JPS6132324Y2 - - Google Patents

Info

Publication number
JPS6132324Y2
JPS6132324Y2 JP1977041045U JP4104577U JPS6132324Y2 JP S6132324 Y2 JPS6132324 Y2 JP S6132324Y2 JP 1977041045 U JP1977041045 U JP 1977041045U JP 4104577 U JP4104577 U JP 4104577U JP S6132324 Y2 JPS6132324 Y2 JP S6132324Y2
Authority
JP
Japan
Prior art keywords
level
measured
photoelectric conversion
output
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977041045U
Other languages
Japanese (ja)
Other versions
JPS53136159U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1977041045U priority Critical patent/JPS6132324Y2/ja
Publication of JPS53136159U publication Critical patent/JPS53136159U/ja
Application granted granted Critical
Publication of JPS6132324Y2 publication Critical patent/JPS6132324Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は光学的寸法測定装置に係り、特に被測
定物の移動にともなう光学系の倍率誤差を補償す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical dimension measuring device, and more particularly to a device for compensating for magnification errors in an optical system due to movement of an object to be measured.

最近の光学的寸法測定装置は定速度で移動する
スリツトの位置または寸法測定方向に沿つて直線
状に等間隔を隔てて配置された補数個の光電変換
素子の位置に集光光学系で被測定体の像を結像
し、スリツト走査により得られたパルス幅または
複数個の光電変換素子を走査して得られたパルス
数から被測定体の寸法の測定が行なわれている。
Recent optical dimension measuring devices use a condensing optical system to measure the position of a slit that moves at a constant speed or the position of a complementary number of photoelectric conversion elements arranged at equal intervals in a straight line along the dimension measurement direction. The dimensions of the object to be measured are measured by forming an image of the object and using the pulse width obtained by scanning a slit or the number of pulses obtained by scanning a plurality of photoelectric conversion elements.

例えば第1図に示す寸法測定装置では被測定体
10を集光光学系11で第2図に示すごときの複
数個の光電変換素子P1〜Poからなる光センサ1
2の面に結像し、その光センサから得られたパル
ス数に定数倍して被測定体10の寸法の測定を行
なつている。その光センサは第2図に示すごとき
互に等間隔を隔ててかつ一直線状に配置された複
数個の光電変換素子P1、P2…Po、各素子の出力
側にそれぞれ設けられ、出力側をワイアオア的に
接続した複数のアナログスイツチS1、S2、S3…S
o、所定の周期でパルスを生ずるパルス発生回路
12−およびこのパルスを計数し、前記アナロ
グスイツチS1、S2、…Soを順々に閉じて各光電
変換素子の出力レベル状態を出力端12−に生
じさせる走査回路12−から構成され、機械的
な要素のないことから被測定物体の寸法測定分野
に利用されている。なお、12−・12−
発振器の出力信号の出力端、走査回路の一走査中
を示す信号を出力する端子を示す。
For example, in the dimension measuring apparatus shown in FIG. 1, an object to be measured 10 is connected to a light sensor 1 consisting of a plurality of photoelectric conversion elements P 1 to P o as shown in FIG. 2 using a condensing optical system 11.
The dimensions of the object to be measured 10 are measured by multiplying the number of pulses obtained from the optical sensor by a constant. The optical sensor is provided with a plurality of photoelectric conversion elements P 1 , P 2 . . . P o arranged in a straight line at equal intervals as shown in FIG. Multiple analog switches S 1 , S 2 , S 3 ...S connected wire-or-side
o , a pulse generating circuit 12-1 that generates pulses at a predetermined period, counts these pulses, and sequentially closes the analog switches S 1 , S 2 ,...S o to output the output level state of each photoelectric conversion element. It consists of a scanning circuit 12-3 generated at the end 12-2 , and is used in the field of dimension measurement of objects to be measured because it does not have mechanical elements. Note that 12-4 and 12-5 indicate output terminals for the output signal of the oscillator, and terminals for outputting a signal indicating that the scanning circuit is performing one scan.

