JPH05145951A - Image pickup data transmitting system - Google Patents

Image pickup data transmitting system

Info

Publication number
JPH05145951A
JPH05145951A JP3303641A JP30364191A JPH05145951A JP H05145951 A JPH05145951 A JP H05145951A JP 3303641 A JP3303641 A JP 3303641A JP 30364191 A JP30364191 A JP 30364191A JP H05145951 A JPH05145951 A JP H05145951A
Authority
JP
Japan
Prior art keywords
signal
original
transmission
circuit
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3303641A
Other languages
Japanese (ja)
Other versions
JP3087782B2 (en
Inventor
Riichi Nakura
理一 奈倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03303641A priority Critical patent/JP3087782B2/en
Priority to CA002083203A priority patent/CA2083203C/en
Priority to DE69226497T priority patent/DE69226497T2/en
Priority to EP92119740A priority patent/EP0543378B1/en
Priority to US07/978,995 priority patent/US5296926A/en
Publication of JPH05145951A publication Critical patent/JPH05145951A/en
Application granted granted Critical
Publication of JP3087782B2 publication Critical patent/JP3087782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

PURPOSE:To economize only the data transmitting quantity without lowering picture quality in the case of transmitting stereoscopic image data from a satel lite to a ground station. CONSTITUTION:One of paired source signals S1 and S2 is defined as the reference source signal S1, a signal dt1 expressing time difference and a signal ds1 expressing level difference to the same observing object corresponding point of the other source signal (sub source signal) S2 to this reference source signal are generated on the transmission side, and these signals S1, dt1 and ds1 are multiplexed and transmitted by a multiple transmission circuit 8. The data quantity of these time difference signal dt1 and level difference signal ds1 is made one-dozens in comparison with that of the source signal. On the other hand, a receiving signal S2r2 corresponding to the sub source signal is reproduced by correcting the time difference and level difference of the reference source signal on the reception side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工衛星や中継局を用
いて同一観測対象を複数観測点から異なる角度で撮像す
る立体撮像システムに係り、特に、人工衛星で撮像され
たデータ信号を中継局を介して、あるいは直接に地上局
に伝送する方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image pickup system for picking up the same observation target from a plurality of observation points at different angles using an artificial satellite or a relay station, and more particularly to relaying a data signal picked up by an artificial satellite. The present invention relates to a method of transmitting to a ground station via a station or directly.

【0002】[0002]

【従来の技術】人工衛星から地表面の諸現象を撮像して
地上へ伝送するシステム、あるいは、データ中継衛星又
は地上の主受信局にて受信された後に各受信局へ再伝送
するシステム等では、当初、送信側で撮像された信号を
そのままの形で受信側に伝送していた。
2. Description of the Related Art In a system that images various phenomena on the ground surface from an artificial satellite and transmits them to the ground, or a system that retransmits them to each receiving station after being received by a data relay satellite or a main receiving station on the ground. Initially, the signal picked up by the transmitting side was transmitted to the receiving side as it was.

【0003】しかしながら、高分解能観測が進展するに
伴い、その撮像データ量が膨大となり、特に、最近は、
衛星からの立体撮像機能が付加される等、撮像データ量
が更に増大してきている。
However, with the progress of high-resolution observation, the amount of imaged data becomes enormous.
With the addition of a stereoscopic imaging function from satellites, the amount of imaging data is increasing further.

【0004】そのため、衛星本体側等の制約によりこれ
ら信号をそのままの形で伝送することが困難となり、撮
像バンド数を削減せざるを得ない等、撮像性能に大きな
インパクトを与えるようになってきた。
For this reason, it becomes difficult to transmit these signals as they are due to restrictions on the satellite body side, etc., and there is no choice but to reduce the number of imaging bands, which has a great impact on the imaging performance. ..

【0005】そこで、立体撮像データにデータ圧縮を施
し、衛星本体からの送出データ量の節減を行うデータ圧
縮方式の採用が検討されている。
Therefore, the adoption of a data compression method for compressing the stereoscopic image pickup data to reduce the amount of data transmitted from the satellite body is being considered.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、地上に
て採用されている従来のデータ圧縮方式は、通常、撮像
データの相互の相関はとらずに夫々独立にデータ圧縮を
施して伝送しており、その装置構成がかなり複雑なもの
になっている。そのため、このような方式を衛星搭載用
のデータ圧縮方式として用いるのは、電力、寸法、及び
重量の制約から困難であり、また、圧縮後の画像に対し
て高精密画像としての厳しい品質確保が要求されること
を考慮すると、これをそのまま適用することには問題が
多い。
However, in the conventional data compression method adopted on the ground, usually, the image data is not independently correlated with each other, but individually compressed and transmitted. The device configuration is quite complicated. Therefore, it is difficult to use such a method as a data compression method for mounting on a satellite due to restrictions of power, size, and weight, and it is difficult to secure strict quality as a high-precision image for the compressed image. Considering that it is required, there are many problems in applying this as it is.

【0007】一方、装置構成の簡単な方式として、例え
ば予測符号化方式等があるが、この方式では、送出デー
タの節減量が小さい問題があった。
On the other hand, as a simple system configuration, there is, for example, a predictive coding system, but this system has a problem that the amount of transmission data saved is small.

【0008】本発明の課題は、上記問題点を解決するこ
とであり、具体的には、高分解能の立体撮像データの画
像品質を低下せずに送出データ量を節減し得る撮像デー
タ信号伝送方式を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and more specifically, an imaging data signal transmission system capable of reducing the amount of transmitted data without deteriorating the image quality of high resolution stereoscopic imaging data. To provide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、同一観測対象を相離れた複数観測点か
ら異なる角度で撮像する立体撮像システムに用いられる
方式であって、複数の撮像データ信号に夫々対応して設
けられ、各撮像データ信号を夫々電気信号に変換して複
数の原信号を生成する第一次信号処理回路と、これら原
信号を伝送路に向けて送信する送信手段と、伝送路から
受信した前記撮像データ信号を再生して画像処理装置に
導く受信手段とを有する撮像データ信号伝送方式におい
て、前記複数の原信号のいずれか一つを基準原信号とな
し、この基準原信号に隣接する原信号及びこの原信号に
以後隣接する原信号を副原信号となすとともに、前記送
信手段は、隣接する原信号間の同一観測対象対応点に対
する時間差を表す時間差信号を生成する時間差検出回路
と、前記基準原信号と前記時間差信号とに基づいて前記
副原信号と近似する波形の第一次送信信号を生成する第
一次送信再生回路と、この第一次送信信号と現実の副原
信号とのレベル差を表すレベル差信号を生成するレベル
差検出回路と、前記基準原信号と前記時間差信号と前記
レベル差信号とを多重化して前記伝送路に送出する多重
送出回路とを備え、一方、前記受信手段は、前記伝送路
から受信した多重化信号から前記基準原信号と前記時間
差信号と前記レベル差信号を分離する受信分配回路と、
前記基準原信号と前記時間差信号とに基づいて前記第一
次送信信号と同一の第一次受信信号を再生する第一次受
信再生回路と、再生された第一次受信信号と前記レベル
差信号とに基づいて前記副信号を表す第二次受信再生信
号を生成する第二次受信再生回路とを少なくとも備えて
成る。
In order to solve the above-mentioned problems, the present invention is a method used in a stereoscopic imaging system for imaging the same observation target from different observation points at different angles. A primary signal processing circuit that is provided corresponding to each data signal and that converts each imaging data signal into an electric signal to generate a plurality of original signals, and a transmitting unit that transmits these original signals toward a transmission path. And a receiving means for reproducing the imaging data signal received from the transmission path and guiding it to the image processing apparatus, wherein any one of the plurality of original signals is used as a reference original signal. When the original signal adjacent to the reference original signal and the original signal adjacent to this original signal are defined as sub-original signals, and the transmitting means expresses a time difference with respect to the same observation target corresponding point between the adjacent original signals. A time difference detection circuit for generating a difference signal; a primary transmission reproduction circuit for generating a primary transmission signal having a waveform approximate to the sub-original signal based on the reference original signal and the time difference signal; A level difference detection circuit that generates a level difference signal representing the level difference between the next transmission signal and the actual sub original signal, and the reference original signal, the time difference signal, and the level difference signal are multiplexed and sent to the transmission path. And a receiving / distributing circuit for separating the reference original signal, the time difference signal, and the level difference signal from the multiplexed signal received from the transmission path,
A primary reception / reproduction circuit for reproducing the same primary reception signal as the primary transmission signal based on the reference original signal and the time difference signal, a reproduced primary reception signal and the level difference signal And a secondary reception / reproduction circuit for generating a secondary reception / reproduction signal representing the sub-signal based on

