JPH04344408A - Dimension measuring instrument - Google Patents

Dimension measuring instrument

Info

Publication number
JPH04344408A
JPH04344408A JP11602891A JP11602891A JPH04344408A JP H04344408 A JPH04344408 A JP H04344408A JP 11602891 A JP11602891 A JP 11602891A JP 11602891 A JP11602891 A JP 11602891A JP H04344408 A JPH04344408 A JP H04344408A
Authority
JP
Japan
Prior art keywords
light
measured
shadow
light source
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11602891A
Other languages
Japanese (ja)
Inventor
Kazunari Hirano
平野 一成
Takeshi Watanabe
毅 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP11602891A priority Critical patent/JPH04344408A/en
Publication of JPH04344408A publication Critical patent/JPH04344408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a dimension measuring instrument for measuring the dimension of the outer diameter of the like of an object to be measured disposed in a light path or crossing the light path and detecting a position in which the object to be measured is disposed or a position of a parallel ray crossed by the object to be measured in the direction of the light path. CONSTITUTION:The shadow of an object 10 to be measured disposed in one end of a measuring range along a light path allowing the object 10 to be measured to be disposed is adjusted to be projected on a camera element 15 under the imaging condition better than the shadow of the object to be measured disposed in the other position within the measuring range. A second light source 17 is disposed to form a second parallel ray advancing obliquely in relation to a parallel ray for measuring the dimension of the object 10 to be measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光路内に配置された、
もしくは光路内を横切る被測定物の外径寸法等を測定す
る寸法測定器に関する。
[Industrial Application Field] The present invention provides a
Alternatively, the present invention relates to a dimension measuring device that measures the outer diameter of an object to be measured that traverses an optical path.

【0002】0002

【従来の技術】従来より被測定物の外径寸法を非接触で
測定する方法として、例えばガルバノメータミラーでス
キャニングして測定する方法等が知られている。またガ
ルバノメータミラーのような可動部を有しない非接触の
測定方法の一つとして、被測定物の陰影をCCD等の撮
像素子に投影し、この撮像素子上に投影された陰影の寸
法を求めることにより被測定物の寸法を求める方法が考
えられる(特願平2−200103号参照)。
2. Description of the Related Art Conventionally, as a method for measuring the outer diameter of an object to be measured in a non-contact manner, for example, a method of measuring by scanning with a galvanometer mirror is known. In addition, as a non-contact measurement method that does not have a moving part such as a galvanometer mirror, the shadow of the object to be measured is projected onto an imaging device such as a CCD, and the dimensions of the shadow projected onto this imaging device are determined. A method of determining the dimensions of the object to be measured can be considered (see Japanese Patent Application No. 200103/1999).

【0003】図7は、被測定物の陰影を撮像素子上に投
影することにより被測定物の外径寸法を求める寸法測定
器の一例を表わした概略構成図である。光源11から発
せられた光12はコリメータレンズ13により平行光1
2’に変換され、この平行光12’は受光レンズ14を
介して一次元CCD15上に導びかれる。またコリメー
タレンス13と受光レンズ14とに挾まれた平行光12
’の光路内を被測定物10が通過するように構成されて
いる。
FIG. 7 is a schematic configuration diagram showing an example of a dimension measuring device that measures the outer diameter of an object to be measured by projecting the shadow of the object onto an image pickup element. The light 12 emitted from the light source 11 is converted into parallel light 1 by the collimator lens 13.
2', and this parallel light 12' is guided onto the one-dimensional CCD 15 via the light receiving lens 14. Also, the parallel light 12 sandwiched between the collimator lens 13 and the light receiving lens 14
The object to be measured 10 is configured to pass through the optical path '.

【0004】このように構成された寸法測定器において
、図7に示すように被測定物10が平行光12’の光路
内に入ったときの、CCD15に投影された陰影のパタ
ーンを演算回路16に取り込んで陰影の寸法dを求め、
この寸法dに基づき、受光レンズ14の焦点距離やCC
D15の配置位置等を計算に入れることにより被測定物
10の外径寸法Dが求められる。
In the dimension measuring instrument configured as described above, when the object to be measured 10 enters the optical path of the parallel light 12' as shown in FIG. and find the dimension d of the shadow,
Based on this dimension d, the focal length of the light receiving lens 14 and the CC
The outer diameter dimension D of the object to be measured 10 is determined by taking into consideration the arrangement position of D15, etc.