ところでこの種の光センサを用いてもスリツト
方式の寸法測定装置であつても光学系を用いて被
測定体の像をスリツト或は光センサ面に結像する
ことから光学系と被測定物体との間の距離がAか
らBに変わると光学系の倍率が変りそれが測定値
に倍率誤差として含まれる。その倍率誤差を小さ
くする手段が色々と考えられているがいずれにし
ても寸法測定系に新たに被測定体の位置を検出す
べき装置を設けその位置検出器の出力にもとずき
測定系の倍率誤差の補償が行なわれている。
By the way, even if this type of optical sensor is used, even if it is a slit-type dimension measuring device, an optical system is used to form an image of the object to be measured on the slit or the optical sensor surface, so there is a difference between the optical system and the object to be measured. When the distance between them changes from A to B, the magnification of the optical system changes, and this is included in the measured value as a magnification error. Various methods have been considered to reduce the magnification error, but in any case, a new device for detecting the position of the object to be measured is installed in the dimension measurement system, and the measurement system is based on the output of the position detector. The magnification error is compensated for.

この種の装置の欠点は位置検出器を備えなけれ
ばならない点である。
A disadvantage of this type of device is that it must be equipped with a position detector.

本願考案の目的は光学系と被測定物体との間の
距離変動にともなうスリツト面あるいは光センサ
受光面におけるボケ量から被測定物体と光学系と
の間の距離を検出し、そのボケ量が常に一定にな
るように光学系を被測定体に近ずけたりあるいは
遠ざけるような位置制御を行ない、測定系のセン
サにより倍率補償可能とした光学的寸法測定装置
を提供することにある。
The purpose of the present invention is to detect the distance between the object to be measured and the optical system from the amount of blur on the slit surface or the light receiving surface of the photosensor due to distance fluctuations between the optical system and the object to be measured, and to ensure that the amount of blur is always constant. It is an object of the present invention to provide an optical dimension measuring device which controls the position of an optical system so as to move it closer to or farther away from the object to be measured so as to maintain a constant position, and is capable of compensating the magnification using a sensor of the measurement system.

その目的を達成するための概要を被測定体と光
センサとの間の距離に対して被測定体の端部像に
おける光センサの各光電変換素子の出力レベル関
係を示す第3図を参照しながら説明する。ただし
高レベル状態は光が被測定体により光が遮光され
ていない光電変換素子の出力レベルを示す。なお
赤熱状被測定体の場合、被測定体が結像される光
電変換素子の出力が高レベルになる。
For an outline of how to achieve this purpose, please refer to Figure 3, which shows the relationship between the output level of each photoelectric conversion element of the optical sensor in the edge image of the object to be measured with respect to the distance between the object to be measured and the optical sensor. I will explain. However, the high level state indicates the output level of the photoelectric conversion element in which the light is not blocked by the object to be measured. Note that in the case of a red-hot object to be measured, the output of the photoelectric conversion element on which the object is imaged will be at a high level.

第1図のAの位置に被測定体10が位置したと
き光学系11は測定系の光センサ12の受光面に
被測定物体10の端部像の境にして両隣りの光電
変換素子の出力レベル差が急激変化するようシヤ
ープに結像するように予じ設定されている。その
Aの位置よりΔxの距離の離れたBの位置に被測
定体10が移動したとき光学系11は光センサ1
2の受光面に被測定体10の端部像が第3図Bに
示すごとき端部位置を境にして遠のくほど徐々に
レベルが減りすなわちボケる。
When the object to be measured 10 is located at position A in FIG. It is set in advance to form a sharp image so that the level difference changes rapidly. When the object to be measured 10 moves to a position B which is a distance of Δx from the position A, the optical system 11 moves to the optical sensor 1.
The edge image of the object to be measured 10 on the light receiving surface 2 gradually decreases in level, that is, becomes blurred, as it moves further away from the edge position as shown in FIG. 3B.

