JPH0454738A - Receiving end switching transmission system - Google Patents

Receiving end switching transmission system

Info

Publication number
JPH0454738A
JPH0454738A JP2164532A JP16453290A JPH0454738A JP H0454738 A JPH0454738 A JP H0454738A JP 2164532 A JP2164532 A JP 2164532A JP 16453290 A JP16453290 A JP 16453290A JP H0454738 A JPH0454738 A JP H0454738A
Authority
JP
Japan
Prior art keywords
signal
transmission
circuit
transmission line
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164532A
Other languages
Japanese (ja)
Inventor
Koji Takaragawa
宝川 幸司
Shinji Matsuoka
伸治 松岡
Seiji Nakagawa
清司 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2164532A priority Critical patent/JPH0454738A/en
Publication of JPH0454738A publication Critical patent/JPH0454738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To send a same signal from each sending end by providing a means sending the same signal to plural transmission lines to a sender side, a means compensating a relative delay in the plural signals and a monitor means monitoring the transmission lines to a receiver side. CONSTITUTION:A signal received by reception sections 22, 32 are stored once in memories 24, 34. The stored signals are read synchronously with each other and fed to a changeover circuit 60. Suppose that the circuit 60 is set to select a signal sent from the sending end through a transmission line L1, and when a line fault that a signal interrupt takes place or a code error rate is deteriorated to be a prescribed value or over in the transmission line L1, a monitor circuit 23 detects it and its alarm signal is sent to a changeover control circuit 70. The circuit 70 receives the alarm signal to check the operating state of a transmission line L2 as to whether or not an alarm is raised from a monitor circuit 33. When no fault exists in the signal sent through the transmission line L2, a switching control signal is sent to the changeover circuit 60 to select the circuit 60 to the position of the transmission line L2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、保守性に優れ、かつ高い信頼性を確保できる
大容量の伝送方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a large-capacity transmission system that is excellent in maintainability and can ensure high reliability.

本発明は、経路の異なるものを含む複数の伝送路で同一
の信号を伝送し、受信側でその信号の相対遅延を補償す
るとともに伝送路の状態を監視して伝送信号を切り替え
選択することにより、信頼度の高い伝送方式を実現する
ものである。
The present invention transmits the same signal through multiple transmission paths including those with different routes, compensates for the relative delay of the signal on the receiving side, and monitors the state of the transmission path to switch and select the transmission signal. , which realizes a highly reliable transmission method.

〔従来の技術〕[Conventional technology]

光ファイバの低コスト化や光伝送技術の進展などにとも
ない、多様で高度な情報サービスが経済的に提供可能と
なった。伝送される情報は多種多様にわたるとともに、
情報量も従来の電話サービスに比べてはるかに多くなり
つつある。将来のB−ISDN、画像専用線サービス用
等の基幹回線での伝送速度は600 Mb/s、2.4
Gb/sあるいはそれ以上と高速化の一途をたどってい
る。このような情報通信の動向のなかでは通信の信頼性
が社会的に重要視される。
With the reduction in the cost of optical fibers and advances in optical transmission technology, it has become possible to economically provide a variety of sophisticated information services. The information being transmitted is diverse, and
The amount of information is also becoming much larger than with traditional telephone services. The transmission speed of the future B-ISDN, the backbone line for image leased line services, etc. is 600 Mb/s, 2.4
Speeds are steadily increasing to Gb/s or higher. Among these trends in information and communication, the reliability of communication is becoming socially important.

通信の信頼性の確保のために、従来の伝送系では同一の
経路の一つあるいはN個のシステムに対し予備システム
を用意しくあるいは回線に対して予備の回路を用意し)
、現用システムの故障時あるいは保守運用時には、手動
あるいは自動的に予備システムに切り替えることで通信
の確保を図る冗長システム構成がとられてきた。
In order to ensure communication reliability, in conventional transmission systems, a backup system is prepared for one or N systems on the same route, or a backup circuit is prepared for the line.
, Redundant system configurations have been adopted to ensure communication by manually or automatically switching to a standby system when the current system fails or during maintenance operations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、現用システムから予備システムへの切り
替え時には、受信側から送信側への故障情報の通知、予
備チャネルの空き状況や正常機能のチエツク、切り替え
動作、同期復帰動作、切り戻しなどの煩雑な処理を必要
とする。このため、冗長システムの保守が複雑化してい
た。
However, when switching from the active system to the backup system, complicated processes such as notification of failure information from the receiving side to the transmitting side, checking the availability and normal function of the spare channel, switching operation, synchronization recovery operation, and switchback are necessary. I need. This has made maintenance of the redundant system complicated.

さらに、故障から正常動作までの手順が多いことから時
間もかかりその間欠われる情報量も大きくなる。特に伝
送速度が10 Gb/sもあるような超高速伝送システ
ムでは、わずかな瞬断でも極めて多量のデータの損失が
生ずる。
Furthermore, since there are many steps from failure to normal operation, it takes time and the amount of information that is lost during the process increases. Particularly in ultrahigh-speed transmission systems with transmission speeds as high as 10 Gb/s, even the slightest momentary interruption causes the loss of an extremely large amount of data.

一方、回線断など同一経路の伝送路では対処できない障
害の場合には、クロスコネクト断で情報チャネル単位毎
に別の経路の空きルートを探し、通信を確保する方法が
とられる。大容量な基幹回線において回線断を起こした
場合を想定すると、切り替えないといけないチャネル数
が膨大となるため、空きルートを探すだけでも膨大な時
間を必要とする。場合によっては、空きルートの確保が
困難になったり、さらにはこの故障が引金になって他の
ルートの伝送路の信頼性を脅かすことになるおそれがあ
る。
On the other hand, in the case of a failure that cannot be handled by using the same transmission path, such as line disconnection, a method is used to ensure communication by disconnecting the cross-connect and searching for a free route for each information channel. If we assume that a line disconnection occurs in a large-capacity backbone line, the number of channels that must be switched would be enormous, and it would take an enormous amount of time just to find a free route. In some cases, it may become difficult to secure a vacant route, and furthermore, this failure may become a trigger and threaten the reliability of transmission lines on other routes.

