JPH0481283B2 - - Google Patents

Info

Publication number
JPH0481283B2
JPH0481283B2 JP29827985A JP29827985A JPH0481283B2 JP H0481283 B2 JPH0481283 B2 JP H0481283B2 JP 29827985 A JP29827985 A JP 29827985A JP 29827985 A JP29827985 A JP 29827985A JP H0481283 B2 JPH0481283 B2 JP H0481283B2
Authority
JP
Japan
Prior art keywords
parts
ethylene
weight
maleic anhydride
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29827985A
Other languages
Japanese (ja)
Other versions
JPS62157601A (en
Inventor
Takashi Maeda
Kenji Nagai
Satoru Yoshikawa
Susumu Takahashi
Toshio Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP29827985A priority Critical patent/JPS62157601A/en
Publication of JPS62157601A publication Critical patent/JPS62157601A/en
Publication of JPH0481283B2 publication Critical patent/JPH0481283B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、金属との接着が良好な半導電性混和
物に関するもので、特に電力ケーブル等の内部半
導電層用の混和物として有用なものに関する。 <従来の技術> 高圧CVケーブルの場合、金属導体上に内部半
導電層、絶縁層、外部半導電層を押出被覆した
後、加熱して各層を架橋させて製造される。 <発明が解決しようとする問題点> ところが、このようにして製造したCVケーブ
ルでは、放置中又は使用中に被覆層が縮み導体が
突き出る所謂、シユリンクバツクという現象が起
きることがある。これは製造時の熱による歪が被
覆層に残ることが原因と推定されている。 このシユリンクバツクが起きると、ケーブルの
接続部又は端末部において、導体と被覆との界面
に微小な空間ができ、ケーブル特性の低下を招く
他、場合によつては、絶縁破壊に至ることがあ
る。 このため、従来、シユリンクバツク対策とし
て、熱処理を十分行うようにしている。というの
は、架橋工程における高温窒素ガス、水蒸気、若
しくは高温シリコーン油等による十分な熱処理に
よつて被覆中の歪が除去され、シユリンクバツク
がある程度防止できるからである。しかし、この
熱処理のみでシユリンクバツクを完全に防止する
ことは難しく、処理(製造)コストの上昇を招
く。 又、ケーブル接続部、端末部にシユリンクバツ
クを防ぐための金具等を取り付けることも行われ
ているが、完全とは言えない。 このシユリンクバツクをより完全に防止するに
は、導体と内部半導電層とをより強力に接着する
ことが考えられるが、現在のところ、半導電層に
要求される必要特性を満足し、その上で、更に導
体との接着性が良好である半導電性混和物は提案
されていない。 そこで、本発明者等が鋭意研究を行つたとこ
ろ、エチレン−酢酸ビニル共重合体に無水マレイ
ン酸をグラフトさせたポリマー又は/及びエチレ
ン−エチルアクリレート共重合体に無水マレイン
酸をグラフトさせたポリマーを所定重量部以上含
むベースポリマーが金属導体との接着性が良く、
且つ必要な半導電性が得られることを見出した。 本発明は、このような結果に基づいてなされた
ものである。 <問題点を解決するための手段及びその作用> つまり、本発明の特徴とする点は、ベースポリ
マー100重量部中に、エチレン−酢酸ビニル共重
合体に無水マレイン酸をグラフトさせたポリマー
又は/及びエチレン−エチルアクリレート共重合
体に無水マレイン酸をグラフトさせたポリマーを
3重量部以上と導電性カーボンブラツクを分散さ
せ、更に必要により、架橋助剤や架橋剤を混和さ
せた半導電性混和物にある。 これらのグラフト化させたポリマーを全ベース
ポリマー100重量部に対して、3重量部以上混合
する必要があるのは、3重量部未満では、導体と
の十分な接着性が得られないからである。好まし
い配合量としては5〜40重量部程度がよく、ベー
スポリマーとしてはポリオレフイン等が挙げられ
る。 このポリオレフインとしては、低密度ポリエチ
レン〔ミラソン(三井石油化学社製)〕、リニアロ
ーデンシテイーポリエチレン〔ウルトゼツクス
(三井石油化学社製)〕、高密度ポリエチレン〔ハ
イゼツクス(三井石油化学社製)〕、エチレン−酢
酸ビニル共重合体〔エバフレツクス(三井・デユ
ポンポリケミカル社製)〕、エチレン−エチルアク
リレート共重合体〔日石EEA(日本石油化学社
製)〕、エチレン−α−オレフイン共重合体〔タフ
マー(三井石油化学社製)〕、エチレン−α−オレ
フイン−ジエン共重合体、及びこれらの混合物が
使用できる。 本発明で用いる導電性カーボンブラツクとして
は、デンカブラツク(電気化学工業社製)、トー
カブラツク(東海カーボン社製)、バルカンXC−
72(キヤボツト社製)等があり、その配合量は必
要な導電性により異なるが、一般的にはベースポ
リマー100重量部に対して10〜120重量部がよい。
というのは、10重量部未満では十分な導電性が得
られず、120重量部を越えると加工性が悪化する
からである。 本発明混和物は未架橋の場合でも金属との接着
性は十分あるが、架橋することにより一層大きな
接着力が得られる。この架橋する方法としては、
ケーブルの内部半導電層を例に取つた場合、次の
2つの方法が考えられる。本混和物に予めトリ
アリルイソシアヌレート、トリアリルトリメリテ
ート等の架橋助剤を加えておき、これを内部半導
電層として押し出し、同時に又は後工程でジクミ
ルパーオキサイド等の架橋剤を含む混和物を絶縁
体として押し出し、この絶縁体を架橋するとき、
絶縁体側からジクミルパーオキサイド等の架橋剤
の移行により架橋させる方法、本混和物に予め
架橋剤、若しくは架橋剤と上記架橋助剤を加えて
おいて内部半導電層を押し出し、架橋させる方法
である。その架橋剤としては、ジクミルパーオキ
サイド、2,5−ジメチル−2,5−ジ(t−ブ
チルパ−オキシ)ヘキシン−3,1,3−ビス
(t−ブチルパ−オキシイソプロピル)ベンゼン
等の有機過酸化物が挙げられる。 尚、本発明の混和物には、必要に応じて、その
他の添加剤、例えば老化防止剤、加工助剤、銅害
防止剤、安定剤等を添加することができる。 本発明混和物の用途としては、上述の如くケー
ブルの内部半導電層様の混和物として有用である
が、これに限定されるものではない。例えば、金
属との接着性が要求される発熱素子、感温樹脂材
料、帯電防止材料、電極材料等に使用することも
できる。 <実施例> 実施例1〜13、比較例1〜5 第1表に示した配合の半導電性混和物の1mm厚
のシートを作つた(加工温度120°以下)。又、ジ
クミルパーオキサイドを含む未架橋のポリエチレ
ンシート(2mm厚)とアルミニウムテープ(0.2
mm厚)と銅テープ(0.1mm厚)を用意した。 次に、アルミニウムテープ若しくは銅テープの
表面を有機溶剤で洗浄した後、この金属テープ、
半導電シート、ポリエチレンシートの順に重ね、
200°に設定した加圧プレス装置により20分間加圧
プレスして貼り合わせシートを作つた。 この貼り合わせシートを15mm幅に切り抜き、金
属テープと半導電シートとの接着力を測定した。
接着力の測定は金属テープと半導電ポリエチレン
シートを750mm/分の速度で180°方向に引つ張つ
て剥離することにより行つた。 その測定結果も第1票に併記してある。