被測定体10をAの位置より光学系に近ずけた
りまた遠ざけるとボケ領域は変り、Aの位置でボ
ケ量は小さくほぼ零でありAの位置より遠のくほ
どボケ領域が広がる。これから理解できるようボ
ケ領域はΔxと密接な関係があり、そのΔxと倍
率誤差とは直接密接な関係が保たれている。した
がつてボケ領域に着目して光学系および測定系の
光センサを一体にして移動させてそのボケ領域を
一定にすれば被測定体の寸法が正確に測定され得
ることが理解される。
When the object to be measured 10 is moved closer to or further away from the optical system than the position A, the blur area changes; at the position A, the amount of blur is small and almost zero, and the further away from the position A, the wider the blur area becomes. As can be understood from this, the blur area has a close relationship with Δx, and Δx maintains a direct and close relationship with the magnification error. Therefore, it is understood that the dimensions of the object to be measured can be accurately measured by focusing on the blurred region and moving the optical system and the optical sensor of the measurement system together to keep the blurred region constant.

次に第4図を参照してボケ領域量を計測するボ
ケ量検出回路を説明する。
Next, a blur amount detection circuit for measuring the amount of blur area will be explained with reference to FIG.

そのボケ量検出回路は入力端子13を前記測定
系の光センサ12の出力端12−に接続する。
その端子13は一対の入力端の信号を比較する第
1・第2比較増幅器14,15の一方の入力端に
それぞれ接続する。第1比較増幅器14は他方の
入力端が第3図Bに示されるごときV1のレベル
を出力するポテンシヨメータ16の出力側に接続
し、V1レベルを越える測定系光センサの出力パ
ルスを阻止し、それ以下のレベルの測定系光セン
サの出力が生ずるごとに出力する。第2比較増幅
器15は第3図Bに示されるごときV2のレベル
を出力するポテンシヨメータ17の出力側に接続
し、V2レベルを越える測定系光センサの出力が
生ずるごとに出力するものである。なおV1レベ
ルは光が入射されたときの測定系光センサの各光
電変換素子の出力レベルより常に下まわるように
予じめ設定する。これに対しV2レベルは雑音・
暗電流等が十分に除くことのできる程度の低レベ
ルであつてV1レベルより低く設定する。各比較
回路の出力は補償演算回路18に導かれるそれ以
外に前記走査回路12−から出力された一走査
中信号および発振器の出力を導いている補償演算
回路18ではこれらの入力をもとに補償演算が行
なわれ、V1レベルとV2レベルとの間内にピーク
レベルをとる測定系光センサの各光電変換素子を
検出し、その数に対応した信号を出力する。この
ような回路構成からなる計測装置によりボケ領域
を光電変換素子の数として取り出すことによつて
Δxの距離がおのずと知ることができる。このΔ
xの距離が測定されれば、光学系に対する測定系
光センサの位置で定まる条件位置に被測定体が位
置するようにすれば光学系の倍率誤差がなくし得
る。一例としては前記補償演算回路18の出力を
サーボ系に与え、そのサーボ系により一体となつ
た光学系および測定系光センサをその光学系の光
軸線方向に移動させて、V1レベルとV2レベルと
の間にピーク値をとる光電変換素子の数を所定値
にならしめる。その結果光学系と被測定体との距
離が常に所定値に保たれたことになる。随時位置
を変動する被測定体と光学系との間の距離が所定
値に保たれれば被測定物体の上下動または片上り
等により生ずる光学系の倍率誤差は発生しなくな
り、それに常にピントの合つた被測定体の像が測
定系光センサ面に生ずるので光を受けた光電素子
とそうでない素子の出力差が大きくとれるので、
寸法測定するため測定系の光センサの出力端12
の出力を弁別する弁別レベルの決定が容易に
なり、寸法測定値の信頼性の向上がはかれた。
The blur amount detection circuit connects an input terminal 13 to an output terminal 12-2 of the optical sensor 12 of the measurement system.
The terminal 13 is connected to one input terminal of first and second comparator amplifiers 14 and 15, respectively, which compare signals at a pair of input terminals. The first comparator amplifier 14 has its other input connected to the output side of a potentiometer 16 which outputs a level of V 1 as shown in FIG. It is output every time the output of the measurement system optical sensor of a level lower than that occurs. The second comparator amplifier 15 is connected to the output side of the potentiometer 17 which outputs the level of V2 as shown in FIG. It is. Note that the V1 level is set in advance so that it is always lower than the output level of each photoelectric conversion element of the measurement system optical sensor when light is incident. On the other hand, the V 2 level is noisy and
Set to a low level that can sufficiently eliminate dark current, etc., and lower than the V1 level. The output of each comparator circuit is led to a compensation calculation circuit 18. In addition, the compensation calculation circuit 18, which also leads the one-scanning signal outputted from the scanning circuit 12-3 and the output of the oscillator, calculates a value based on these inputs. Compensation calculation is performed to detect each photoelectric conversion element of the measurement optical sensor having a peak level between the V1 level and the V2 level, and output a signal corresponding to the number of photoelectric conversion elements. By extracting the blur area as the number of photoelectric conversion elements using a measuring device having such a circuit configuration, the distance Δx can be naturally determined. This Δ
Once the distance x is measured, the magnification error of the optical system can be eliminated by positioning the object to be measured at a condition position determined by the position of the measurement system optical sensor with respect to the optical system. For example, the output of the compensation calculation circuit 18 is applied to a servo system, and the servo system moves the integrated optical system and measurement system optical sensor in the optical axis direction of the optical system, thereby adjusting the V 1 level and V 2 level. The number of photoelectric conversion elements that take a peak value between the levels is made equal to a predetermined value. As a result, the distance between the optical system and the object to be measured is always maintained at a predetermined value. If the distance between the optical system and the object to be measured, which changes its position from time to time, is maintained at a predetermined value, magnification errors in the optical system caused by vertical movement or one-sided upward movement of the object to be measured will not occur, and the focus will always be maintained. Since a matched image of the object to be measured is generated on the optical sensor surface of the measurement system, there can be a large difference in output between the photoelectric elements that receive the light and those that do not.
Output end 12 of the optical sensor of the measurement system for dimension measurement
- It has become easier to determine the discrimination level for discriminating the outputs of 2 , and the reliability of dimension measurement values has been improved.