本発明は上述の従来の冗長システムを改良するもので、
故障時に必要とされるシステム切り替えやルート切り替
えなどの手順が簡単であり、原理上システム断となる確
率が極めて小さい高信頼性の伝送方式を提供することを
目的とする。
The present invention improves the conventional redundant system described above.
The purpose of the present invention is to provide a highly reliable transmission system in which procedures such as system switching and route switching required in the event of a failure are simple, and the probability of system interruption is extremely low in principle.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、送信側と、受信側と、この送信側およびこの
受信側を接続する異なる経路を含む複数の光ファイバ伝
送路と備えた伝送方式において、上記送信側には、上記
複数の伝送路に同一の信号を送出する手段を備え、上記
受信側には、上記複数の伝送路で伝送されてきた複数の
信号の相対遅延を補償する手段と、上記伝送路の監視を
行う監視手段と、この監視手段からの監視情報に基づい
て正常に動作している伝送路からの信号を選択する切り
替え手段とを備えたことを特徴とする。
The present invention provides a transmission system comprising a transmitting side, a receiving side, and a plurality of optical fiber transmission lines including different routes connecting the transmitting side and the receiving side, wherein the transmitting side includes the plurality of transmission lines. the receiving side includes means for compensating for relative delays of the plurality of signals transmitted through the plurality of transmission paths, and monitoring means for monitoring the transmission paths; The present invention is characterized by comprising a switching means for selecting a signal from a normally operating transmission line based on the monitoring information from the monitoring means.

また、送信側には、伝送すべき信号の重要度によって重
み付け゛を行い、重要度の高い信号は多くの伝送路に送
出する手段を含むことが好ましい。
Further, it is preferable that the transmitting side includes means for weighting signals to be transmitted depending on their importance, and for transmitting signals with high importance to many transmission paths.

〔作用〕[Effect]

本発明の伝送方式では、経路が異なっているものを含む
複数の光ファイバ伝送路によってそれぞれの送信端から
同一の信号が伝送される。
In the transmission system of the present invention, the same signal is transmitted from each transmission end through a plurality of optical fiber transmission lines, including those with different routes.

それぞれの受信端では各々の伝送路を経由してきた複数
の信号を言己憶装置に一時蓄積することによって信号間
の相対遅延を補償し、互いに同期した状態で、それらの
信号を監視回路からの情報をもとに切り替え回路にて正
常に動作している伝送路の信号を受信情報として選択す
る。
At each receiving end, the multiple signals that have passed through each transmission path are temporarily stored in a memory device to compensate for the relative delay between the signals, and the signals are sent from the monitoring circuit in synchronization with each other. Based on the information, the switching circuit selects the signal of the normally operating transmission line as the received information.

本発明の伝送システムでは、各伝送路の信号を受信端で
監視しており、伝送路の故障検出は受信端で検出されて
、送信端と情報交換することなく受信側で伝送路選択が
なされる。原理的には複数の伝送路が同時に故障しない
限り、故障発生と同時に故障の即時検知が可能であり、
はぼ無瞬断で信号を切り替えることと等価であって、切
り替えの手順が簡単であり、保守性もよい。
In the transmission system of the present invention, signals on each transmission path are monitored at the receiving end, and failures in the transmission path are detected at the receiving end, and transmission path selection is performed at the receiving end without exchanging information with the transmitting end. Ru. In principle, as long as multiple transmission lines do not fail at the same time, it is possible to immediately detect a failure as soon as it occurs.
This is equivalent to switching signals without interruption, the switching procedure is simple, and maintainability is good.

従来システムの冗長系はあくまで予備システムであり、
基本的には障害が起こって初めて予備系を起動し、送信
端と受信端との情報伝達を繰り返した後に切り替える手
順がとられるため、故障発生から復帰までにある程度の
時間を要することは避けられない。また、予備ルートの
選択などに煩雑な手順を要するなど保守性にも問題があ
り、社会的影響を及ぼす重大故障を引き起こす可能性も
あったが、本発明の伝送システムはこれらの問題を解決
している。
The redundant system in the conventional system is only a backup system.
Basically, the backup system is activated only after a failure occurs, and the switching procedure is performed after repeating information transmission between the transmitting end and the receiving end, so it is possible to avoid the need for a certain amount of time from the occurrence of a failure to recovery. do not have. There were also problems with maintainability, such as the need for complicated procedures for selecting backup routes, which could lead to serious failures that would have a social impact.However, the transmission system of the present invention solves these problems. ing.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の第一実施例の伝送システムを示す構成
図である。
FIG. 1 is a block diagram showing a transmission system according to a first embodiment of the present invention.

符号10は送信側のクロスコネクト装置を示す。Reference numeral 10 indicates a cross-connect device on the transmitting side.

符号IL 12は、送信側端局装置の送信部を示すもの
である。この端局装置の送信部11.12はそれぞれ伝
送路L+ 、L2によって受信側の端局装置21.31
の受信部22.32に結合されている。この伝送路り、
 、L2は例えば光ファイバ伝送路による大容量伝送路
であり、この伝送路L+ 、L2は互いに異なる経路を
経由して受信側に通ずるものである。
The code IL 12 indicates a transmitting section of the transmitting side terminal device. The transmitting units 11.12 of this terminal equipment are connected to the receiving end equipment 21.31 by transmission paths L+ and L2, respectively.
is coupled to the receiving section 22.32 of. This transmission path,
, L2 are large-capacity transmission lines, such as optical fiber transmission lines, and the transmission lines L+ and L2 lead to the receiving side via different routes.