【0010】なお、移動物体から一定時間差をおいて立
体撮像を行う場合は、前記送信手段に入力される前記基
準原信号に所定の遅延時間を与える遅延回路を設ける。
When stereoscopic imaging is performed with a fixed time difference from a moving object, a delay circuit for providing a predetermined delay time to the reference original signal input to the transmitting means is provided.

【0011】また、原信号相互間の時間差が大きく、移
動物体の側で所要の遅延時間を与えられない場合は、中
継局を設け、この中継局内に、前記時間差検出回路と第
一次送信再生回路とレベル差検出回路と多重送出回路と
を設けた。
When the time difference between the original signals is large and the required delay time cannot be provided on the side of the moving object, a relay station is provided, and the time difference detection circuit and the primary transmission reproduction are provided in this relay station. A circuit, a level difference detection circuit, and a multiplex transmission circuit are provided.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を説明
する。 (第一実施例)図1は、本発明の第一実施例に係る撮像
データ信号伝送方式の信号処理系統図であり、(a)は
送信側系統図、(b)は受信側系統図を示す。なお、本
図では、説明の便宜上、一対の立体撮像信号S1,S2
を伝送する場合の構成を示している。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a signal processing system diagram of an imaging data signal transmission system according to a first embodiment of the present invention, (a) is a transmission side system diagram, and (b) is a reception side system diagram. Show. In the figure, for convenience of explanation, a pair of stereoscopic image pickup signals S1 and S2 are provided.
2 shows a configuration for transmitting the.

【0013】図(a)中、1a,1bは画像信号を得る
ための受光素子であり、ここでは、一次元のCCD(電
荷結合デバイス)を主対象として説明する。
In FIG. 1A, reference numerals 1a and 1b are light receiving elements for obtaining an image signal, and here, a one-dimensional CCD (charge coupled device) will be mainly described.

【0014】これら受光素子1a,1bにて電気信号に
変換された画像信号は、夫々第一次信号処理回路2a,
2bに導かれる。
The image signals converted into the electric signals by the light receiving elements 1a and 1b are the primary signal processing circuits 2a and 2a, respectively.
Guided to 2b.

【0015】第一次信号処理回路2a,2bでは、入力
された画素信号の増幅、波形補正、及びA/D変換等、
伝送に必要な通常の信号処理を行い、一対の立体撮像原
信号(以下、単に原信号と称する)S1,S2を生々す
る。一方の原信号S1は以後の信号処理の基準となるも
のであり、以下基準原信号と称する。また、他方の原信
号S2を基準原信号S1と区別するため、副原信号と称
する。
In the primary signal processing circuits 2a and 2b, the input pixel signal is amplified, the waveform is corrected, the A / D conversion is performed, etc.
Normal signal processing required for transmission is performed to generate a pair of stereoscopic imaging original signals (hereinafter, simply referred to as original signals) S1 and S2. One original signal S1 serves as a reference for subsequent signal processing, and is hereinafter referred to as a reference original signal. The other original signal S2 is referred to as a sub-original signal in order to distinguish it from the reference original signal S1.

【0016】なお、受光素子1a,1bの出力信号を夫
々独立に圧縮又は節減するためのデータ圧縮回路を有す
るシステムにおいては、これら圧縮回路もここでいう第
一次信号処理回路2a,2bの範疇に含まれる。
In a system having a data compression circuit for independently compressing or saving the output signals of the light receiving elements 1a, 1b, these compression circuits also belong to the category of the primary signal processing circuits 2a, 2b referred to here. include.

【0017】3は遅延回路であり、人工衛星あるいは航
空機等の移動物体からある一定時間Tの差をおいて立体
撮像を行う場合に、その時間差Tを補正するために、基
準原信号S1に対して所要の遅延時間(T)を与える回
路である。
Reference numeral 3 is a delay circuit for correcting the time difference T when three-dimensional imaging is performed with a certain time difference T from a moving object such as an artificial satellite or an aircraft with respect to the reference original signal S1. Is a circuit for giving a required delay time (T).

【0018】副原信号S2及び遅延回路3を経た基準原
信号S1は、送信信号処理部4に入力される。
The sub-original signal S2 and the reference original signal S1 passed through the delay circuit 3 are input to the transmission signal processing section 4.

【0019】送信信号処理部4は、時間差検出回路5と
第一次送信再生回路6とレベル差検出回路7とを有して
構成されている。
The transmission signal processing section 4 comprises a time difference detection circuit 5, a primary transmission reproduction circuit 6 and a level difference detection circuit 7.

【0020】時間差検出回路5では、同一観測対象対応
点に対する上記一対の原信号S1,S2間の時間差の検
出を行い、この時間差を表す時間差信号dtlを、基準
原信号S1とともに送信再生回路6に出力する。
The time difference detection circuit 5 detects the time difference between the pair of original signals S1 and S2 for the same observation target corresponding point, and outputs the time difference signal dtl representing this time difference to the transmission reproduction circuit 6 together with the reference original signal S1. Output.

【0021】第一次送信再生回路6では、入力された基
準原信号S1の各画素データに対して時間差信号dt1
による時間差を与え、これを副原信号S2に近似する第
一次送信信号S2r1として、レベル差検出回路7に出力
する。
In the primary transmission reproduction circuit 6, the time difference signal dt1 is added to each pixel data of the input reference original signal S1.
Is given to the level difference detection circuit 7 as a primary transmission signal S2r1 that approximates the sub-original signal S2.

【0022】レベル差検出回路7には、時間差検出回路
5からの副原信号S2も入力されており、ここで両入力
信号のレベル差を表すレベル差信号ds1を生成して多
重送出回路8に出力する。
The sub-original signal S2 from the time difference detection circuit 5 is also input to the level difference detection circuit 7, where the level difference signal ds1 representing the level difference between the two input signals is generated and sent to the multiplex transmission circuit 8. Output.

【0023】多重送出回路8では、このレベル差信号d
s1と、送信再生回路6から出力された時間差信号dt
1及び基準原信号S1とを多重化し、受信局に向けて送
出する。
In the multiplex transmission circuit 8, this level difference signal d
s1 and the time difference signal dt output from the transmission reproduction circuit 6
1 and the reference original signal S1 are multiplexed and sent to the receiving station.

【0024】なお、人工衛星における応用例において
は、多重送出回路8には、大容量のデータレコーダや高
出力送信機等も含まれる。
In the application example of the artificial satellite, the multiplex transmission circuit 8 also includes a large-capacity data recorder, a high-power transmitter, and the like.