【0005】[0005]

【発明が解決しようとする課題】図7に示すように構成
された寸法測定器において、被測定物10はコリメータ
レンズ13と受光レンズ14との中間の常に定まった位
置を横切るとは限らず、例えば図7に一点鎖線で示す位
置Aや位置Cを横切ることも考えられ、この場合に被測
定物10の外径寸法のみでなくその通過位置も合わせて
測定することが要望されている。
In the dimension measuring instrument configured as shown in FIG. 7, the object to be measured 10 does not always cross a fixed position between the collimator lens 13 and the light receiving lens 14; For example, it is possible to cross the position A or position C shown by the dashed line in FIG. 7, and in this case, it is desired to measure not only the outer diameter of the object 10 but also its passing position.

【0006】本発明は、上記事情に鑑み、図7に示すよ
うな平行光の途中に被測定物が配置され、もしくは平行
光の途中を被測定物が横切り、そのときの被測定物の陰
影を撮像素子に投影することにより被測定物の寸法を求
めるように構成された寸法測定器において、被測定物が
配置された、もしくは被測定物が横切る平行光の光路方
向の位置をも検出することのできる寸法測定器を提供す
ることを目的とする。
[0006] In view of the above circumstances, the present invention has been developed by placing an object to be measured in the middle of parallel light as shown in FIG. In a dimension measuring device configured to determine the dimensions of the object to be measured by projecting it onto an image sensor, the position of the object to be measured is also detected in the optical path direction of the parallel light that is placed or traversed by the object to be measured. The purpose is to provide a dimension measuring instrument that can measure dimensions.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の第一の寸法測定器は、光源と、該光源から発
せられた光を平行光に変換するコリメート光学系と、撮
像素子と、前記平行光の光路内に配置された被測定物の
陰影を前記撮像素子上に投影する受光光学系と、前記撮
像素子上に投影された前記陰影の寸法を求めることによ
り前記被測定物の寸法を求める寸法演算手段とを備えた
寸法測定器において、前記被測定物の配置が許容される
、前記平行光の光路に沿う測定範囲の一端に配置された
前記被測定物の陰影が、この測定範囲内の他の位置に配
置された被測定物の陰影よりも良好な結像状態で前記撮
像素子上に投影されるように調整されてなるとともに、
前記撮像素子上に投影された前記陰影の結像状態に基づ
いて、前記被測定物の、前記測定範囲内の配置位置を求
める位置演算手段を備えたことを特徴とするものである
[Means for Solving the Problems] A first dimension measuring device of the present invention for achieving the above object includes a light source, a collimating optical system that converts the light emitted from the light source into parallel light, and an image sensor. a light-receiving optical system that projects a shadow of the object placed in the optical path of the parallel light onto the image sensor; and a light receiving optical system that projects the shadow of the object placed in the optical path of the parallel light onto the image sensor; In the dimension measuring device, the shadow of the object placed at one end of the measurement range along the optical path of the parallel light, in which placement of the object to be measured is allowed, Adjusted so that the shadow of the object to be measured is projected onto the image sensor in a better image formation state than the shadow of the object placed at other positions within the measurement range,
The apparatus is characterized in that it includes a position calculation means for determining the placement position of the object to be measured within the measurement range based on the imaging state of the shadow projected onto the image sensor.

【0008】また上記目的を達成するための本発明の第
二の寸法測定器は、光源と、該光源から発せられた光を
平行光に変換するコリメート光学系と、撮像素子と、前
記平行光の光路内に配置された被測定物の陰影を前記撮
像素子上に投影する受光光学系と、前記撮像素子上に投
影された前記陰影の寸法を求めることにより前記被測定
物の寸法を求める寸法演算手段とを備えた寸法測定器に
おいて、前記コリメート光学系により前記平行光に対し
斜めに進む第二の平行光が形成されるように配置されて
なる第二の光源と、前記光源から発せられた光により形
成される前記被測定物の前記撮像素子上の陰影の位置と
前記第二の光源から発せられた光により形成される前記
被測定物の前記撮像素子上の陰影の位置との相違に基づ
いて、前記被測定物の、前記平行光の光路に沿う方向の
配置位置を求める位置演算手段とを備えたことを特徴と
するものである。
A second dimension measuring device of the present invention for achieving the above object includes a light source, a collimating optical system that converts the light emitted from the light source into parallel light, an imaging element, and a collimating optical system that converts the light emitted from the light source into parallel light. a light-receiving optical system that projects a shadow of an object to be measured placed in an optical path onto the image pickup device; and a dimension for determining the dimensions of the object to be measured by determining the dimensions of the shadow projected onto the image pickup device. a second light source arranged such that the collimating optical system forms a second parallel light that travels obliquely with respect to the parallel light; and a second light source that is emitted from the light source. a difference in the position of a shadow on the imaging device of the object to be measured formed by the light emitted from the second light source and the position of a shadow on the imaging device of the object to be measured formed by the light emitted from the second light source; The apparatus is characterized by comprising a position calculation means for determining the arrangement position of the object to be measured in the direction along the optical path of the parallel light based on the above.