またこの実施例では、説明を簡単にするために端局装萱
間は送信端と受信端との一方向のみ示しているが、双方
向の伝送が可能なことは明らかであり、送信側および受
信側端局装置とも多重分離端局製蓋として構成されてい
る。
In addition, in this embodiment, the terminal equipment is shown only in one direction between the transmitting end and the receiving end to simplify the explanation, but it is clear that bidirectional transmission is possible; Both side end station devices are constructed as multiplex/separate end station lids.

受信側端局装置21.31の受信部22.32の信号出
力はそれぞれメモリ24.34に入力される。このメモ
リ24.34は、エラスティックメモリで構成され、そ
の種類はどのようなものでもよい。例えば半導体メモリ
や、ファイバなどの遅延線からなるアナログメモリや、
これらの組み合わせでもよい。このメモリ24.34は
、信号を一時的に記憶し、上述の伝送路り、、L2で伝
送された信号間の遅延時間差および伝送路でのジッタあ
るいはワンダ分の情報を記憶して吸収し、互いに同期し
た状態にして後段で切り替えができるようにするもので
ある。
The signal outputs of the receiving sections 22.32 of the receiving side terminal equipment 21.31 are respectively input to the memories 24.34. This memory 24.34 is composed of elastic memory, and may be of any type. For example, semiconductor memory, analog memory consisting of delay lines such as fiber,
A combination of these may also be used. The memories 24 and 34 temporarily store signals, and store and absorb information on the delay time difference between signals transmitted on L2 and jitter or wander on the transmission path, and This allows them to be synchronized with each other so that they can be switched at a later stage.

これらのメモ’J24.34で同期がとられた信号は切
り替え回路60に入力され、この切り替え回路60でど
ちらかの伝送路の信号が選択されて受信側のクロスコネ
クト装置80に出力される。この切り替え回路60は2
:1の切り替え装置で、多重分離された多チャネルの信
号を切り替え制御信号により同時に切り替える機能を有
するものである。
These signals synchronized by Memo 'J24.34 are input to the switching circuit 60, which selects the signal of either transmission path and outputs it to the cross-connect device 80 on the receiving side. This switching circuit 60 has two
:1 switching device, which has the function of simultaneously switching demultiplexed multi-channel signals using a switching control signal.

符号23.33は、それぞれの端局装置21.31に設
けられた監視回路であり、伝送路り、 、L2における
信号断などの異常状態の検出とともに、パリティチエツ
クなどの手段により受信信号の誤り率を測定し、この監
視情報を切り替え制御回路70に出力する。切り替え制
御回路70は、この監視回路23.33からの伝送路L
+ 、L2の伝送品質、障害状況等の監視情報に基づい
て切り替え動作の判定を行い、いずれの伝送路からの信
号を選択するかの切り替え選択制御信号を切り替え回路
60に出力する。
Reference numerals 23 and 33 denote monitoring circuits provided in each terminal equipment 21 and 31, which detect abnormal conditions such as signal interruption in the transmission path, L2, and detect errors in received signals by means such as parity check. This monitoring information is output to the switching control circuit 70. The switching control circuit 70 connects the transmission line L from this monitoring circuit 23.33.
+, the switching operation is determined based on monitoring information such as L2 transmission quality and failure status, and a switching selection control signal indicating which transmission path to select a signal from is output to the switching circuit 60.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

クロスコネクト装置IOからの信号は同時に端局装置1
1.12の送信部に送られて、他の信号とともに伝送路
に適応する多重化処理、例えば時分割多重や周波数多重
等を行った後、伝送路L+ 、Lzによって受信端の端
局装置21.31に伝送される。
The signal from the cross-connect device IO is sent to the terminal device 1 at the same time.
1.12 is sent to the transmitting unit 12 and subjected to multiplexing processing adapted to the transmission path, such as time division multiplexing and frequency multiplexing, along with other signals, and then sent to the receiving end terminal equipment 21 via the transmission paths L+ and Lz. .31.

この伝送信号は、受信端の端局装置の受信部22.32
によって受信される。
This transmission signal is transmitted to the receiving section 22.32 of the terminal device at the receiving end.
received by.

受信部22.32で受信された信号はメモリ24.34
に一旦蓄積される。このメモリ24.34に蓄積された
信号は互いに同期するように読み出されて切り替え回路
60に送られる。
The signal received by the receiving section 22.32 is stored in the memory 24.34.
is temporarily accumulated. The signals stored in the memories 24 and 34 are read out in synchronization with each other and sent to the switching circuit 60.

いま切り替え回路60が伝送路L1を通して送信端から
伝送された信号を選択するように設定されているものと
する。この状態で、伝送路L1 において信号断あるい
は符号誤り率が所定の値以上に劣化するような回線異常
が発生すると、監視回路23がこれを検出し、切り替え
制御回路70にその警報信号が送出される。切り替え制
御回路70はこの警報信号を受けて、伝送路L2の動作
状態を監視回路33から警報が発せられているか否かを
調べる。
Assume that the switching circuit 60 is set to select the signal transmitted from the transmitting end through the transmission path L1. In this state, if a line abnormality occurs in the transmission line L1 such as a signal disconnection or a deterioration of the code error rate to a predetermined value or more, the monitoring circuit 23 detects this and sends an alarm signal to the switching control circuit 70. Ru. Upon receiving this alarm signal, the switching control circuit 70 checks the operating state of the transmission line L2 to see if the monitoring circuit 33 has issued an alarm.

そして、伝送路L2を伝送された信号に異常がない場合
、切り替え制御信号を切り替え回路60に送出して、伝
送路L2側に切り替えるように制御する。
If there is no abnormality in the signal transmitted through the transmission line L2, a switching control signal is sent to the switching circuit 60 to control switching to the transmission line L2 side.