【0025】次に図1(b)を参照して受信側の構成に
ついて説明する。
Next, the structure of the receiving side will be described with reference to FIG.

【0026】送信側から伝送された多重化信号は、受信
分配回路9で基準原信号S1、時間差信号dt1、レベ
ル差信号ds1に分離され、受信信号処理部10の各回
路に分配される。
The multiplexed signal transmitted from the transmission side is separated into a reference original signal S1, a time difference signal dt1 and a level difference signal ds1 by the reception distribution circuit 9 and distributed to each circuit of the reception signal processing unit 10.

【0027】受信信号処理部10は、前記第一次送信再
生回路6と同様の構成、機能を有する第一次受信再生回
路11と、第二次受信再生回路12とを有して構成され
ている。
The reception signal processing unit 10 is configured to have a primary reception / reproduction circuit 11 and a secondary reception / reproduction circuit 12 having the same configuration and function as the primary transmission / reproduction circuit 6. There is.

【0028】第一次受信再生回路11では、送信側と同
様、基準原信号S1と時間差信号dt1とに基づいて、
基準原信号S1の各画素データに時間差を与え、前記第
一次送信信号と同一の第一次受信信号S2r1を再生し、
これを第二次受信再生回路13に出力する。
In the primary receiving / reproducing circuit 11, as in the transmitting side, based on the reference original signal S1 and the time difference signal dt1,
A time difference is given to each pixel data of the reference original signal S1 to reproduce the same primary reception signal S2r1 as the primary transmission signal,
This is output to the secondary reception / reproduction circuit 13.

【0029】第二次受信再生回路13では、この第一次
受信信号S2r1と、受信分配回路9から分配されたレベ
ル差信号ds1とを加算し、副原信号S2と同一の第二
次受信信号S2r2を再生して画像処理装置13に出力す
る。
In the secondary reception / reproduction circuit 13, the primary reception signal S2r1 and the level difference signal ds1 distributed from the reception distribution circuit 9 are added, and the secondary reception signal identical to the sub-original signal S2 is added. The S2r2 is reproduced and output to the image processing device 13.

【0030】画像処理装置13では、この第二次受信信
号S2r2と、第一次受信再生回路11から出力された基
準原信号S1とに基づいてユーザーの利用に供するため
の各種の画像処理を行う。
The image processing device 13 performs various image processes for use by the user based on the secondary reception signal S2r2 and the reference original signal S1 output from the primary reception / reproduction circuit 11. ..

【0031】次に、図2及び図3を参照して時間差検出
回路5の動作原理を説明する。
Next, the operating principle of the time difference detection circuit 5 will be described with reference to FIGS.

【0032】図2は立体撮像の原理を示す図であり、一
例として円錐形状の撮像対象Mを観測する場合を示して
いる。
FIG. 2 is a diagram showing the principle of stereoscopic imaging, and shows the case of observing a conical imaging object M as an example.

【0033】離れた二点A1、A2からの撮像が行われ
る場合、その対象物が完全な平面形状のときは撮像され
た相互のデータは原理的に同一信号となり、地点P,R
は、観測点A1,A2のいずれにおいても同様に撮像さ
れ、夫々P1,R1及びP2,R2の位置に出力され
る。
When imaging is performed from two points A1 and A2 which are apart from each other, when the object has a perfect planar shape, the imaged mutual data are in principle the same signal, and points P and R are the same.
Is similarly imaged at each of the observation points A1 and A2, and is output at the positions of P1, R1 and P2, R2, respectively.

【0034】これに対し、図2の地点Qの如く、撮像対
象平面に対して所定の高度差を有する場合は、観測点A
1からはQ1の位置にシフトして観測され、A2の位置
からはQ2の位置にシフトして観測される。
On the other hand, when there is a predetermined altitude difference with respect to the plane to be imaged as at point Q in FIG.
It is observed by shifting from 1 to the position of Q1 and from A2 to the position of Q2.

【0035】図3はこれを衛星画像データを例とした各
部信号波形図であり、(a)は立体撮像された各原信号
S1,S2波形と時間差信号dt1波形、(b)は第一
次受信信号S2r1波形とレベル差信号ds1波形、
(c)は第二次受信信号S2r2波形を夫々示す。図中、
縦軸は各信号のレベル、横軸は時間を示す。なお、実際
には原信号S1,S2等はデジタル信号に変換されてい
ることが多いが、ここでは、説明の便宜上、アナログ信
号として説明する。
FIG. 3 is a signal waveform diagram of each part using this as an example of satellite image data. (A) is a waveform of original signals S1 and S2 which are stereoscopically imaged and a time difference signal dt1 waveform, and (b) is a primary waveform. Reception signal S2r1 waveform and level difference signal ds1 waveform,
(C) shows the secondary reception signal S2r2 waveforms, respectively. In the figure,
The vertical axis represents the level of each signal, and the horizontal axis represents time. Although the original signals S1, S2, etc. are often converted into digital signals in practice, they are described here as analog signals for convenience of description.

【0036】図3(a)中、実線で表す基準原信号S1
の各点は、撮像対象に高度差がある場合には、前述のよ
うに、破線で示す副原信号S2の各点の位置にシフトし
て出力される。従って、基準原信号S1の各点において
副原信号S2中の同一レベルあるいはこれと近接したレ
ベルを示す対応点との時間差を求めることにより、各原
信号S1,S2相互間の時間差信号dt1が得られる。
この時間差信号dt1は、原信号S1,S2相互の相関
が大きいため、各原信号S1,S2と比較すると、極め
て小さい信号レベルになるのが通常である。
In FIG. 3A, the reference original signal S1 represented by the solid line.
When there is a difference in altitude between the image pickup targets, each point is shifted to the position of each point of the sub-original signal S2 shown by the broken line and output. Therefore, the time difference signal dt1 between the respective original signals S1 and S2 is obtained by obtaining the time difference between each point of the reference original signal S1 and the corresponding point indicating the same level in the sub original signal S2 or a level close to this. Be done.
Since the time difference signal dt1 has a large correlation between the original signals S1 and S2, it usually has an extremely low signal level as compared with the original signals S1 and S2.

【0037】この時間差信号dt1を第一次送信再生回
路6に入力し、基準原信号S1の各画素データに対して
時間差を与える。即ち、画素番号をiとして、S1[i
−dt1[i]]の演算を行うことにより、図3(b)
に示す波形の第一次受信信号S2r1を得る。この信号S
2r1の波形は、副原信号S2に極めて近似したものとな
る。
This time difference signal dt1 is input to the primary transmission / reproduction circuit 6, and a time difference is given to each pixel data of the reference original signal S1. That is, assuming that the pixel number is i, S1 [i
By performing the calculation of −dt1 [i]], FIG.
The primary reception signal S2r1 having the waveform shown in is obtained. This signal S
The waveform of 2r1 is extremely close to the sub-original signal S2.

【0038】この第一次受信信号S2r1と副原信号S2
とをレベル差検出回路7に入力し、下記(1) 式に示すよ
うな減算処理を行わせることにより、レベル差信号ds
1を得る。
The primary received signal S2r1 and the sub-original signal S2
Are input to the level difference detection circuit 7 and the subtraction processing as shown in the following equation (1) is performed to obtain the level difference signal ds
Get one.