【0009】ここで上記第一および第二の寸法測定器に
おける「被測定物の配置」は、被測定物がその位置に停
止する必要はなく、瞬間的に配置される場合、即ちその
位置を通過する場合を含む概念である。
Here, the "placement of the object to be measured" in the first and second dimension measuring instruments refers to the case where the object to be measured does not need to stop at that position, but is placed instantaneously, that is, the object to be measured does not need to stop at that position. This is a concept that includes passing through.

【0010】0010

【作用】光源が理想的な点光源でなく、例えば200μ
m角程度の寸法をもつLED等非常に小さな光源であっ
ても、この光源から発せられた光をコリメート光学系に
より平行光に変換した場合この平行光は完全な平行光と
はならない。したがって受光光学系を介して撮像素子上
に投影された被測定物の陰影は、その平行光の光路に沿
う方向の配置位置によりそのボケ方が異なることになる
[Operation] The light source is not an ideal point light source, for example, 200μ
Even with a very small light source such as an LED having a size of approximately m square, when the light emitted from this light source is converted into parallel light by a collimating optical system, this parallel light will not become perfectly parallel light. Therefore, the blur of the shadow of the object projected onto the image sensor through the light receiving optical system differs depending on the position along the optical path of the parallel light.

【0011】本発明の第一の寸法測定器は、この点に想
到することにより完成されたものであり、被測定物の配
置が許容される前記平行光の光路に沿う測定範囲の一端
に配置された被測定物の陰影が、この測定範囲の他の位
置に配置された被測定物の陰影よりも良好な結像状態で
撮像素子上に投影されるように調整されているため、上
記測定範囲の上記一端から他端に向かうにつれその位置
に配置された被測定物の撮像素子上の陰影が徐々にボケ
ることとなり、したがってこのボケの程度を検出するこ
とにより被測定物の配置位置を知ることができることと
なる。
The first dimension measuring instrument of the present invention was completed by considering this point, and the object to be measured is placed at one end of the measuring range along the optical path of the parallel light, where the object to be measured is allowed to be placed. Adjustments are made so that the shadow of the object to be measured is projected onto the image sensor in a better image formation state than the shadow of the object to be measured placed at other positions within this measurement range. As you move from one end of the range to the other, the shadow on the image sensor of the object placed at that position gradually becomes blurred, so by detecting the degree of blur, the position of the object to be measured can be determined. It becomes possible to know.

【0012】また、本発明の第二の寸法測定器は、より
積極的に第二の光源を備え、この第二の光源による第二
の平行光で被測定物を斜めに照射するように構成したた
め、被測定物が上記測定範囲内のどの位置に配置される
かによりこの第二の光源から発せられた光による被測定
物の陰影の撮像素子上の投影位置が異なることとなり、
したがってこの投影位置の相違を検出することにより被
測定物の配置位置を知ることができることとなる。
Furthermore, the second dimension measuring instrument of the present invention is configured to more actively include a second light source and to obliquely irradiate the object to be measured with the second parallel light from the second light source. Therefore, depending on where the object to be measured is placed within the measurement range, the projection position of the shadow of the object to be measured on the image sensor due to the light emitted from the second light source differs.
Therefore, by detecting this difference in projection position, it is possible to know the placement position of the object to be measured.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の第一の寸法測定器の一実施例の光学系の
概略構成図である。図7に示した寸法測定器の各構成要
素に対応する各構成要素には図7において付した番号、
記号と同一の番号、記号を付し説明は省略する。
[Examples] Examples of the present invention will be described below. FIG. 1 is a schematic diagram of an optical system of an embodiment of the first dimension measuring device of the present invention. Each component corresponding to each component of the dimension measuring instrument shown in FIG. 7 has a number assigned in FIG.
The same numbers and symbols as the symbols will be given, and the explanation will be omitted.

【0014】被測定物10は、図に一点鎖線で示す2つ
の位置A,Cに挾まれた測定範囲L内の任意の位置を横
切るものとする。このとき受光レンズ14の焦点距離、
および該受光レンズ14,CCD15の配置位置を、図
1に示すように位置Aもしくはそれよりも図の左方に被
測定物10が配置されたと仮定した場合にその被測定物
10がCCD15上に最良のピント状態で結像されるよ
うに選択、調整する。こうすることにより、被測定物1
0が測定範囲L内で位置A側にあるほどCCD15上に
良好なピント状態で結像され、位置C側にあるほどボケ
た状態に結像されることとなる。
It is assumed that the object to be measured 10 crosses an arbitrary position within a measurement range L between two positions A and C shown by a dashed line in the figure. At this time, the focal length of the light receiving lens 14,
Assuming that the light-receiving lens 14 and the CCD 15 are arranged at position A or to the left of the position A as shown in FIG. Select and adjust so that the image is formed in the best possible focus. By doing this, the object to be measured 1
The closer 0 is to position A within the measurement range L, the better the image is formed on the CCD 15, and the closer it is to position C, the more blurred the image is formed.