一方、伝送路L2も回線異常となっている場合には、ク
ロスコネクト装置10によって迂回路を探索する。ただ
し、本実施例において伝送路L2 も同時に回線異常と
なることは極めて少ない。すなわち、従来装置のように
同一の経路に現用システムと予備システムとを設けた場
合、事故によってケーブル断などがあると、現用システ
ムと予備システムとが共に異常状態に陥る可能性が大き
いが、本発明実施例のように経路の違う二つの伝送路に
予備回線が確保されているとすると、現用システムおよ
び予備システムが同時に異常状態となることは極めて稀
であるため、従来システムと比較すると極めて高い信頼
性の伝送システムを提供できる。
On the other hand, if the transmission line L2 is also abnormal, the cross-connect device 10 searches for a detour. However, in this embodiment, it is extremely rare that the transmission line L2 also becomes abnormal at the same time. In other words, if the active system and backup system are installed on the same route as in conventional equipment, if a cable is cut due to an accident, there is a high possibility that both the active system and the backup system will go into an abnormal state. Assuming that backup lines are secured on two transmission lines with different routes as in the embodiment of the invention, it is extremely rare for the active system and backup system to be in an abnormal state at the same time, so the cost is extremely high compared to conventional systems. A reliable transmission system can be provided.

本実施例における複数の伝送路には、異なるルートの伝
送路を含むため、同−経路内のシステム切り替えに比べ
るとその信号の装置間の遅延時間差は大きくなる。過去
においてはこの遅延時間差を補償するための的確なハー
ドウェアがなく、装置の小型化や経済化のためのネック
となり、同一の信号を異なるルートの伝送路で伝送する
ことはなかった。しかし、半導体メモリ技術の集積化と
経済化によって、エラスティックメモリを用意すること
はコストや容積の面からみてほとんど問題がなくなった
。例えば、遅延時間差とメモリ容量との関係は遅延時間
差をビットレートで割った値であり、l Gb/sの伝
送速度の二つの伝送路長の差が200 kmであったと
しても、せいぜいIMb程度のメモリが得られればその
遅延時間差を吸収できる。
Since the plurality of transmission paths in this embodiment include transmission paths with different routes, the difference in delay time between the devices of the signal becomes larger compared to system switching within the same path. In the past, there was no appropriate hardware to compensate for this difference in delay time, which became a bottleneck in making equipment more compact and economical, and the same signal was not transmitted over transmission lines with different routes. However, with the integration and economicalization of semiconductor memory technology, it has become almost no problem to provide elastic memory in terms of cost and volume. For example, the relationship between delay time difference and memory capacity is the value obtained by dividing the delay time difference by the bit rate. If a memory of 1 is obtained, the difference in delay time can be absorbed.

なお、クロスコネクト装置lOと、端局装置11.12
とは互いに固定されたものではない。例えば図示してい
ない他のクロスコネクト装置からの信号が端局装置21
.31に接続され、またこのクロスコネクト装置からの
信号が図示されない他の端局装置へ接続される場合があ
る。
In addition, the cross-connect device IO and the terminal device 11.12
are not fixed to each other. For example, a signal from another cross-connect device (not shown) may be transmitted to the terminal device 21.
.. 31, and signals from this cross-connect device may be connected to other terminal devices (not shown).

上述の第一実施例は伝送路は2本であり、二つの送端受
端システム間での切り替え方式であった。
In the first embodiment described above, there are two transmission lines, and the system is switched between two sending and receiving end systems.

しかし、伝送路の数は3本以上であればさらに信頼性の
向上が可能である。
However, reliability can be further improved if the number of transmission lines is three or more.

第2図に伝送路数を3本以上とした第二実施例を示す。FIG. 2 shows a second embodiment in which the number of transmission lines is three or more.

この実施例においては、クロスコネクト装置10から同
一の信号が4つの送信側端局装置11.12、工3.1
4から4本の伝送路L1、L2、L3、L4により、受
信側端局装置21.31.41.51に送信されるもの
である。この伝送路り、−L、は大容量の光ファイバ伝
送路を使用する。ここで、伝送路L1とL2は互いに同
一の経路、伝送路L3とり。
In this embodiment, the same signal is transmitted from the cross-connect device 10 to four transmitting terminal devices 11.12, 3.1 and 3.1.
4 to the receiving side terminal device 21.31.41.51 through four transmission paths L1, L2, L3, and L4. This transmission line -L uses a large capacity optical fiber transmission line. Here, the transmission lines L1 and L2 are the same route, and the transmission line L3 is the same route.

とは同一の経路で、伝送路L1とり、は異なる経路であ
るとする。
It is assumed that the transmission line L1 and are the same route, and the transmission line L1 and are different routes.

受信側端局装置21と31との出力が切り替え回路61
に入力されて選択され、また受信側端局装置41と51
との出力が切り替え回路62に入力されて選択されて切
り替え回路63に入力される。この切り替え回路61〜
63は2:1切り替え装置であり、切り替え制御回路7
0から切り替え制御信号により同時に切り替え制御され
る。またこの切り替え回路61〜63は多重分離後の多
チヤネル信号を同時に切り替える機能を有するものであ
る。また、受信側端局装置21.31.41.51には
、それぞれ伝送路の信号断や符号誤り率測定などの監視
を行う監視回路23.33.43.53が設けられてお
り、その監視出力は切り替え制御回路70に入力されて
いる。
The outputs of the receiving side terminal devices 21 and 31 are connected to the switching circuit 61
is input to and selected by the receiving side terminal equipment 41 and 51.
The output of is input to the switching circuit 62, selected, and input to the switching circuit 63. This switching circuit 61~
63 is a 2:1 switching device, and the switching control circuit 7
Switching from 0 to 0 is controlled simultaneously by a switching control signal. Further, the switching circuits 61 to 63 have a function of simultaneously switching multi-channel signals after demultiplexing. In addition, each receiving side terminal device 21, 31, 41, 51 is provided with a monitoring circuit 23, 33, 43, 53 that monitors signal disconnection of the transmission path, code error rate measurement, etc. The output is input to a switching control circuit 70.