【0039】 ds1[i]=S2[i]−S2r1[i] =S2[i]−S1[i−dt1[i]] (1) このレベル差信号ds1も、図3(b)に示すように、
副原信号S2に比較して非常に小さいレベルの信号とな
る。
Ds1 [i] = S2 [i] −S2r1 [i] = S2 [i] −S1 [i-dt1 [i]] (1) This level difference signal ds1 is also as shown in FIG. 3B. To
The signal has a very small level as compared with the sub original signal S2.

【0040】これら信号S1、dt1,ds1を含む多
重化信号が受信側に送られ、先ず、基準原信号S1と時
間差信号dt1とを第一次受信再生回路11に入力し、
上記同様に、S1[i−dt1[i]]の演算処理を行
うことにより、第一次受信信号S2r1を再生し、これと
レベル差信号ds1との加算を第二次受信再生回路12
にて行うことにより、図3(c)及び下記(2) に示すよ
うに、副原信号S2の波形と合致する第二次受信信号S
2r2を再生することができる。
A multiplexed signal including these signals S1, dt1, and ds1 is sent to the receiving side, and first, the reference original signal S1 and the time difference signal dt1 are input to the primary receiving and reproducing circuit 11.
Similarly to the above, by performing the arithmetic processing of S1 [i-dt1 [i]], the primary reception signal S2r1 is reproduced, and the addition of this and the level difference signal ds1 is performed by the secondary reception reproduction circuit 12
By doing so, as shown in FIG. 3 (c) and the following (2), the secondary received signal S that matches the waveform of the sub-original signal S2.
2r2 can be played.

【0041】 S2r2[i]=S2r1[i]+ds1[i] =S2r1[i]+{S2[i]−S2r1[i]} =S2[i] (2) 図4は、本実施例の撮像データ信号伝送方式を用いて地
球を周回する人工衛星にて立体撮像を行い、地上局へ伝
送する場合のシステム応用概念図である。
S2r2 [i] = S2r1 [i] + ds1 [i] = S2r1 [i] + {S2 [i] −S2r1 [i]} = S2 [i] (2) FIG. 4 shows the image pickup of this embodiment. It is a system application conceptual diagram in the case of carrying out stereoscopic imaging by an artificial satellite orbiting the earth using a data signal transmission system and transmitting to a ground station.

【0042】図4中、14は地球観測衛星、15a,1
5bは集光光学系、16は送信アンテナ、17(17
a、17b)は撮像対象地表面、18は地上局を示す。
In FIG. 4, 14 is an earth observation satellite, and 15a, 1
5b is a condensing optical system, 16 is a transmitting antenna, and 17 (17
a, 17b) is the ground surface of the imaging target, and 18 is the ground station.

【0043】先ず、地球観測衛星14に搭載された集光
光学系15a,15bにて、地表面17a,17bの撮
像が行われ、受光素子1a,1bに結像されて各電気信
号への変換が行われる。これら電気信号が、前述のよう
に、第一次信号処理回路2a,2bに入力され、増幅、
A/D変換その他の処理が行われる。
First, the light collecting optical systems 15a and 15b mounted on the earth observation satellite 14 image the ground surfaces 17a and 17b, and form images on the light receiving elements 1a and 1b to convert them into electric signals. Is done. As described above, these electric signals are input to the primary signal processing circuits 2a and 2b, amplified,
A / D conversion and other processing are performed.

【0044】ここで、同一対象点を撮像する距離間隔を
B、衛星と地表との相対移動速度をvとすると、遅延回
路3により、前方受光素子1aの出力信号にT=B/v
の遅延時間が与えられ、後方受光素子1bの出力信号と
ともに一組の原信号S1,S2として送信信号処理部4
に入力される。
Here, assuming that the distance interval for imaging the same target point is B and the relative moving speed between the satellite and the ground surface is v, the delay circuit 3 outputs T = B / v to the output signal of the front light receiving element 1a.
Of the transmission signal processor 4 as a set of original signals S1 and S2 together with the output signal of the rear light receiving element 1b.
Entered in.

【0045】以下、図1〜図3に説明した如く、時間差
信号dt1、レベル差信号ds1が検出され、これら信
号dt1、ds1、及び基準原信号S1を含む多重化信
号が多重送信部8から送信アンテナ16を経て地上局1
8へ伝送される。
Hereinafter, as described with reference to FIGS. 1 to 3, the time difference signal dt1 and the level difference signal ds1 are detected, and the multiplexed signal including these signals dt1, ds1 and the reference original signal S1 is transmitted from the multiplex transmitter 8. Ground station 1 via antenna 16
8 is transmitted.

【0046】地上局18においては、多重化信号が受信
分配回路9を経て受信信号処理部10に入力される。以
下、前述のように、多重化信号から副原信号S2に等し
い第二次受信信号S2r2が再生され、基準原信号S1と
ともに画像処理装置13に出力される。 (第二実施例)図5は本発明の第二実施例に係る撮像デ
ータ信号伝送方式の信号処理系統図であり、(a)は送
信側系統図、(b)は受信側系統図を示す。また、図6
は本実施例により、円錐形状の撮像対象Mを観測する場
合の概念図である。
In the ground station 18, the multiplexed signal is input to the reception signal processing unit 10 via the reception distribution circuit 9. Hereinafter, as described above, the secondary reception signal S2r2 equal to the sub-original signal S2 is reproduced from the multiplexed signal and output to the image processing device 13 together with the reference original signal S1. (Second Embodiment) FIG. 5 is a signal processing system diagram of an imaging data signal transmission system according to a second embodiment of the present invention, (a) showing a transmitting side system diagram, and (b) showing a receiving side system diagram. .. In addition, FIG.
FIG. 3 is a conceptual diagram when observing a conical imaging target M according to the present embodiment.

【0047】本実施例では、同一時刻に離れた二点から
立体撮像を行っており、この場合は、図1及び図4で示
した遅延回路3は不要となる。また、この場合におい
て、第一実施例と同様に、受光素子1a,1bとして一
次元CCDを使用することも勿論可能であるが、本実施
例では二次元CCDにて撮像している。
In this embodiment, stereoscopic imaging is performed from two points separated at the same time, and in this case, the delay circuit 3 shown in FIGS. 1 and 4 becomes unnecessary. In this case, as in the first embodiment, it is of course possible to use one-dimensional CCDs as the light receiving elements 1a and 1b, but in the present embodiment, the two-dimensional CCD is used for imaging.

【0048】まず、図5を参照すると、受光素子1a,
1bの出力信号は、第一次信号処理回路2a,2bを経
て一組の原信号S1,S2となり、送信信号処理部4に
直接入力される。送信信号処理部4の構成、動作は、図
1に示したものと同様であり、入力信号に基づいて時間
差信号dt1、レベル差信号ds1を検出した後、多重
送出回路8で多重化信号に変換し、受信側に伝送してい
る。
First, referring to FIG. 5, the light receiving element 1a,
The output signal 1b passes through the primary signal processing circuits 2a and 2b to form a set of original signals S1 and S2, which are directly input to the transmission signal processing unit 4. The configuration and operation of the transmission signal processing unit 4 are the same as those shown in FIG. 1, and after detecting the time difference signal dt1 and the level difference signal ds1 based on the input signal, the multiplex transmission circuit 8 converts them into multiplexed signals. Then, it is transmitted to the receiving side.