【0015】図2は、CCD15上に投影された被測定
物10の陰影の結像状態を模式的に表わした図であり、
図2(A),(B),(C)は、被測定物10が図1に
示すそれぞれA,B,C,の各位置に配置されたときの
CCD15の受光信号(CCD15上の各点への照射光
量と比例する)を表わしている。光源11から発せられ
た光が被測定物10で遮られずにCCD15上に到達し
た最大光量に対応する信号Smaxよりもやや下がった
位置にしきい値Th1を設定し、光源11から発せられ
た光が被測定物10で遮ぎられ、これにより得られた最
小光量に対応する信号Sminよりもやや大きな信号に
相当するしきい値Th2を設定し、これにより被測定物
10の陰影のエッジ部分が上記2つのしきい値Th1,
Th2を横切る間の距離Δxを求める。また、被測定物
10の陰影の寸法dを求めるために、最大信号Smax
と最小信号Sminとの中央にしきい値Th3を設定す
る。
FIG. 2 is a diagram schematically showing the image formation state of the shadow of the object to be measured 10 projected onto the CCD 15.
2(A), (B), and (C) show the received light signals of the CCD 15 (each point on the CCD 15) when the object to be measured 10 is placed at each position A, B, and C shown in FIG. (proportional to the amount of light irradiated on). The threshold value Th1 is set at a position slightly lower than the signal Smax corresponding to the maximum amount of light that the light emitted from the light source 11 reaches on the CCD 15 without being blocked by the object to be measured 10, and the light emitted from the light source 11 is is blocked by the object to be measured 10, and a threshold value Th2 corresponding to a signal slightly larger than the signal Smin corresponding to the minimum amount of light obtained thereby is set. The above two threshold values Th1,
Find the distance Δx while crossing Th2. In addition, in order to obtain the dimension d of the shadow of the object to be measured 10, the maximum signal Smax
A threshold value Th3 is set at the center between the minimum signal Smin and the minimum signal Smin.

【0016】図3は、被測定物10の配置位置と上記距
離Δxとの関係を表わしたグラフである。被測定物10
が位置Aから位置C側に移動するほど距離Δxが大きな
値となる。したがってこのグラフをあらかじめ正確に求
めておき、CCD15の受光信号に基づいて距離Δxを
求めることにより、被測定物10が測定範囲L内のどこ
に配置されたかを知ることができる。
FIG. 3 is a graph showing the relationship between the placement position of the object to be measured 10 and the distance Δx. Measured object 10
As the distance Δx moves from the position A to the position C side, the distance Δx becomes a larger value. Therefore, by obtaining this graph accurately in advance and obtaining the distance Δx based on the light reception signal of the CCD 15, it is possible to know where the object to be measured 10 is placed within the measurement range L.

【0017】図4は、図1に示す光学系を用いて得られ
たCCD15の受光信号の処理回路ブロック図である。 クロック発生回路21では、この回路動作の同期をとる
ための基準クロック信号CLが生成され、各回路はこの
基準クロック信号CLに従って作動する。この基準クロ
ック信号CLに従ってCCD15から順次読み出された
受光信号SA は、A/D変換器22でディジタルの受
光信号SD に変換された後、各比較器23,24,2
5に入力される。またCPU26では図2に示す3つの
しきい値Th1,Th2,Th3を表わす信号が生成さ
れ、各比較器25,24,23に入力される。
FIG. 4 is a block diagram of a processing circuit for a light reception signal of the CCD 15 obtained using the optical system shown in FIG. The clock generation circuit 21 generates a reference clock signal CL for synchronizing the operation of this circuit, and each circuit operates according to this reference clock signal CL. The received light signal SA sequentially read out from the CCD 15 in accordance with the reference clock signal CL is converted into a digital received light signal SD by the A/D converter 22, and then converted to a digital received light signal SD by each comparator 23, 24, 2.
5 is input. Further, the CPU 26 generates signals representing the three threshold values Th1, Th2, and Th3 shown in FIG.