次に本発明第二実施例の動作を説明する。Next, the operation of the second embodiment of the present invention will be explained.

クロスコネクト装置10からの信号は同時に送信側端局
装置11〜14に送られて他の情報とともに多重化され
て伝送路L1〜L4で伝送され、この信号はそれぞれの
伝送路の受信端である端局袋Wt21.31.41.5
1で受信される。
The signals from the cross-connect device 10 are simultaneously sent to the transmitting side terminal devices 11 to 14, multiplexed with other information, and transmitted on the transmission lines L1 to L4, and this signal is transmitted at the receiving end of each transmission line. End office bag Wt21.31.41.5
1 is received.

いま切り替え回路61および63が伝送路り、を介して
送信端から受信端に情報が伝達されるように設定されて
いるものとする。この状態で伝送路L1において信号断
あるいは誤り率が所定の値以上に劣化するような回線異
常が発生すると、端局装置21の監視回路23から切り
替え制御回路70に警報信号が送出される。この警報信
号を受信すると切り替え制御回路70は、伝送路L2の
動作状態を調べ、伝送路L2に異常がない場合、切り替
え制御信号を切り替え回路61に送出して伝送路L2側
への切り替えを行う。このとき回線断の場合のように信
号の同期状態が崩れた場合を除き信号の切り替えは無瞬
断に行うことができる。
Assume that the switching circuits 61 and 63 are set so that information is transmitted from the transmitting end to the receiving end via the transmission path. In this state, if a signal disconnection or a line abnormality such as deterioration of the error rate exceeding a predetermined value occurs in the transmission path L1, an alarm signal is sent from the monitoring circuit 23 of the terminal device 21 to the switching control circuit 70. Upon receiving this alarm signal, the switching control circuit 70 checks the operating state of the transmission line L2, and if there is no abnormality in the transmission line L2, sends a switching control signal to the switching circuit 61 to switch to the transmission line L2 side. . At this time, signals can be switched without momentary interruption, except when the signal synchronization state is disrupted, such as when a line is disconnected.

一方、伝送路L2も同時に回線異常となっている場合、
伝送路L3およびL4の状態を調べ、正常な回線があれ
ば、切り替え回路63を切り替えることによって正常な
通信を確保する。なお、伝送路Ls 、L4の選択を行
う切り替え回路62は予備状態で待機中の時点において
も常に正常な回線を切り替え回路63に接続するように
切り替え制御動作を行う。すなわち、切り替え回路63
が伝送路L3を選択している状態で伝送路L3で伝送品
質の劣化が生じ、伝送路り、の回線が正常動作をしてい
る場合には切り替え回路62は伝送路L4に切り替え、
伝送路り、は予備回線として待機する。
On the other hand, if transmission line L2 also has a line abnormality at the same time,
The status of the transmission lines L3 and L4 is checked, and if there is a normal line, the switching circuit 63 is switched to ensure normal communication. The switching circuit 62, which selects the transmission lines Ls and L4, performs a switching control operation so as to always connect a normal line to the switching circuit 63 even when it is in a standby state. That is, the switching circuit 63
If the transmission quality deteriorates in the transmission line L3 while the transmission line L3 is selected, and the transmission line is operating normally, the switching circuit 62 switches to the transmission line L4,
The transmission line is kept on standby as a backup line.

上述の第一ふよび第二実施例は全ての伝送する信号につ
いて冗長構成をとることにしたが、これでは、信頼性の
確保のために回線の利用効率を犠牲にするものとなって
いる。このため、伝送する情報の重要度に応じてこの冗
長度を変更し、重要な情報は多数の伝送路を伝送させ、
重要でない情報は少数の伝送路を伝送することにより、
伝送路全体の利用効率を向上させることができる。第三
実施例はこのように伝送情報の重要度に応じて伝送の冗
長度を変更するものである。
In the first and second embodiments described above, a redundant configuration was adopted for all transmitted signals, but in this case, line utilization efficiency was sacrificed in order to ensure reliability. For this reason, this redundancy is changed depending on the importance of the information to be transmitted, and important information is transmitted over many transmission paths.
By transmitting unimportant information through a small number of transmission channels,
The utilization efficiency of the entire transmission path can be improved. In this way, the third embodiment changes the redundancy of transmission depending on the importance of the transmitted information.

第3図はこの第三実施例の構成を示す図である。FIG. 3 is a diagram showing the configuration of this third embodiment.

この第三実施例では、経路が互いに異なる3本の伝送路
L1、L2、L3を通して情報の伝送を行う伝送システ
ムの例である。
This third embodiment is an example of a transmission system in which information is transmitted through three transmission lines L1, L2, and L3 having different routes.

この実施例では、クロスコネクト装置10から伝送され
る情報には3つの冗長度が設定される。情報aは3本の
伝送路を伝送する3重化の冗長度、情報すは2本の伝送
路を伝送する2重化の冗長度、情報Cは冗長度なしの3
段階の重み付けが設定されている。すなわち、情報aは
3本の伝送路L1〜L3に対応する端局装置21.31
.41の受信部22.32.42に同時に伝送される。
In this embodiment, three redundancies are set for the information transmitted from the cross-connect device 10. Information a is the redundancy level of triplex transmission using three transmission lines, information A is redundancy level of duplex transmission using two transmission lines, and information C is redundancy level 3 with no redundancy level.
The weighting of the stages is set. That is, information a is sent to the terminal equipment 21.31 corresponding to the three transmission paths L1 to L3.
.. 41 receiving sections 22, 32, and 42 at the same time.