【0049】受信側での信号処理も、図5(b)に示す
如く、図1(b)の構成による信号処理と全く同様であ
り、基準原信号S1と時間差信号dt1とにより第一次
受信信号S2r1を再生した後、この第一次受信信号S2
r1とレベル差信号ds1とにより、副原信号S2に相当
する第二次受信信号S2r2が再生されて画像処理装置1
3へ入力される。 (第三実施例)図7は本発明の第三実施例に係る撮像デ
ータ信号伝送方式の信号処理系統図であり、(a)は送
信側系統図、(b)は受信側系統図を示す。また、図8
は本実施例による立体撮像の説明図であり、離れた三点
から同一対象を撮像する場合を概念的に示している。
As shown in FIG. 5B, the signal processing on the receiving side is exactly the same as the signal processing by the configuration of FIG. 1B, and the primary reception is performed by the reference original signal S1 and the time difference signal dt1. After reproducing the signal S2r1, this primary received signal S2
The secondary reception signal S2r2 corresponding to the sub-original signal S2 is reproduced by the r1 and the level difference signal ds1, and the image processing device 1
Input to 3. (Third Embodiment) FIG. 7 is a signal processing system diagram of an imaging data signal transmission system according to a third embodiment of the present invention, (a) showing a transmitting side system diagram, and (b) showing a receiving side system diagram. .. Also, FIG.
[FIG. 3] is an explanatory diagram of stereoscopic imaging according to the present embodiment, conceptually showing a case where the same object is imaged from three distant points.

【0050】立体撮像は、これまで説明してきたよう
に、少なくとも離れた二点からの観測が必要であるが、
人工衛星からの観測においては、特に、計測精度向上等
の理由により三点以上の離れた位置から撮像を行う場合
がある。
As described above, the stereoscopic imaging requires observation from at least two points apart from each other.
When observing from an artificial satellite, there are cases where imaging is performed from three or more distant positions, particularly for reasons such as improvement in measurement accuracy.

【0051】図8はこの様子を図示したもので、前方及
び後方の撮像の他に、直下点での撮像が行われる場合を
示す。なお、この図では、集光光学系を共通にしてこの
結像面内に複数のCCDを配置させた例を示している
が、信号処理の動作は図4に示した複数の集光光学系を
使用する場合と同様である。
FIG. 8 illustrates this state, and shows a case where an image is taken at the point directly below in addition to the front and rear images. It should be noted that, although this drawing shows an example in which a plurality of CCDs are arranged in this image forming plane with a common condensing optical system, the signal processing operation is performed by the plurality of condensing optical systems shown in FIG. Is the same as when using.

【0052】図7及び図8においては、受光素子1a〜
1cの出力信号は、第一次信号処理回路2a〜2c及び
遅延回路3a、3bを経て送信信号処理部4に入力され
る。
In FIG. 7 and FIG. 8, the light receiving elements 1a ...
The output signal of 1c is input to the transmission signal processing unit 4 via the primary signal processing circuits 2a to 2c and the delay circuits 3a and 3b.

【0053】ここで、前方撮像用受光素子1aと後方撮
像用受光素子1cが同一観測対象17aを撮像する間の
距離をBとし、衛星と対象物との相対移動速度をvとす
ると、遅延回路3aの所要遅延時間は、第一実施例の場
合と同様にT=B/vとなる。
Here, if the distance between the front imaging light receiving element 1a and the rear imaging light receiving element 1c imaging the same observation object 17a is B, and the relative moving speed between the satellite and the object is v, the delay circuit The required delay time of 3a is T = B / v as in the case of the first embodiment.

【0054】また、前方撮像用受光素子1aと直下方向
撮像用受光素子1bが同一観測対象を撮像する間の距離
はB/2となり、遅延回路3bの所要遅延時間はT/2
となる。
The distance between the front imaging light-receiving element 1a and the direct-down direction light-receiving element 1b for imaging the same observation object is B / 2, and the delay time required by the delay circuit 3b is T / 2.
Becomes

【0055】これら第一次信号処理回路2a〜2c及び
遅延回路3a、3bを経由した原信号S1,S2,S3
が送信信号処理部4に入力される。なお、本実施例で
は、最初の原信号S1を基準原信号とする。
Original signals S1, S2, S3 that have passed through these primary signal processing circuits 2a-2c and delay circuits 3a, 3b.
Is input to the transmission signal processing unit 4. In this embodiment, the first original signal S1 is the reference original signal.

【0056】基準原信号S1及び副信号S2を時間差検
出回路5aに入力して時間差信号dt1を得、更に送信
再生回路6a及びレベル差検出回路7aによりレベル差
信号ds1を出力する過程は図1の場合と全く同様であ
る。
The process of inputting the reference original signal S1 and the sub signal S2 to the time difference detection circuit 5a to obtain the time difference signal dt1 and further outputting the level difference signal ds1 by the transmission reproduction circuit 6a and the level difference detection circuit 7a is as shown in FIG. It is exactly the same as the case.

【0057】以下、上記時間差信号dt1を第一の時間
差信号、上記レベル差信号ds1を第一のレベル差信号
と称する。
Hereinafter, the time difference signal dt1 will be referred to as a first time difference signal, and the level difference signal ds1 will be referred to as a first level difference signal.

【0058】隣接する副原信号S2、S3からも同様の
過程により、時間差検出回路5bにより第二の時間差信
号dt2が得られ、この信号dt2と副原信号S2とに
より第二の送信信号S3r1が再生される。
The second time difference signal dt2 is obtained by the time difference detection circuit 5b from the adjacent sub original signals S2 and S3 by the same process, and the second transmission signal S3r1 is obtained from this signal dt2 and the sub original signal S2. Is played.

【0059】また、第二の送信再生信号S3r1と副原信
号S3とがレベル差検出回路7bに入力されて第二のレ
ベル差信号ds2が出力される。
The second transmission reproduction signal S3r1 and the sub-original signal S3 are input to the level difference detection circuit 7b, and the second level difference signal ds2 is output.

【0060】多重送出回路8では、基準原信号S1と第
一の時間差信号dt1、第一のレベル差信号ds1、第
二の時間差信号dt2、第二のレベル差信号ds2を多
重化し、これを受信側に送出する。
The multiplex sending circuit 8 multiplexes the reference original signal S1, the first time difference signal dt1, the first level difference signal ds1, the second time difference signal dt2, and the second level difference signal ds2, and receives them. Send to the side.

【0061】受信側では、図7(b)に示すように、受
信した多重化信号を受信分配回路9にて基準原信号S
1,時間差信号dt1,dt2、レベル差信号ds1,
ds2に分離し、受信信号処理部10の各回路に分配さ
れる。
On the receiving side, as shown in FIG. 7 (b), the received distribution circuit 9 receives the reference original signal S from the received multiplexed signal.
1, time difference signals dt1, dt2, level difference signal ds1,
It is separated into ds2 and distributed to each circuit of the reception signal processing unit 10.

【0062】各信号S1,dt1,ds1から副原信号
S2と等しい第二次受信信号S2r2を再生する過程は、
第一実施例の場合と全く同様である。
The process of reproducing the secondary reception signal S2r2, which is equal to the sub-original signal S2, from each of the signals S1, dt1, ds1 is as follows.
This is exactly the same as the case of the first embodiment.