【0018】比較器23では、入力された受光信号SD
 としきい値Th3との大小が比較され、SD ≧Th
3かSD <Th3かを表わす時系列信号がカウンタ/
ラッチ27に入力される。このカウンタ/ラッチ27で
はSD ≧Th3からSD <Th3に変化したタイミ
ングで基準クロック信号CKのパルスのカウントが開始
され、SD <Th3からSD ≧Th3に変化するタ
イミングまでのパルスがカウントされる。このカウント
数はこのカウンタ/ラッチ27にラッチされた後CPU
26に入力され、CPU26においてこのカウント数に
基づいて被測定物10の陰影の寸法dが求められる。
In the comparator 23, the input light reception signal SD
is compared with threshold value Th3, and SD ≧Th
3 or SD <Th3, the time series signal is displayed by the counter/
The signal is input to the latch 27. This counter/latch 27 starts counting the pulses of the reference clock signal CK at the timing when SD≧Th3 changes to SD<Th3, and counts the pulses until the timing changes from SD<Th3 to SD≧Th3. After this count number is latched by this counter/latch 27, the CPU
26, and the CPU 26 calculates the dimension d of the shadow of the object to be measured 10 based on this count number.

【0019】また比較器24では入力された受信信号S
D としきい値Th2の大小が判別され、カウンタ/ラ
ッチ28において、所定の初期時刻からSD <Th2
に変化するタイミングまでのパルスがカウントされ、そ
のカウント数がラッチされて引算器30に入力される。 また比較器25では、入力された受光信号SD としき
い値Th1の大小が判別され、カウンタ/ラッチ29に
おいて所定の初期時刻からSD <Th1に変化するタ
イミングまでのパルスがカウントされ、そのカウント数
がラッチされて引算器30に入力される。
Furthermore, the comparator 24 receives the received signal S
The magnitude of D and threshold Th2 is determined, and the counter/latch 28 determines that SD<Th2 from a predetermined initial time.
The pulses up to the timing of the change are counted, and the counted number is latched and input to the subtracter 30. In addition, the comparator 25 determines the magnitude of the input light reception signal SD and the threshold Th1, and the counter/latch 29 counts pulses from a predetermined initial time to the timing when SD < Th1, and the counted number is It is latched and input to the subtracter 30.

【0020】引算器30ではカウンタ/ラッチ28,2
9から入力された2つのカウント値の差が求められる。 この差はCPU26に入力される。この差は、図2に示
す距離Δxに対応する。以上のようにしてCPU26に
被測定物10の陰影の寸法dとボケの程度を表わす値Δ
xとが入力され、この寸法dに基づいて被測定物10の
寸法Dが求められるとともに値Δxに基づいて被測定物
10の測定範囲L内の配置位置が求められる。
In the subtracter 30, the counter/latch 28,2
The difference between the two count values input from 9 is calculated. This difference is input to the CPU 26. This difference corresponds to the distance Δx shown in FIG. As described above, the CPU 26 determines the dimension d of the shadow of the object to be measured 10 and the value Δ representing the degree of blur.
x is input, and the dimension D of the object to be measured 10 is determined based on this dimension d, and the placement position of the object to be measured 10 within the measurement range L is determined based on the value Δx.

【0021】図5は、本発明の第二の寸法測定器の一実
施例の光学系の概略構成図である。この図において、図
1に示した光学系の各構成要素に対応する各構成要素に
は図1に付した番号、記号と同一の番号、記号を付し重
複説明は省略する。ここでは、光源11の近傍に第二の
光源17が配設されており、この第二の光源17から発
せられた光18は、コリメータレンズ13により、平行
光12’の進路に対しやや斜めに進む平行光18’に変
換され、受光レンズ14を経由した後、CCD15上の
、光12の到達位置とはややずれた位置に到達する。
FIG. 5 is a schematic diagram of the optical system of an embodiment of the second dimension measuring instrument of the present invention. In this figure, each component corresponding to each component of the optical system shown in FIG. 1 is given the same number and symbol as the number and symbol given in FIG. 1, and redundant explanation will be omitted. Here, a second light source 17 is disposed near the light source 11, and the light 18 emitted from the second light source 17 is directed slightly obliquely to the path of the parallel light 12' by the collimator lens 13. The parallel light 18' is converted into traveling parallel light 18', and after passing through the light receiving lens 14, it reaches a position on the CCD 15 that is slightly shifted from the position where the light 12 reaches.

【0022】ここで光源11から発せられた光12によ
る、図5に示す被測定物10の上端の陰影は、被測定物
10が測定範囲L内のどの位置にあってもCCD15上
では点y0 に投影される。これに対し、光源17から
発せられた光18による、被測定物10の上端の陰影は
、被測定物10が測定範囲L内のどの位置に配置されて
いるかによりそれぞれ異なり、各位置A,B,Cに配置
されているときはそれぞれ点yA ,yB ,yC に
投影される。そこで光源11を点灯したときの投影位置
y0 と光源17を点灯したときの投影位置yとの間の
距離Δy=y−y0 を求めることにより、被測定物1
0の光軸方向の配置位置を求めることができる。
Here, the shadow of the upper end of the object to be measured 10 shown in FIG. projected on. On the other hand, the shadow of the upper end of the object to be measured 10 due to the light 18 emitted from the light source 17 differs depending on where the object to be measured 10 is placed within the measurement range L, and for each position A, B. , C, they are projected to points yA, yB, and yC, respectively. Therefore, by finding the distance Δy=y−y0 between the projection position y0 when the light source 11 is turned on and the projection position y when the light source 17 is turned on, the object to be measured 1
The arrangement position of 0 in the optical axis direction can be determined.