情報すは2本の伝送路で受信部22.32に同時に伝送
される。情報Cは単一の端局装置41の受信842に伝
送される。
The information is simultaneously transmitted to the receiving sections 22 and 32 via two transmission paths. Information C is transmitted to the receiver 842 of the single terminal device 41.

これらの情報は多重分離されてもとの信号がとりだされ
、その重み付けの単位ごとに分離され、端局装置21で
は、情報aはメモリ24に蓄積して切り替え回路61に
出力し、情報すはメモリ25に蓄積して切り替え回路6
2に出力する。また端局装置31では、情報aはメモリ
34に蓄積して切り替え回路61に出力し、情報すはメ
モリ35に蓄積して切り替え回路62に出力する。端局
袋[41では情報aをメモリ44に蓄積して切り替え回
路61に出力し、情報Cはそのまま受信側のクロスコネ
クト装置80に出力する。
These pieces of information are demultiplexed to take out the original signals, which are separated into units of weighting.In the terminal equipment 21, information a is stored in the memory 24 and output to the switching circuit 61, and all of the information is is stored in the memory 25 and transferred to the switching circuit 6.
Output to 2. In the terminal device 31 , information a is stored in the memory 34 and output to the switching circuit 61 , and information a is stored in the memory 35 and output to the switching circuit 62 . In the terminal station bag [41], information a is stored in the memory 44 and outputted to the switching circuit 61, and information C is outputted as is to the cross-connect device 80 on the receiving side.

切り替え制御回路70は上述の実施例と同様に各端局装
置の監視回路23.33.43からの警報出力を検出し
て、各伝送路の状態を把握して各切り替え回路61.6
2の切り替え制御を行う。切り替え回路61は情報aに
ついて3本の伝送路のうちから選択し、切り替え回路6
2は情報すについて2本の伝送路の選択を行う。
The switching control circuit 70 detects alarm outputs from the monitoring circuits 23, 33, and 43 of each terminal equipment, grasps the status of each transmission path, and switches the switching circuits 61, 6 to each switching circuit 61, 6 as in the above-described embodiment.
2 switching control is performed. The switching circuit 61 selects information a from among the three transmission paths, and the switching circuit 6
Step 2 selects two transmission paths for information.

このように、伝送する情報の重要度によって冗長度を変
更することによって、伝送路の利用効率を上げることが
でき、冗長度の高い信号については高い信頼性が得られ
る。
In this way, by changing the redundancy depending on the importance of the information to be transmitted, the utilization efficiency of the transmission path can be increased, and high reliability can be obtained for signals with high redundancy.

次に第四実施例を説明する。Next, a fourth embodiment will be described.

上述の第一実施例および第二実施例は、二つの端局間で
1対lの通信を行う場合を対象として説明しているが、
本発明はこのような通信系に限られるものではない。本
発明は複数のノードを持つネットワークでも適用可能で
ある。この場合にはも、重要な地点には多数のルートを
経由して同一の信号を伝達して冗長度を高め、重要度の
低い地点には少数のルートを経由して冗長度を下げるこ
とが可能である。
The first and second embodiments described above are described for the case where one-to-one communication is performed between two terminal stations.
The present invention is not limited to such communication systems. The present invention is also applicable to networks with multiple nodes. In this case as well, it is possible to increase redundancy by transmitting the same signal to important points via many routes, and to reduce redundancy by transmitting the same signal to less important points via fewer routes. It is possible.

また、1対Iのノード間の通信であっても、目的とする
ノードに至るルートの異なる伝送路に他のノードを含む
ような通信系である場合には、途中経過するノードを単
なる中継装置として伝送路の冗長度を高めた構成とする
ことが可能である。
Even in one-to-one communication between nodes, if the communication system includes other nodes on transmission paths with different routes to the target node, the nodes that pass along the way are simply relay devices. As a result, it is possible to create a configuration in which the redundancy of the transmission path is increased.

すなわち、途中経過するノードの端局装置に受信信号を
多重分離した後ただちに送信信号として多重化して次の
伝送路に送出する機能をもたせることによって、途中の
ノードを中継装置として扱うことが可能である。この第
四実施例を第4図に示す。
In other words, by providing the terminal device of a node passing along the way with the function of demultiplexing the received signal and immediately multiplexing it as a transmission signal and sending it out to the next transmission path, it is possible to treat the node in the middle as a relay device. be. This fourth embodiment is shown in FIG.

この第四実施例では説明を簡単にするため、冗長度が2
、すなわち、互いに異なるルートを持つ伝送路り、とL
2に同時にこの端局装置を受信端とする信号aが他の信
号と多重化されて送信されてくる場合の例で説明する。
In this fourth embodiment, to simplify the explanation, the redundancy is 2.
, that is, transmission paths with mutually different routes, and L
2, an example will be described in which a signal a with this terminal device as the receiving end is multiplexed with other signals and transmitted.

伝送路L1の信号は多重分離回路(DMUX)26に人
力され、このノードを受信端とする信号aと他のノード
を受信端とする信号すとに分離される。分離された信号
aは一旦メモリ24に蓄積される。また、伝送路り、と
は異なる経路の伝送路L2の信号は多重分離回路36に
人力され、このノードを受信端とする信号aと他のノー
ドを受信端とする信号Cとに分離され、信号aは−Hメ
モリ34に蓄積される。メモリ24.34に蓄積された
信号は同期して読み出され、切り替え回路60に人力さ
れて第一実施例および第二実施例と同様な切り替えによ
り受信端切り替えが行われる。
The signal on the transmission path L1 is input to a multiplexing/demultiplexing circuit (DMUX) 26, and is separated into a signal a whose receiving end is this node and a signal a whose receiving end is another node. The separated signal a is temporarily stored in the memory 24. In addition, the signal on the transmission line L2, which is on a different route from the transmission line, is input to the demultiplexing circuit 36, and is separated into a signal a whose receiving end is this node and a signal C whose receiving end is another node. Signal a is stored in -H memory 34. The signals stored in the memories 24 and 34 are read out in synchronization, and the switching circuit 60 manually performs the receiving end switching by the same switching as in the first and second embodiments.