<Industrial Application Field> The present invention relates to a semiconducting mixture that has good adhesion to metals, and is particularly useful as a mixture for internal semiconducting layers of power cables and the like. <Prior Art> High-voltage CV cables are manufactured by coating a metal conductor with an inner semiconducting layer, an insulating layer, and an outer semiconducting layer by extrusion and then heating to crosslink each layer. <Problems to be Solved by the Invention> However, in the CV cable manufactured in this manner, a phenomenon called shrinkback may occur in which the coating layer shrinks and the conductor protrudes during storage or use. It is presumed that this is because distortion caused by heat during manufacturing remains in the coating layer. When this shrinkback occurs, a small space is created at the interface between the conductor and the coating at the connection or terminal part of the cable, leading to a decrease in cable characteristics and, in some cases, to dielectric breakdown. be. For this reason, conventionally, sufficient heat treatment has been carried out as a countermeasure against shrinkage. This is because sufficient heat treatment with high temperature nitrogen gas, steam, high temperature silicone oil, etc. in the crosslinking step removes distortion in the coating and prevents shrink back to some extent. However, it is difficult to completely prevent shrinkage by this heat treatment alone, leading to an increase in processing (manufacturing) costs. In addition, metal fittings and the like are attached to cable connection parts and terminal parts to prevent shrinkage, but this cannot be said to be perfect. In order to more completely prevent this shrinkback, it is possible to bond the conductor and the internal semiconducting layer more strongly, but at present, it is possible to In addition, no semiconducting mixture has been proposed that has good adhesion to conductors. Therefore, the present inventors conducted intensive research and found that a polymer obtained by grafting maleic anhydride onto an ethylene-vinyl acetate copolymer and/or a polymer obtained by grafting maleic anhydride onto an ethylene-ethyl acrylate copolymer was developed. The base polymer, which contains more than a predetermined weight part, has good adhesion to metal conductors.
It has also been found that the necessary semiconductivity can be obtained. The present invention has been made based on these results. <Means for solving the problems and their effects> In other words, the feature of the present invention is that a polymer or/ and a semiconductive mixture in which 3 parts by weight or more of a polymer obtained by grafting maleic anhydride to an ethylene-ethyl acrylate copolymer, conductive carbon black, and, if necessary, a crosslinking aid or crosslinking agent mixed therein. It is in. The reason why it is necessary to mix at least 3 parts by weight of these grafted polymers with respect to 100 parts by weight of the total base polymer is because if it is less than 3 parts by weight, sufficient adhesion to the conductor cannot be obtained. . The preferred amount is about 5 to 40 parts by weight, and examples of the base polymer include polyolefin. Examples of this polyolefin include low-density polyethylene [Mirason (manufactured by Mitsui Petrochemicals)], linear low-density polyethylene [Urtzex (manufactured by Mitsui Petrochemicals)], high-density polyethylene [Hizex (manufactured by Mitsui Petrochemicals)], and ethylene- Vinyl acetate copolymer [Evaflex (manufactured by Mitsui-Dupont Polychemicals)], ethylene-ethyl acrylate copolymer [Nisseki EEA (manufactured by Nippon Petrochemicals)], ethylene-α-olefin copolymer [Tafmer (Mitsui) (manufactured by Petrochemical Co., Ltd.)], ethylene-α-olefin-diene copolymer, and mixtures thereof. Examples of the conductive carbon black used in the present invention include Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.), Toka Black (manufactured by Tokai Carbon Co., Ltd.), and Vulcan XC-