【0023】図6は、図5に示す光学系を用いて得られ
たCCD15の受光信号の処理回路ブロック図である。 タイミング発生回路31からは各タイミング信号および
基準クロック信号が送信され、各回路はこのタイミング
信号、基準クロック信号に従って動作する。このタイミ
ング発生回路31からは、光源11,17が消灯した状
態において光源11を点灯させるタイミング信号が光源
11に入力され、光源11から光12が発せられる。こ
の状態でCCD15から受光信号SA が読み出され、
A/D変換器32によりディジタルの受光信号SD に
変換されて比較器33に入力される。
FIG. 6 is a block diagram of a processing circuit for a light reception signal of the CCD 15 obtained using the optical system shown in FIG. Each timing signal and reference clock signal are transmitted from the timing generation circuit 31, and each circuit operates according to the timing signal and reference clock signal. From this timing generation circuit 31, a timing signal that turns on the light source 11 in a state where the light sources 11 and 17 are turned off is inputted to the light source 11, and the light source 11 emits light 12. In this state, the light reception signal SA is read out from the CCD 15,
The A/D converter 32 converts it into a digital light reception signal SD and inputs it to the comparator 33.

【0024】またCPU34では、CCD15から読み
出された受光信号を2値化することにより陰影の寸法を
求めるためのしきい値Th3(図2参照)が生成されて
比較器33に入力される。比較器33では入力された受
光信号SDとしきい値Th3との大小が比較されて、そ
の比較結果が2つのカウンタ/ラッチ35,36に入力
される。
Further, the CPU 34 generates a threshold value Th3 (see FIG. 2) for determining the size of the shadow by binarizing the light reception signal read out from the CCD 15, and inputs it to the comparator 33. The comparator 33 compares the input light reception signal SD with a threshold value Th3, and the comparison results are input to two counters/latches 35 and 36.

【0025】カウンタ/ラッチ35では、SD ≧Th
3からSD <Th3に転じた瞬間から再度SD ≧T
h3に転じる瞬間までの時間が計測され、これにより陰
影の寸法dが求められる。また、カウンタ/ラッチ36
では、点y0 (図5参照)の受光信号が読み出される
時刻から、次に光源11が消灯されて光源17が点灯さ
れて点yの受光信号が読み出される時刻での時間が計測
される。この時間がCPU34に入力され、陰影の位置
の差Δy=y−y0 に変換される。
In the counter/latch 35, SD ≧Th
From 3 to SD <Th From the moment it changes to 3, SD again ≧T
The time until the moment it turns to h3 is measured, and the dimension d of the shadow is determined from this. In addition, the counter/latch 36
Then, the time is measured from the time when the light reception signal at point y0 (see FIG. 5) is read out to the next time when the light source 11 is turned off, the light source 17 is turned on, and the light reception signal at point y is read out. This time is input to the CPU 34 and converted into a difference in shadow position Δy=y−y0.

【0026】以上のように互いに異なる位置に配置され
た2つの光源11,17を順次点灯して被測定物10の
CCD15上の陰影の寸法dを求めるとともに点y0 
と点yとの差分Δyを求めることにより、陰影の寸法d
に基づいて被測定物10の寸法Dが求められ、また差分
Δyに基づいて被測定物10の測定範囲L内の配置位置
が求められる。
As described above, the two light sources 11 and 17 placed at different positions are sequentially turned on to determine the dimension d of the shadow on the CCD 15 of the object to be measured 10, and the point y0
By finding the difference Δy between and point y, the shadow dimension d
The dimension D of the object to be measured 10 is determined based on the difference Δy, and the placement position of the object to be measured 10 within the measurement range L is determined based on the difference Δy.