【0063】次に隣接する副原信号S3を再生するため
には、上記のように再生された第二次受信信号S2r2が
副原信号S2と等しいため、この第二次受信信号S2r2
と第二の時間差信号dt2とを第二の第一次受信再生回
路11bに入力して第一次受信信号S3r1を再生し、更
に、この第一次受信信号S3r1と第二のレベル差信号d
s2とを第二次受信再生回路12bにて加算することに
より、隣接する副原信号S3に等しい第二次受信信号S
3r2を再生することができる。 (第四実施例)図9は本発明の第四実施例に係る撮像デ
ータ信号伝送方式のシステム系統図であり、衛星で撮像
され、伝送されてきた一組の立体撮像信号を、再伝送あ
るいは記録する場合の構成を示している。
In order to reproduce the adjacent sub original signal S3, the secondary received signal S2r2 reproduced as described above is equal to the sub original signal S2. Therefore, this secondary received signal S2r2 is reproduced.
And the second time difference signal dt2 are input to the second primary reception / reproduction circuit 11b to reproduce the primary reception signal S3r1, and further the primary reception signal S3r1 and the second level difference signal d.
By adding s2 to the secondary reception / reproduction circuit 12b, the secondary reception signal S equal to the adjacent sub original signal S3 is obtained.
Can play 3r2. (Fourth Embodiment) FIG. 9 is a system diagram of an imaging data signal transmission system according to a fourth embodiment of the present invention, in which a set of stereoscopic imaging signals imaged and transmitted by a satellite is retransmitted or The structure when recording is shown.

【0064】この構成は、立体撮像された信号の相互間
の時間差が大きく、小さな衛星内では所要の遅延時間差
を与えられない場合等に用いられる。
This configuration is used when there is a large time difference between the stereoscopically picked-up signals and a required delay time difference cannot be given in a small satellite.

【0065】図中、14は地球観測衛星、19は中継局
たる主受信分配局、21は伝送路、22は受信局を示し
ている。
In the figure, 14 is an earth observation satellite, 19 is a main reception distribution station which is a relay station, 21 is a transmission line, and 22 is a receiving station.

【0066】地球観測衛星14では、立体撮像したデー
タ相互間の演算を行わずに第一次信号処理回路2a,2
bの出力を多重送出回路8で多重化して、そのまま主受
信分配局19に送出する。
In the earth observation satellite 14, the primary signal processing circuits 2a and 2a
The output of b is multiplexed by the multiplex sending circuit 8 and sent to the main reception distribution station 19 as it is.

【0067】主受信分配局19は、受信分離回路20と
遅延回路3と送信信号処理部4と多重送出回路を有して
成り、受信分離回路20で分離された立体撮像データに
遅延回路3で夫々所定の遅延時間差を与えて時間補正を
行い、一組の原信号S1,S2として送信信号処理部4
に入力する。送信信号処理部4では、前述のように、基
準原信号S1、時間差信号dt1、及びレベル差信号d
s1を生成して多重送出回路8に入力する。多重送出回
路8では、これら各信号を多重化し、伝送路21を用い
て受信局22に送出する。
The main receiving / distributing station 19 comprises a receiving / separating circuit 20, a delay circuit 3, a transmission signal processing section 4 and a multiplex sending circuit, and the stereoscopic image pickup data separated by the receiving / separating circuit 20 is delayed by the delay circuit 3. The transmission signal processing unit 4 produces a set of original signals S1 and S2 by applying a predetermined delay time difference to each other and performing time correction.
To enter. In the transmission signal processing unit 4, as described above, the reference original signal S1, the time difference signal dt1, and the level difference signal d.
s1 is generated and input to the multiplex transmission circuit 8. The multiplex sending circuit 8 multiplexes these signals and sends them to the receiving station 22 using the transmission line 21.

【0068】伝送路21には、衛星中継等の無線伝送路
の他、光ケーブル等の有線伝送路が用いられる例もあ
る。また、一旦、磁気テープ等のレコーダに記録される
場合にも適用可能なことは本実施例の構成からも明らか
である。
The transmission line 21 may be a wireless transmission line such as satellite relay or a wire transmission line such as an optical cable. Further, it is apparent from the configuration of this embodiment that the present invention can be applied to the case of once recording on a recorder such as a magnetic tape.

【0069】受信局22は、これまで説明してきた受信
側系統図と同様の構成、動作をなし、副原信号S2に等
しい第二次受信信号S2r2を再生している。
The receiving station 22 has the same configuration and operation as the receiving side system diagram described above, and reproduces the secondary received signal S2r2 equal to the sub-original signal S2.

【0070】尚、ここでは、受信局22と主受信分配局
19とを1対1に構成される場合について説明したが、
主受信分配局19から多方向に向けて伝送が行われる場
合もあり、この場合には、破線で示すように、同様の構
成、動作をなす複数の受信局22が設置される。
The case where the reception station 22 and the main reception distribution station 19 are configured in a one-to-one relationship has been described above.
In some cases, transmission is performed from the main reception distribution station 19 in multiple directions. In this case, a plurality of reception stations 22 having the same configuration and operation are installed as shown by the broken line.

【0071】また、主受信分配局19は、本実施例では
地上局の例をもって示しているが、宇宙ステーション
等、大規模な衛星プラットホーム上に設置される場合に
も適用可能であることは明らかである。
Further, although the main receiving / distributing station 19 is shown as an example of a ground station in this embodiment, it is clear that it can be applied to a case where it is installed on a large-scale satellite platform such as a space station. Is.

【0072】[0072]

【発明の効果】以上詳述してきたように、本発明では、
複数の原信号をそのまま伝送する従来の方式に代え、こ
れら原信号の相関をとり、基準となるいずれか一つの原
信号と、この原信号に対する時間差信号及びレベル差信
号とを伝送するようにしたので、受信側へのデータ送出
量を節減することができる。通常、時間差信号やレベル
差信号は原信号に比べれば10分の1から数10分の1
程度のデータ量であり、その効果には多大なものがあ
る。
As described above in detail, in the present invention,
Instead of the conventional method of transmitting a plurality of original signals as they are, the correlation between these original signals is taken, and any one of the reference original signals and the time difference signal and level difference signal with respect to this original signal are transmitted. Therefore, the amount of data sent to the receiving side can be reduced. Normally, the time difference signal and the level difference signal are 1/10 to 1/10 of the original signal.
The amount of data is about the same, and the effect is enormous.

【0073】また、前記(1) 式及び(2) 式で示した如
く、データ伝送量の節減に伴う誤差は皆無であり、受信
側で原信号を完全に復元することが可能となる。
Further, as shown in the equations (1) and (2), there is no error due to the reduction of the data transmission amount, and the original signal can be completely restored on the receiving side.

【0074】このように、本発明によれば、高品質の立
体画像データの画像品質を全く損なうことなく、データ
伝送量の大幅節減を可能とする撮像データ信号伝送方式
を提供することができる。
As described above, according to the present invention, it is possible to provide an image pickup data signal transmission system capable of greatly reducing the data transmission amount without impairing the image quality of high-quality stereoscopic image data.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例に係る撮像データ信号伝送
方式の信号処理系統図であり、(a)は送信側系統図、
(b)は受信側系統図である。
FIG. 1 is a signal processing system diagram of an imaging data signal transmission system according to a first embodiment of the present invention, in which (a) is a transmission side system diagram,
(B) is a receiving side system diagram.

【図2】本発明の第一実施例による立体撮像の原理を示
す図であり、一例として円錐形状の撮像対象Mを観測す
る場合を示している。
FIG. 2 is a diagram showing the principle of stereoscopic imaging according to the first embodiment of the present invention, and shows the case of observing a conical imaging target M as an example.

【図3】本発明の第一実施例において、衛星画像データ
を例とした各部信号波形図であり、(a)は立体撮像さ
れた各原信号S1,S2波形と時間差信号dt1波形、
(b)は第一次受信信号S2r1波形とレベル差信号d
s1波形、(c)は第二次受信信号S2r2波形である。
FIG. 3 is a signal waveform diagram of each part in which satellite image data is taken as an example in the first embodiment of the present invention, in which (a) is a stereoscopically captured original signal S1 and S2 waveform and a time difference signal dt1 waveform.
(B) shows the primary reception signal S2r1 waveform and the level difference signal d
s1 waveform, (c) is the secondary reception signal S2r2 waveform.