72 (manufactured by Cabot Co., Ltd.), and the blending amount varies depending on the required conductivity, but is generally 10 to 120 parts by weight based on 100 parts by weight of the base polymer.
This is because if it is less than 10 parts by weight, sufficient electrical conductivity cannot be obtained, and if it exceeds 120 parts by weight, workability deteriorates. Although the mixture of the present invention has sufficient adhesion to metals even when uncrosslinked, even greater adhesive strength can be obtained by crosslinking. This crosslinking method is as follows:
Taking the internal semiconductive layer of a cable as an example, the following two methods are possible. A crosslinking agent such as triallyl isocyanurate or triallyl trimellitate is added to this mixture in advance, and this is extruded as an internal semiconductive layer, and at the same time or in a subsequent step, a crosslinking agent such as dicumyl peroxide is added. When extruding something as an insulator and crosslinking this insulator,
A method of crosslinking by transferring a crosslinking agent such as dicumyl peroxide from the insulator side, or a method of adding a crosslinking agent or a crosslinking agent and the above-mentioned crosslinking aid to the mixture in advance and extruding the internal semiconductive layer and crosslinking it. be. Examples of the crosslinking agent include organic compounds such as dicumyl peroxide and 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,1,3-bis(t-butylperoxyisopropyl)benzene. Examples include peroxides. In addition, other additives such as anti-aging agents, processing aids, copper damage inhibitors, stabilizers, etc. can be added to the mixture of the present invention, if necessary. As for the use of the mixture of the present invention, as mentioned above, it is useful as an internal semiconductive layer-like mixture of cables, but it is not limited thereto. For example, it can be used for heating elements, temperature-sensitive resin materials, antistatic materials, electrode materials, etc. that require adhesiveness to metals. <Examples> Examples 1 to 13, Comparative Examples 1 to 5 A 1 mm thick sheet of a semiconductive mixture having the composition shown in Table 1 was made (processing temperature 120° or less). In addition, uncrosslinked polyethylene sheet (2 mm thick) containing dicumyl peroxide and aluminum tape (0.2
mm thick) and copper tape (0.1 mm thick) were prepared. Next, after cleaning the surface of the aluminum tape or copper tape with an organic solvent, this metal tape,
Layer the semiconductive sheet and the polyethylene sheet in that order.
A bonded sheet was produced by pressing for 20 minutes using a pressure press set at 200°. This bonded sheet was cut out to a width of 15 mm, and the adhesive strength between the metal tape and the semiconductive sheet was measured.
The adhesive force was measured by pulling and peeling the metal tape and the semiconductive polyethylene sheet in a 180° direction at a speed of 750 mm/min. The measurement results are also listed in the first vote.