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明の第
一の寸法測定器は、被測定物の配置が許容される、平行
光の光路に沿う測定範囲の一端に配置された被測定物の
陰影がこの測定範囲内の他の位置に配置された被測定物
の陰影よりも良好な結像状態で撮像素子上に投影される
ように調整されているため、撮像素子上に投影された被
測定物の陰影の結像状態に基づいて、被測定物の、測定
範囲内の配置位置を検出することができる。
Effects of the Invention As explained in detail above, the first dimension measuring instrument of the present invention is capable of measuring objects to be measured placed at one end of the measurement range along the optical path of parallel light, where the placement of the object to be measured is permissible. Adjustments are made so that the shadow of the object is projected onto the image sensor in a better image formation state than the shadow of the object placed at other positions within this measurement range, so the shadow of the object is projected onto the image sensor. Based on the imaging state of the shadow of the measured object, the position of the measured object within the measurement range can be detected.

【0028】また本発明の第二の寸法測定器は、被測定
物の寸法測定のための平行光に対し斜めに進む第二の平
行光が形成されるように配置された第二の光源が備えら
れているため、寸法測定のための光源から発せられた光
により形成される被測定物の撮像素子上の陰影の位置と
上記第二の光源から発せられた光により形成される被測
定物の撮像素子上の陰影の位置との相違に基づいて、被
測定物の、上記平行光の光路に沿う方向の配置位置を求
めることができる。
Further, the second dimension measuring device of the present invention includes a second light source arranged so as to form a second parallel light traveling obliquely with respect to the parallel light for measuring the dimension of the object to be measured. Therefore, the position of the shadow on the image sensor of the object to be measured formed by the light emitted from the light source for dimension measurement and the object to be measured formed by the light emitted from the second light source. The arrangement position of the object to be measured in the direction along the optical path of the parallel light can be determined based on the difference in the position of the shadow on the image sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第一の寸法測定器の一実施例の、光学
系の概略構成図である。
FIG. 1 is a schematic configuration diagram of an optical system of an embodiment of a first dimension measuring instrument of the present invention.

【図2】CCD上に投影された被測定物の陰影の結像状
態を模式的に表わした図である。
FIG. 2 is a diagram schematically showing the image formation state of the shadow of the object to be measured projected onto the CCD.

【図3】被測定物の配置位置とCCD上のボケの程度と
の関係を表わしたグラフである。
FIG. 3 is a graph showing the relationship between the placement position of the object to be measured and the degree of blur on the CCD.

【図4】図1に示す光学系を用いて得られたCCDの受
光信号の処理回路ブロック図である。
FIG. 4 is a block diagram of a processing circuit for a CCD light reception signal obtained using the optical system shown in FIG. 1;

【図5】本発明の第二の寸法測定器の一実施例の、光学
系の概略構成図である。
FIG. 5 is a schematic configuration diagram of an optical system of an embodiment of the second dimension measuring device of the present invention.

【図6】図5に示す光学系を用いて得られたCCDの受
光信号の処理回路ブロック図である。
6 is a block diagram of a processing circuit for a CCD light reception signal obtained using the optical system shown in FIG. 5. FIG.

【図7】被測定物の陰影を撮像素子上に投影することに
より被測定物の外径寸法を求める寸法測定器の一例を表
わした概略構成図である。
FIG. 7 is a schematic configuration diagram illustrating an example of a dimension measuring device that determines the outer diameter of an object to be measured by projecting a shadow of the object onto an image sensor.

【符号の説明】[Explanation of symbols]