【図4】本発明の第一実施例に係る撮像データ信号伝送
方式を用いて地球を周回する人工衛星にて立体撮像を行
い、地上局へ伝送する場合のシステム応用概念図であ
る。
FIG. 4 is a system application conceptual diagram in the case of performing stereoscopic imaging by an artificial satellite orbiting the earth using the imaging data signal transmission system according to the first embodiment of the present invention and transmitting the stereoscopic imaging to a ground station.

【図5】本発明の第二実施例に係る撮像データ信号伝送
方式の信号処理系統図であり、(a)は送信側系統図、
(b)は受信側系統図である。
FIG. 5 is a signal processing system diagram of an imaging data signal transmission system according to a second embodiment of the present invention, (a) is a transmission side system diagram,
(B) is a receiving side system diagram.

【図6】本発明の第二実施例により、円錐形状の撮像対
象Mを観測する場合の概念図である。
FIG. 6 is a conceptual diagram for observing a conical imaging target M according to the second embodiment of the present invention.

【図7】本発明の第三実施例に係る撮像データ信号伝送
方式の処理系統図であり、(a)は送信側系統図、
(b)は受信側系統図である。
FIG. 7 is a processing system diagram of an imaging data signal transmission system according to a third embodiment of the present invention, (a) is a transmission side system diagram,
(B) is a receiving side system diagram.

【図8】本発明の第三実施例による立体撮像の説明図で
あり、離れた三点から同一対象を撮像する場合を概念的
に示した図である。
FIG. 8 is an explanatory diagram of stereoscopic imaging according to the third embodiment of the present invention, and is a diagram conceptually showing a case where the same object is imaged from three distant points.

【図9】本発明の第四実施例に係る撮像データ信号伝送
方式のシステム系統図であり、衛星で撮像され、伝送さ
れてきた一組の立体撮像信号を、再伝送あるいは記録す
る場合の構成を示した図である。
FIG. 9 is a system system diagram of an imaging data signal transmission system according to a fourth embodiment of the present invention, which is a configuration for retransmitting or recording a set of stereoscopic imaging signals imaged and transmitted by a satellite. It is the figure which showed.

【符号の説明】[Explanation of symbols]

1a,1b,1c 受光素子(CCD) 2a,2b,2c 第一次信号処理回路 3、3a,3b 遅延回路 4 送信信号処理部 5、5a,5b 時間差検出回路 6、6a,6b 第一次送信再生回路 7、7a,7b レベル差検出回路 8 多重送出回路 9 受信分配回路 10 受信信号処理部 11、11a,11b 第一次受信再生回路 12、12a,12b 第二次受信再生回路 13 画像処理装置 14 地球観測衛星 15、15a,15b 集光光学系 16 送信アンテナ 17、17a,17b 撮像対象地表面 18 地上局 19 主受信分配局(中継局) 20 受信分離回路 21 伝送路 22 受信局 1a, 1b, 1c Light receiving element (CCD) 2a, 2b, 2c Primary signal processing circuit 3, 3a, 3b Delay circuit 4 Transmission signal processing unit 5, 5a, 5b Time difference detection circuit 6, 6a, 6b Primary transmission Reproduction circuit 7, 7a, 7b Level difference detection circuit 8 Multiplexing circuit 9 Reception distribution circuit 10 Reception signal processing unit 11, 11a, 11b Primary reception / reproduction circuit 12, 12a, 12b Secondary reception / reproduction circuit 13 Image processing device 14 Earth Observation Satellites 15, 15a, 15b Condensing Optical System 16 Transmission Antennas 17, 17a, 17b Imaging Target Surface 18 Ground Station 19 Main Reception Distribution Station (Relay Station) 20 Reception Separation Circuit 21 Transmission Line 22 Reception Station