【表】【table】

【表】 第1表の実施例1〜13により、エチレン−酢酸
ビニル共重合体に無水マレイン酸をグラフトさせ
たポリマー又はエチレン−エチルアクリレート共
重合体に無水マレイン酸をグラフトさせたポリマ
ーを用いれば、金属との接着性が改善されること
が判る。又、これらのポリマーの配合量の調整、
架橋の有無により接着力を適宜選ぶことが可能で
ある。 実施例14、比較例8 外径8mmのアルミニウム単線の上に内部半導電
層0.7mm、絶縁層7mm、外部半導電層1mmを押出
被覆し、架橋してCVケーブルのコアを製造した。
ここで、内部半導電層としては、本実施例14では
前記実施例12の配合のものを用い、本比較例8で
は前記比較例6の配合のものを用いた。 このようにして製造したCVケーブルコアの評
価結果は第2表の如くであつた。 尚、第2表の寸法安定性は30cmのケーブルコア
を121℃で20時間加熱した後の導体突出量によつ
た。シユリンクバツク量は6mのケーブルコアを
15回ヒートサイクルした後の導体突出量によつ
た。1ヒートサイクルは90℃加熱4時間と室温4
時間である。
[Table] According to Examples 1 to 13 in Table 1, if a polymer obtained by grafting maleic anhydride onto an ethylene-vinyl acetate copolymer or a polymer obtained by grafting maleic anhydride onto an ethylene-ethyl acrylate copolymer is used. It can be seen that the adhesion to metal is improved. In addition, adjustment of the blending amount of these polymers,
Adhesive strength can be appropriately selected depending on the presence or absence of crosslinking. Example 14, Comparative Example 8 An internal semiconductive layer of 0.7 mm, an insulating layer of 7 mm, and an external semiconductive layer of 1 mm were coated by extrusion on a single aluminum wire with an outer diameter of 8 mm, and crosslinked to produce a core of a CV cable.
Here, as the internal semiconducting layer, in Example 14, the composition of Example 12 was used, and in Comparative Example 8, the composition of Comparative Example 6 was used. The evaluation results of the CV cable core produced in this way were as shown in Table 2. The dimensional stability shown in Table 2 is based on the amount of conductor protrusion after heating a 30 cm cable core at 121° C. for 20 hours. The shrink back amount is 6m cable core.
It was based on the amount of conductor protrusion after 15 heat cycles. 1 heat cycle is 90℃ heating for 4 hours and room temperature 4 hours
It's time.