10    被測定物               
 11    光源12    光         
             12’  平行光13  
  コリメータレンズ        14    受
光レンズ15    CCD            
      17    第二の光源18’  第二の
平行光            21    クロック
発生回路 22,32    A/D変換器 23,24,25,33    比較器26,34  
  CPU 27,28,29,35,36    カウンタ/ラッ
チ30    引算器
10 Object to be measured
11 light source 12 light
12' Parallel light 13
Collimator lens 14 Light receiving lens 15 CCD
17 Second light source 18' Second parallel light 21 Clock generation circuit 22, 32 A/D converter 23, 24, 25, 33 Comparator 26, 34
CPU 27, 28, 29, 35, 36 Counter/latch 30 Subtractor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光源と、該光源から発せられた光を平
行光に変換するコリメート光学系と、撮像素子と、前記
平行光の光路内に配置された被測定物の陰影を前記撮像
素子上に投影する受光光学系と、前記撮像素子上に投影
された前記陰影の寸法を求めることにより前記被測定物
の寸法を求める寸法演算手段とを備えた寸法測定器にお
いて、前記被測定物の配置が許容される、前記平行光の
光路に沿う測定範囲の一端に配置された前記被測定物の
陰影が、この測定範囲内の他の位置に配置された被測定
物の陰影よりも良好な結像状態で前記撮像素子上に投影
されるように調整されてなるとともに、前記撮像素子上
に投影された前記陰影の結像状態に基づいて、前記被測
定物の、前記測定範囲内の配置位置を求める位置演算手
段を備えたことを特徴とする寸法測定器。
1. A light source, a collimating optical system that converts light emitted from the light source into parallel light, an imaging device, and a method for detecting a shadow of an object to be measured placed in the optical path of the parallel light on the imaging device. A dimension measuring instrument comprising: a light receiving optical system that projects a light onto the image pickup device; and a dimension calculating means for determining the dimensions of the object by determining the dimensions of the shadow projected on the image pickup element; is allowed, and the shadow of the object placed at one end of the measurement range along the optical path of the parallel light has a better result than the shadow of the object placed at other positions within this measurement range. The arrangement position of the object to be measured within the measurement range is adjusted so that it is projected onto the image sensor in an image state, and based on the image formation state of the shadow projected onto the image sensor. A dimension measuring instrument characterized by comprising a position calculation means for determining the .
【請求項2】  光源と、該光源から発せられた光を平
行光に変換するコリメート光学系と、撮像素子と、前記
平行光の光路内に配置された被測定物の陰影を前記撮像
素子上に投影する受光光学系と、前記撮像素子上に投影
された前記陰影の寸法を求めることにより前記被測定物
の寸法を求める寸法演算手段とを備えた寸法測定器にお
いて、前記コリメート光学系により前記平行光に対し斜
めに進む第二の平行光が形成されるように配置されてな
る第二の光源と、前記光源から発せられた光により形成
される前記被測定物の前記撮像素子上の陰影の位置と前
記第二の光源から発せられた光により形成される前記被
測定物の前記撮像素子上の陰影の位置との相違に基づい
て、前記被測定物の、前記平行光の光路に沿う方向の配
置位置を求める位置演算手段とを備えたことを特徴とす
る寸法測定器。
2. A light source, a collimating optical system that converts the light emitted from the light source into parallel light, an imaging device, and a method for detecting a shadow of an object to be measured placed in the optical path of the parallel light on the imaging device. A dimension measuring instrument comprising: a light receiving optical system for projecting a light onto a second light source arranged to form second parallel light that travels obliquely with respect to the parallel light; and a shadow on the image pickup device of the object formed by the light emitted from the light source. and the position of the shadow formed by the light emitted from the second light source on the image sensor of the object to be measured, based on the difference between the position of the shadow on the image sensor of the object to be measured, 1. A dimension measuring device comprising: a position calculation means for determining a directional arrangement position.
JP11602891A 1991-05-21 1991-05-21 Dimension measuring instrument Pending JPH04344408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11602891A JPH04344408A (en) 1991-05-21 1991-05-21 Dimension measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11602891A JPH04344408A (en) 1991-05-21 1991-05-21 Dimension measuring instrument

Publications (1)

Publication Number Publication Date
JPH04344408A true JPH04344408A (en) 1992-12-01

Family

ID=14676977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11602891A Pending JPH04344408A (en) 1991-05-21 1991-05-21 Dimension measuring instrument

Country Status (1)

Country Link
JP (1) JPH04344408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045894A (en) * 2006-08-11 2008-02-28 Seiko Epson Corp Imaging device and measuring device
JP2014006134A (en) * 2012-06-25 2014-01-16 Keyence Corp Optical measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045894A (en) * 2006-08-11 2008-02-28 Seiko Epson Corp Imaging device and measuring device
JP2014006134A (en) * 2012-06-25 2014-01-16 Keyence Corp Optical measurement device

Similar Documents

Publication Publication Date Title
US5319442A (en) Optical inspection probe
JPH08159714A (en) Position detection sensor
JPS61200409A (en) Method and device for measuring wall thickness of transparent body
US7102740B2 (en) Method and system for determining surface feature characteristics using slit detectors
CA2273128C (en) Optical symbol reading device
JPH04344408A (en) Dimension measuring instrument
EP0019941B1 (en) Reduction projection aligner system
US4679932A (en) Method of and apparatus for measuring moving velocity of linear object moving and vibrating
JPS6243482B2 (en)
JP3418234B2 (en) Length measuring device
JPS62291512A (en) Distance measuring apparatus
JPS6132324Y2 (en)
SU847033A1 (en) Comparator for checking stroke measures
JPH0227606B2 (en) ICHISOKUTEISOCHI
JPS61118606A (en) Optical dimension measuring machine
JPS5826325Y2 (en) position detection device
JPS5940107A (en) Distance measuring device
JPS6345504A (en) Range finder
JPH03130639A (en) Optical-axis aligning method for mtf measuring apparatus
JPH04364414A (en) Distance-measuring device
JPH04331355A (en) Concentration measuring device of micro region
JPH086244Y2 (en) Dimension measuring device
JPH02300617A (en) Shape measuring instrument
JPS5927379A (en) Pattern video signal processing system
JPH03148971A (en) Measurement method for non-contact displacement using projection pattern

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000208