以上本願考案は被測定体の端部の結像のボケ量
をデイジタル的な数値に取出し、その値を被測定
体と光学系との間の距離変動量として測定する一
方前記数値にもとずき光学系およびセンサを一体
にして被測定体との距離を所定値に保つようにす
る構成にしたことにより、光学センサの受光面に
シビヤーな被測定体の端部像が結像して光学系の
倍率誤差をなくして被測定体の寸法を正確に測定
し得る光学寸法測定装置が提供できた。
As described above, the present invention extracts the amount of blur of the image formed at the end of the object to be measured into a digital value, and measures that value as the amount of distance variation between the object to be measured and the optical system. By integrating the optical system and the sensor to maintain the distance to the object to be measured at a predetermined value, a severe end image of the object to be measured is formed on the light receiving surface of the optical sensor, resulting in optical interference. It has been possible to provide an optical dimension measuring device that can accurately measure the dimensions of an object by eliminating magnification errors in the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学的寸法測定装置の検出部の
概略的な構成を示す図、第2図は光センサ回路の
電気的構成を示す図、第3図A・Bは本願考案の
原理を説明するための図、第4図は本願考案をな
すためのボケ量検出回路のブロツク構成図であ
る。 14・15……比較増幅器、16・17……ポ
テンシヨメータ、18……補償演算回路。
FIG. 1 is a diagram showing a schematic configuration of a detection section of a conventional optical dimension measuring device, FIG. 2 is a diagram showing an electrical configuration of an optical sensor circuit, and FIGS. 3A and 3B are diagrams showing the principle of the present invention. FIG. 4, which is a diagram for explanation, is a block configuration diagram of a blur amount detection circuit for implementing the present invention. 14/15... Comparison amplifier, 16/17... Potentiometer, 18... Compensation calculation circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光学的により結像された被測定物の端部の結像
位置に寸法測定方向に沿つて一直線上に配置され
た複数個の光電変換素子と、前記複数個の光電変
換素子を順々に走査して得られた個々の素子の出
力レベルを出力する走査回路と、各光電変換素子
の出力レベルの高レベルより若干低い高レベルの
第1レベルおよびその第1レベルより低い第2レ
ベルをそれぞれ設定する回路と、少なくとも一走
査毎に第1レベルと第2レベルとの間に出力レベ
ルをとる光電素子数を計数し、その数に対応した
信号を出力する補正回路とを備え、補正回路の出
力が常に一定になるように光学系および複数の光
電変換素子を一体にして位置制御し、光学系の倍
率誤差を補正したことを特徴とする光学寸法測定
装置。
A plurality of photoelectric conversion elements are arranged in a straight line along the dimension measurement direction at an imaging position of the end of the object to be optically imaged, and the plurality of photoelectric conversion elements are sequentially scanned. a scanning circuit that outputs the output level of each element obtained through the process, and a first high level slightly lower than the high level of the output level of each photoelectric conversion element, and a second level lower than the first level, respectively. and a correction circuit that counts the number of photoelectric elements that have an output level between the first level and the second level in each scan at least, and outputs a signal corresponding to the number, and the output of the correction circuit. 1. An optical dimension measuring device, characterized in that an optical system and a plurality of photoelectric conversion elements are integrally positioned and controlled so that a constant value is always maintained, and a magnification error of the optical system is corrected.
JP1977041045U 1977-04-04 1977-04-04 Expired JPS6132324Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977041045U JPS6132324Y2 (en) 1977-04-04 1977-04-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977041045U JPS6132324Y2 (en) 1977-04-04 1977-04-04

