dihydroxy-4-nitrobenzene according to the present invention.

フロントページの続き (56)参考文献 特開 平6−507439(JP,A) 特開 平2−171730(JP,A) JOURNAL OF MATERI ALS CHEMISTRY,VOL. 1 NO.5 PP.775−780 (1991 年9月) C.LAMBERTH E T.AL.,「PREPARATION AND SECOND−HARMON IC GENERATION PROP ERTIES OF TRIS(PYR OCATECHOLATO)STANN ATE(4) COMPAOUNDS」 SPIE PROCEEDINGS, NONLINEAR OPTICAL PROPERTIES OF ORGA NIC MATERIALS 2,VO L.1147 PP.61−72 (1989) L.T.CHENG ET.AL., 「NONRESONANT EFISH AND THGSTUDIES OF NONLINEAR OPTICAL PROPERTY AND MOLE CULAR STRUCTURE RE LATIONS OF BENZEN E,STILBENE,AND OTH ER ARENE DERIVATIV ES」 (58)調査した分野(Int.Cl.6,DB名) G02F 1/35 504 CA(STN)Continuation of front page (56) References JP-A-6-507439 (JP, A) JP-A-2-171730 (JP, A) JOURNAL OF MATERIAL ALS CHEMISTRY, VOL. 1 NO. 5 PP. 775-780 (September 1991) C.I. LAMBERTH ET. AL. , “PREPARATION AND SECOND-HARMON IC GENERATION PROP ERIES OF TRIS (PYR OCATECHOLATO) STAN ATE (4) COMPAUNDING SERVICE GROUP. 1147 PP. 61-72 (1989) T. CHENG ET. AL. , "NONRESONANT EFISH AND THGSTUDIES OF NONLINEAR OPTICAL PROPERTY AND MOLE CULAR STRUCTURE RE LATIONS OF BENZEN E, STILBENE, AND OTH ER ARENE DERIVATIV ES " (58) investigated the field (Int.Cl. 6, DB name) G02F 1/35 504 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 式(I) 【化1】 で表わされる単結晶のニトロベンゼン誘導体からなる有
機非線形光学材料。
1. A compound of the formula (I) An organic nonlinear optical material comprising a single crystal nitrobenzene derivative represented by
JP4002238A 1992-01-09 1992-01-09 Organic nonlinear optical material Expired - Lifetime JP2763224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002238A JP2763224B2 (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002238A JP2763224B2 (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH05188418A JPH05188418A (en) 1993-07-30
JP2763224B2 true JP2763224B2 (en) 1998-06-11

Family

ID=11523781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002238A Expired - Lifetime JP2763224B2 (en) 1992-01-09 1992-01-09 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2763224B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266651A (en) * 1991-05-03 1993-11-30 E. I. Du Pont De Nemours And Company Crosslinked poled polymers for nonlinear optic applications and method of making them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MATERIALS CHEMISTRY,VOL.1 NO.5 PP.775−780 (1991年9月) C.LAMBERTH ET.AL.,「PREPARATION AND SECOND−HARMONIC GENERATION PROPERTIES OF TRIS(PYROCATECHOLATO)STANNATE(4) COMPAOUNDS」
SPIE PROCEEDINGS,NONLINEAR OPTICAL PROPERTIES OF ORGANIC MATERIALS 2,VOL.1147 PP.61−72 (1989) L.T.CHENG ET.AL., 「NONRESONANT EFISH AND THGSTUDIES OF NONLINEAR OPTICAL PROPERTY AND MOLECULAR STRUCTURE RELATIONS OF BENZENE,STILBENE,AND OTHER ARENE DERIVATIVES」

Also Published As

Publication number Publication date
JPH05188418A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4733109A (en) Second harmonic generation with Schiff bases
JP2763224B2 (en) Organic nonlinear optical material
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
US4909964A (en) Nonlinear optical devices from derivatives of stilbene and diphenylacetylene
JP2725929B2 (en) Organic nonlinear optical material
US5015417A (en) Nonlinear optical devices for derivatives of stilbene and diphenylacetylene
US5310918A (en) 1-aryl-substituted azole, non-linear optical material and novel molecular crystal containing same and method and module for the conversion of light wavelength using same
US5397508A (en) 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same
JP2896604B2 (en) Materials for nonlinear optical elements
JPH01185527A (en) Nonlinar optical material
JPS6321627A (en) Deuterium substituted organic nonlinear optical compound
JP2685380B2 (en) Organic nonlinear optical material
JPH05188416A (en) Organic nonlinear optical material
JPH02259735A (en) Material for nonlinear optical element
JPH04166820A (en) Non-linear optical material and non-linear optical element
JP2651744B2 (en) Molecular crystal, light wavelength conversion method and module using the same
JP2724641B2 (en) Molecular crystal and method of converting light wavelength using the same
JPH06308550A (en) Alpha-cyano-methyl cinnamate derivative, organic non-linear optical material and material for generating second harmonic
JPH05249517A (en) Organic nonlinear optical material
JPH0611746A (en) Organic nonlinear optical material
JPH06184081A (en) Organic nonlinear optical material
JPH0565277A (en) Molecular crystal and conversion of wavelength of light using the same
JPH05196975A (en) Organic nonlinear optical material
JPH03196026A (en) Nonlinear optical material and nonlinear optical element
JPH083125A (en) Malondiamide derivative, optically functional element and production thereof