【表】【table】

【表】 第2表の実施例14によると、体積抵抗率、誘電
正接等の特性を低下させることなく、シユリンク
バツク量が低減していることが判る。 <発明の効果> 以上の説明から明らかなように本発明によれ
ば、半導電性で、例えばケーブルの半導電層等に
必要とれる特性を十分満足させると同時に、金属
との接着性に優れた半導電性混和物を提供するこ
とができる。
[Table] According to Example 14 in Table 2, it can be seen that the shrink back amount is reduced without deteriorating the characteristics such as volume resistivity and dielectric loss tangent. <Effects of the Invention> As is clear from the above description, according to the present invention, it is semiconductive and satisfies the characteristics required for, for example, a semiconductive layer of a cable, and at the same time has excellent adhesion to metal. A semiconducting mixture can be provided.

Claims (1)

【特許請求の範囲】 1 ベースポリマー100重量部中に、エチレン−
酢酸ビニル共重合体に無水マレイン酸をグラフト
させたポリマー又は/及びエチレン−エチルアク
リレート共重合体に無水マレイン酸をグラフトさ
せたポリマーを3重量部以上と導電性カーボンブ
ラツクを分散させてなる半導電性混和物。 2 ベースポリマー100重量部中に、エチレン−
酢酸ビニル共重合体に無水マレイン酸をグラフト
させたポリマー又は/及びエチレン−エチルアク
リレート共重合体に無水マレイン酸をグラフトさ
せたポリマーを3重量部以上と導電性カーボンブ
ラツクを分散させ、更に架橋助剤又は/又は架橋
剤を混和してなる半導電性混和物。
[Claims] 1. In 100 parts by weight of the base polymer, ethylene-
Semiconductor made by dispersing 3 parts by weight or more of a polymer in which maleic anhydride is grafted onto a vinyl acetate copolymer or/and a polymer in which maleic anhydride is grafted into an ethylene-ethyl acrylate copolymer and conductive carbon black. sexual admixture. 2 In 100 parts by weight of the base polymer, ethylene-
Conductive carbon black is dispersed in 3 parts by weight or more of a polymer obtained by grafting maleic anhydride onto a vinyl acetate copolymer or/and a polymer obtained by grafting maleic anhydride onto an ethylene-ethyl acrylate copolymer, and further a crosslinking agent is added. A semiconductive mixture containing a crosslinking agent and/or a crosslinking agent.
JP29827985A 1985-12-30 1985-12-30 Semiconductive compound Granted JPS62157601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29827985A JPS62157601A (en) 1985-12-30 1985-12-30 Semiconductive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29827985A JPS62157601A (en) 1985-12-30 1985-12-30 Semiconductive compound

Publications (2)

Publication Number Publication Date
JPS62157601A JPS62157601A (en) 1987-07-13
JPH0481283B2 true JPH0481283B2 (en) 1992-12-22

Family

ID=17857571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29827985A Granted JPS62157601A (en) 1985-12-30 1985-12-30 Semiconductive compound

Country Status (1)

Country Link
JP (1) JPS62157601A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548324Y2 (en) * 1987-12-11 1993-12-24
JPH0413745A (en) * 1990-05-08 1992-01-17 Ube Ind Ltd Bonding polyethylene resin composition

Also Published As

Publication number Publication date
JPS62157601A (en) 1987-07-13

Similar Documents

Publication Publication Date Title
JPH10283851A (en) Direct current power cable and its connection part
JPH0481283B2 (en)
JP3428388B2 (en) DC cable
JP4227244B2 (en) Insulated cable for direct current using a semiconductive composition
JPH09231839A (en) Direct current cable
JPS598216A (en) Polyolefin insulated power cable with semiconductive layer
JPH02153952A (en) Semiconductive resin composition
JPS59175506A (en) Crosslinked polyethylene insulated high voltage cable
JP4708393B2 (en) Semiconductive watertight composition
JPH0126003Y2 (en)
JPH01243305A (en) Electrically insulated cable
JPH0554203B2 (en)
JP2666543B2 (en) Electric wires and cables
JPH0132602B2 (en)
JPH0435841B2 (en)
JP2563531B2 (en) Power cable
JPH02151643A (en) Easily peelable semi-conductive composition
JP2000040419A (en) High voltage power cable
JPH10106363A (en) Power cable
JPH0426163B2 (en)
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPS61232505A (en) Crosslinked polyethylene insulated wire
JPH06309949A (en) Anti-watertree electric power cable
JPS63168905A (en) Power cable
JPS63269408A (en) Rubber plastic power cable