また監視回路23.33の警報出力は切り替え制御回路
70に入力されて切り替え回路60の切り替え選択を制
御する。
Further, the alarm outputs of the monitoring circuits 23 and 33 are input to the switching control circuit 70 to control the switching selection of the switching circuit 60.

一方、伝送路L1で信号aと多重化されて伝送されてき
た他の7−ドを受信端とする信号すは多重分離回路26
での多重分離後、終端処理を行わず、そのまま多重化回
路(MUX)27で、このノードから送信する信号dと
多重化されて伝送路L3によって他のノードに伝送され
る。また、伝送路L2で信号aと多重化されて伝送され
てきた別のノードを受信端とする信号Cは多重分離回路
36で多重分離され、信号Cは多重化回路37によって
このノードから送信する信号eと多重化されて伝送路L
4によって伝送される。
On the other hand, the signal that has been multiplexed with the signal a and transmitted through the transmission line L1 and whose receiving end is the other 7-mode signal is demultiplexed by the demultiplexing circuit 26.
After demultiplexing, the signal is multiplexed with the signal d to be transmitted from this node in the multiplexing circuit (MUX) 27 without any termination processing, and is transmitted to another node via the transmission path L3. Further, the signal C, which is multiplexed with the signal a and transmitted through the transmission line L2 and is sent to another node as the receiving end, is demultiplexed by the demultiplexing circuit 36, and the signal C is transmitted from this node by the multiplexing circuit 37. Multiplexed with signal e and sent to transmission line L
4.

なお、送信端と受信端が1対1ではなく、n対nとなる
場合には、信号の上り下りは互いに異なるルートの割当
とした通信系としてもよい。
Note that when the transmission end and the reception end are not 1:1 but n:n, the communication system may be configured such that different routes are assigned for upstream and downstream signals.

またこの第4図において1本の線で信号の経路を示して
いるが、多重化信号の1チャネル分に相当するのではな
く複数チャネルに対応するものとみることも可能である
Although the signal path is shown by one line in FIG. 4, it can also be seen as corresponding to a plurality of channels rather than one channel of a multiplexed signal.

さらに上記第−ないし第四実施例では切り替え回路の位
置を光信号については光電変換をした後の電気信号で処
理する電気回路位置としたが、光ファイバ上の光信号を
そのまま切り替えるものとしてもよい。
Furthermore, in the above-mentioned Embodiments 1 to 4, the switching circuit is located at the position of the electrical circuit that processes the optical signal using the electrical signal after photoelectric conversion, but the switching circuit may also switch the optical signal on the optical fiber as it is. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は受信側で異なるルートを含
む複数の伝送路を経由してきた同一信号を常に受信して
、受信端で故障検出回線切り替えを判断して実行する冗
長方式をとるため、極めて信頼性の高い伝送システムを
実現することができる。
As described above, the present invention employs a redundancy method in which the receiving end always receives the same signal that has passed through multiple transmission paths including different routes, and the receiving end determines and executes failure detection line switching. , it is possible to realize an extremely reliable transmission system.

この冗長伝送システムは、2つ以上の伝送システムが同
時に故障しない限り正常な通信が可能であり、また従来
のように一つの経路が故障したときに迂回路を探索する
複雑な手順を必要としない。
This redundant transmission system allows normal communication as long as two or more transmission systems do not fail at the same time, and does not require the complicated procedure of searching for a detour when one route fails, unlike conventional methods. .

すなわち全ての判断を受信側でとることができ即時に実
行できるため、切り替え手順が極めて簡略化でき保守性
の大幅な向上が可能である。
In other words, all decisions can be made on the receiving side and executed immediately, so the switching procedure can be extremely simplified and maintainability can be greatly improved.

さらに原理的には故障発生と同時に故障の即時検知無瞬
断切り替えが可能であり、伝送路の高信頼化を図ること
ができる。
Furthermore, in principle, it is possible to immediately detect a failure as soon as it occurs and switch over without interruption, making it possible to improve the reliability of the transmission path.

成図。Completion diagram.

10.80・・・クロスコネクト装置、11〜14・・
・端局装置(送信部)、21.31.4151・・・端
局装置、22.32.42.52・・・受信部、23.
33.43.53・・・監視回路、24.25.34.
35.44.54・・・メモリ、60.61.6′2.
63・・・切り替え回路、70・・・切り替え制御回路
、26.36・・・多重分離回路、27.37・・・多
重化回路。
10.80... Cross-connect device, 11-14...
- Terminal device (transmission section), 21.31.4151... Terminal device, 22.32.42.52... Receiving section, 23.
33.43.53...Monitoring circuit, 24.25.34.
35.44.54...Memory, 60.61.6'2.
63... Switching circuit, 70... Switching control circuit, 26.36... Multiplexing/demultiplexing circuit, 27.37... Multiplexing circuit.