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一観測対象を相離れた複数観測点から
異なる角度で撮像する立体撮像システムに用いられる方
式であって、複数の撮像データ信号に夫々対応して設け
られ、各撮像データ信号を夫々電気信号に変換して複数
の原信号を生成する第一次信号処理回路と、これら原信
号を伝送路に向けて送信する送信手段と、伝送路から受
信した前記撮像データ信号を再生する受信手段とを有す
る撮像データ信号伝送方式において、 前記複数の原信号のいずれか一つを基準原信号となし、
この基準原信号に隣接する原信号及びこの原信号に順次
隣接する原信号を副原信号となすとともに、 前記送信手段は、隣接する原信号間の同一観測対象対応
点に対する時間差を表す時間差信号を生成する時間差検
出回路と、 前記基準原信号と前記時間差信号とに基づいて前記副原
信号と近似する波形の第一次送信信号を生成する第一次
送信再生回路と、 この第一次送信信号と現実の副原信号とのレベル差を表
すレベル差信号を生成するレベル差検出回路と、 前記基準原信号と前記時間差信号と前記レベル差信号と
を多重化して前記伝送路に送出する多重送出回路とを備
え、 一方、前記受信手段は、前記伝送路から受信した多重化
信号から前記基準原信号と前記時間差信号と前記レベル
差信号を分離する受信分配回路と、 前記基準原信号と前記時間差信号とに基づいて前記第一
次送信信号と同一の第一次受信信号を再生する第一次受
信再生回路と、 再生された第一次受信信号と前記レベル差信号とに基づ
いて前記副信号を表す第二次受信再生信号を生成する第
二次受信再生回路とを少なくとも備えることを特徴とす
る撮像データ信号伝送方式。
1. A method used in a stereoscopic imaging system for imaging the same observation object from different observation points at different angles, the method being provided in correspondence with each of the plurality of imaging data signals. A primary signal processing circuit for converting each to an electric signal to generate a plurality of original signals, a transmitting means for transmitting these original signals to a transmission line, and a reception unit for reproducing the imaging data signal received from the transmission line. In the imaging data signal transmission method having means, any one of the plurality of original signals is a reference original signal,
The original signal adjacent to this reference original signal and the original signal sequentially adjacent to this original signal are used as sub-original signals, and the transmitting means generates a time difference signal representing a time difference between adjacent original signals with respect to the same observation target corresponding point. A time difference detection circuit for generating, a primary transmission reproduction circuit for generating a primary transmission signal having a waveform approximate to the sub-original signal based on the reference original signal and the time difference signal, and the primary transmission signal Level difference detection circuit for generating a level difference signal representing the level difference between the actual sub-source signal and the actual sub-source signal, and multiplex transmission for multiplexing the reference original signal, the time difference signal and the level difference signal and transmitting the multiplexed signal to the transmission path. A receiving distribution circuit for separating the reference original signal, the time difference signal, and the level difference signal from the multiplexed signal received from the transmission line, and the reference original signal. A primary reception / reproduction circuit for reproducing the same primary reception signal as the primary transmission signal based on the time difference signal, and the primary reception / reproduction circuit based on the reproduced primary reception signal and the level difference signal. An imaging data signal transmission system, comprising at least a secondary reception / reproduction circuit for generating a secondary reception / reproduction signal representing a sub-signal.
【請求項2】 請求項1記載の撮像データ信号伝送方式
において、前記送信手段に入力され、前記時間差の基準
となる少なくとも一つの原信号に所定の遅延時間を与え
る遅延回路を設けたことを特徴とする撮像データ信号伝
送方式。
2. The image pickup data signal transmission method according to claim 1, further comprising a delay circuit which gives a predetermined delay time to at least one original signal which is input to the transmission means and which serves as a reference for the time difference. And image data transmission method.
【請求項3】 同一観測対象を相離れた複数観測点から
異なる角度で撮像する立体撮像システムに用いられる方
式であって、複数の撮像データ信号に夫々対応して設け
られ、各撮像データ信号を夫々電気信号に変換して複数
の原信号を生成する第一次信号処理回路と、これら原信
号を中継局に向けて送信する第一次送信手段とを移動体
に搭載するとともに、前記第一次送信手段から送信され
た各原信号を、中継局を介して受信局に伝送する撮像デ
ータ信号伝送方式において、 前記複数の原信号のいずれか一つを基準原信号となし、
この基準原信号と隣接する原信号及び以後順次隣接する
原信号を副原信号となすとともに、 前記第一次送信手段は、前記第一次信号処理回路の出力
を多重化して中継局に送出する第一の多重送出回路を備
え、 また、前記中継局は、前記第一の多重送出回路から送出
された多重化信号から前記基準原信号と副原信号とを分
離する受信分離回路と、 再生された基準原信号に所定の遅延時間を与える遅延回
路と、 請求項1記載の時間差検出回路、第一次送信再生回路、
及びレベル差検出回路と、 前記基準原信号と前記時間差信号と前記レベル差信号と
を多重化して前記受信局に送出する第二の多重送出回路
とを備え、 更に、前記受信局は、請求項1記載の受信分配回路、第
一次受信再生回路、及び第二次受信再生回路とを少なく
とも備えることを特徴とする撮像データ信号伝送方式。
3. A method used in a stereoscopic imaging system for imaging the same observation target from different observation points at different angles, the method being provided in correspondence with each of the plurality of imaging data signals. A primary signal processing circuit for converting each to an electric signal to generate a plurality of original signals, and a primary transmitting means for transmitting these original signals to a relay station are mounted on a moving body, and Each original signal transmitted from the next transmitting means, in the imaging data signal transmission method for transmitting to the receiving station via the relay station, one of the plurality of original signals as a reference original signal,
The original signal adjacent to the reference original signal and the original signal successively adjacent thereto are made into sub-original signals, and the primary transmission means multiplexes the output of the primary signal processing circuit and sends it to the relay station. The relay station includes a first multiplex sending circuit, and the relay station is a receiving / separating circuit that separates the reference original signal and the sub-original signal from the multiplexed signal sent from the first multiplex sending circuit. A delay circuit for giving a predetermined delay time to the reference original signal, a time difference detection circuit according to claim 1, a primary transmission reproduction circuit,
And a level difference detection circuit, and a second multiplex transmission circuit that multiplexes the reference original signal, the time difference signal, and the level difference signal and sends the multiplexed signal to the receiving station, wherein the receiving station further comprises: 1. An image pickup data signal transmission system comprising at least the reception distribution circuit according to 1, the primary reception reproduction circuit, and the secondary reception reproduction circuit.
JP03303641A 1991-11-19 1991-11-19 Imaging data signal transmission method Expired - Fee Related JP3087782B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03303641A JP3087782B2 (en) 1991-11-19 1991-11-19 Imaging data signal transmission method
CA002083203A CA2083203C (en) 1991-11-19 1992-11-18 Image data transmission system capable of obtaining a high resolution stereo image with reduced transmission data
DE69226497T DE69226497T2 (en) 1991-11-19 1992-11-19 System for the transmission of image data for the generation of a high-resolution stereo image with reduced transmission data
EP92119740A EP0543378B1 (en) 1991-11-19 1992-11-19 Image data transmission system capable of obtaining a high resolution stereo image with reduced transmission data
US07/978,995 US5296926A (en) 1991-11-19 1992-11-19 Image data transmission system capable of obtaining a high resolution stereo image with reduced transmission data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03303641A JP3087782B2 (en) 1991-11-19 1991-11-19 Imaging data signal transmission method

Publications (2)

Publication Number Publication Date
JPH05145951A true JPH05145951A (en) 1993-06-11
JP3087782B2 JP3087782B2 (en) 2000-09-11

Family

ID=17923447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03303641A Expired - Fee Related JP3087782B2 (en) 1991-11-19 1991-11-19 Imaging data signal transmission method

Country Status (1)

Country Link
JP (1) JP3087782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447728B1 (en) * 2001-12-26 2004-09-08 한국항공우주연구원 a

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525855B1 (en) * 2013-10-17 2015-06-09 동건화학 주식회사 A dish washer having dish injection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144191A (en) * 1984-12-17 1986-07-01 Nippon Hoso Kyokai <Nhk> Transmitting system of stereoscopic television picture
JPS6419892A (en) * 1987-07-14 1989-01-23 Atr Tsushin Syst Kenkyusho Redundancy compressing method and reproducing method for stereoscopic picture
JPH01202093A (en) * 1988-02-08 1989-08-15 Nippon Hoso Kyokai <Nhk> Stereoscopic television transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144191A (en) * 1984-12-17 1986-07-01 Nippon Hoso Kyokai <Nhk> Transmitting system of stereoscopic television picture
JPS6419892A (en) * 1987-07-14 1989-01-23 Atr Tsushin Syst Kenkyusho Redundancy compressing method and reproducing method for stereoscopic picture
JPH01202093A (en) * 1988-02-08 1989-08-15 Nippon Hoso Kyokai <Nhk> Stereoscopic television transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447728B1 (en) * 2001-12-26 2004-09-08 한국항공우주연구원 a

Also Published As

Publication number Publication date
JP3087782B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JPH0671313B2 (en) External synchronization method and apparatus for information transmission system
EP0543378B1 (en) Image data transmission system capable of obtaining a high resolution stereo image with reduced transmission data
KR101682982B1 (en) An IP Transmitting System For CCTV Video Signal
JP2626152B2 (en) Imaging signal processing device
JP3510758B2 (en) Remote imaging system, imaging device with wireless communication function
JP3087782B2 (en) Imaging data signal transmission method
EP0792072A1 (en) Method and apparatus for transmitting digital color signals
US7460156B2 (en) Signal transmission method between television camera and video apparatus and apparatus using the method
RU96111973A (en) METHOD AND DEVICE FOR TRANSMISSION OF ADDITIONAL SIGNALS ON TELEVISION CHANNELS AND APPLICATION OF A METHOD FOR TRANSMISSION OF INFORMATION
JPH05145952A (en) Image pickup data signal transmitting system
JPH11328413A (en) Stereo image processing system
JP4049621B2 (en) Video wireless transmission system and receiver
JP4738251B2 (en) Synchronous automatic adjustment device
JPH0993175A (en) Satellite communication vehicle system
CN102104739A (en) Transmission system, imaging apparatus, and transmission method
JP2699378B2 (en) TV Camera Synchronizer
JPH03295485A (en) Compression system for radar signal
KR20140038209A (en) A camera for taking a movie for a cctv, an image compression and transmission device for a cctv, an image management cell for a cctv, a relay cell for relaying cctv image signal, and an image management system for a cctv
JPH0625850B2 (en) Stereoscopic imaging method
JP2752913B2 (en) 3D image capturing device
JPH0683405B2 (en) Wide area high resolution imaging method
CN102740129A (en) Video transmission apparatus, video receiving apparatus and video transmission system
KR19990004046A (en) Apparatus for Multiplexed Transmission of Closed Circuit Television Systems
JPH047638B2 (en)
JPH04207671A (en) Stereoscopic image pickup system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000614

LAPS Cancellation because of no payment of annual fees