特許出願人 日本電信電話株式会社 代理人 弁理士 井 出 直 孝Patent applicant: Nippon Telegraph and Telephone Corporation Agent: Patent Attorney Naotaka Ide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第一実施例の構成図。 第2図は本発明第二実施例の構成図。 第3図は本発明第三実施例の構成図。 FIG. 1 is a configuration diagram of a first embodiment of the present invention. FIG. 2 is a configuration diagram of a second embodiment of the present invention. FIG. 3 is a configuration diagram of a third embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、送信側と、受信側と、この送信側およびこの受信側
を接続する異なる経路を含む複数の光ファイバ伝送路と
備えた伝送方式において、 上記送信側には、上記複数の伝送路に同一の信号を送出
する手段を備え、 上記受信側には、 上記複数の伝送路で伝送されてきた複数の信号の相対遅
延を補償する手段と、 上記伝送路の監視を行う監視手段と、 この監視手段からの監視情報に基づいて正常に動作して
いる伝送路からの信号を選択する切り替え手段と を備えたことを特徴とする受信端切り替え伝送方式。 2、送信側には、伝送すべき信号の重要度によって重み
付けを行い、重要度の高い信号は多くの伝送路に送出す
る手段を含む請求項1記載の受信端切り替え伝送方式。
[Claims] 1. In a transmission system comprising a transmitting side, a receiving side, and a plurality of optical fiber transmission lines including different paths connecting the transmitting side and the receiving side, the transmitting side has the above-mentioned A means for transmitting the same signal to a plurality of transmission paths is provided, and the receiving side includes a means for compensating for relative delays of a plurality of signals transmitted through the plurality of transmission paths, and a means for monitoring the transmission path. A receiving end switching transmission system comprising a monitoring means and a switching means for selecting a signal from a normally operating transmission line based on monitoring information from the monitoring means. 2. The receiving end switching transmission system according to claim 1, wherein the transmitting side includes means for weighting signals to be transmitted according to their importance and transmitting signals with high importance to many transmission paths.
JP2164532A 1990-06-22 1990-06-22 Receiving end switching transmission system Pending JPH0454738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164532A JPH0454738A (en) 1990-06-22 1990-06-22 Receiving end switching transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164532A JPH0454738A (en) 1990-06-22 1990-06-22 Receiving end switching transmission system

Publications (1)

Publication Number Publication Date
JPH0454738A true JPH0454738A (en) 1992-02-21

Family

ID=15794955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164532A Pending JPH0454738A (en) 1990-06-22 1990-06-22 Receiving end switching transmission system

Country Status (1)

Country Link
JP (1) JPH0454738A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406255A (en) * 1991-10-29 1995-04-11 Fujitsu Limited Duplexed communication system
JPH07107076A (en) * 1993-10-06 1995-04-21 Nec Corp No-hit data switching device
JPH0846668A (en) * 1994-07-29 1996-02-16 Nec Corp Normal system immediate selection circuit
JPH08149114A (en) * 1994-11-16 1996-06-07 Nec Corp Data receiver
JP2001007747A (en) * 1999-06-24 2001-01-12 Kdd Corp Method for selecting transmission path and device thereof
JP2008205807A (en) * 2007-02-20 2008-09-04 Ntt Communications Kk Sound transmitting device and sound transmitting method
JP2008227623A (en) * 2007-03-08 2008-09-25 Ntt Communications Kk Packet transfer device and packet transfer method
JP2016181837A (en) * 2015-03-24 2016-10-13 日本電気株式会社 Communication system, communication device, communication method and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406255A (en) * 1991-10-29 1995-04-11 Fujitsu Limited Duplexed communication system
JPH07107076A (en) * 1993-10-06 1995-04-21 Nec Corp No-hit data switching device
JPH0846668A (en) * 1994-07-29 1996-02-16 Nec Corp Normal system immediate selection circuit
JPH08149114A (en) * 1994-11-16 1996-06-07 Nec Corp Data receiver
JP2001007747A (en) * 1999-06-24 2001-01-12 Kdd Corp Method for selecting transmission path and device thereof
JP2008205807A (en) * 2007-02-20 2008-09-04 Ntt Communications Kk Sound transmitting device and sound transmitting method
JP4718499B2 (en) * 2007-02-20 2011-07-06 エヌ・ティ・ティ・コミュニケーションズ株式会社 Audio transmission apparatus and audio transmission method
JP2008227623A (en) * 2007-03-08 2008-09-25 Ntt Communications Kk Packet transfer device and packet transfer method
JP4724679B2 (en) * 2007-03-08 2011-07-13 エヌ・ティ・ティ・コミュニケーションズ株式会社 Packet transfer apparatus and packet transfer method
JP2016181837A (en) * 2015-03-24 2016-10-13 日本電気株式会社 Communication system, communication device, communication method and program

Similar Documents

Publication Publication Date Title
US4633246A (en) Time divison multiplex ring
US5793745A (en) Bundled protection switching in a wide area network background of the invention
US5218604A (en) Dual-hubbed arrangement to provide a protected ring interconnection
US5216666A (en) 1:n ring-type signal protection apparatus
US6813445B2 (en) Optical crossconnect apparatus and optical transmission system
US20040161232A1 (en) Protection switching architecture and method of use
JP2001510300A (en) Method and apparatus for interconnecting ring networks
JP2002541718A (en) Network switch for disaster recovery
US6697546B2 (en) Optical node system and switched connection method
JP3685978B2 (en) Redundant optical multi-branch communication system
US6400477B1 (en) Optical cross-connect (OXC) network connectivity
US7532817B1 (en) Fiber optic link protection apparatus
JPH0454738A (en) Receiving end switching transmission system
US6333915B1 (en) On-line line monitor system
US6295615B1 (en) Automatic restoration of communication channels
JPH1127208A (en) Optical cross-connecting device and optical transmission system
JP3123633B2 (en) 1: n communication transmission method
US6950883B1 (en) Ring capacity efficient architecture
US7035208B1 (en) Reverse statistical multiplexing to achieve efficient digital packing with link protection
JPH0454737A (en) Transmission system
US7349962B2 (en) Signaling method for line terminal equipment health and status
JP3607080B2 (en) Line failure detection method and apparatus
JP2867865B2 (en) Protection line switching control method
JPH0666763B2 (en) Digital network switching system
US6990066B1 (en) Method for using a pre-configured ATM switch and traffic discard to facilitate UPSR selection