Publications (2)

Publication Number Publication Date
JPS53136159U JPS53136159U (en) 1978-10-27
JPS6132324Y2 true JPS6132324Y2 (en) 1986-09-20

Family

ID=28910895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977041045U Expired JPS6132324Y2 (en) 1977-04-04 1977-04-04

Country Status (1)

Country Link
JP (1) JPS6132324Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629699B2 (en) * 1983-10-20 1994-04-20 新技術事業団 Non-contact length measuring method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973158A (en) * 1972-11-13 1974-07-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973158A (en) * 1972-11-13 1974-07-15

Also Published As

Publication number Publication date
JPS53136159U (en) 1978-10-27

Similar Documents

Publication Publication Date Title
JP6045963B2 (en) Optical distance measuring device
US5319442A (en) Optical inspection probe
US4277176A (en) Method and apparatus for checking the width and parallelism of margins following the centering of a print with respect to a support
US4682041A (en) Coating quality measuring device and method
US4913546A (en) Range finder
JPS6132324Y2 (en)
JPH0588077A (en) Device and method for detecting distance
JP4754587B2 (en) MTF measuring method and MTF measuring apparatus
JPS592842B2 (en) Dimension measuring device
JPS5852508A (en) Shape measuring device
KR100239868B1 (en) Signal processing method for digital sun sensor using satellite control
US20230345142A1 (en) Three-dimensional-measurement device and three-dimensional-measurement method
JPS638403B2 (en)
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
JP2886663B2 (en) Optical scanning displacement sensor
JP3023157B2 (en) Light incident position detector for sun sensor
JPS6345504A (en) Range finder
JPH067045B2 (en) Non-contact diameter measuring device
JP3228643B2 (en) Edge position detection device
JPH0778409B2 (en) Dimension measuring device
JPH02300617A (en) Shape measuring instrument
JPS6143876A (en) Focus detecting method of image pickup device
JPH01156694A (en) Photoelectric switch
JPS623609A (en) Range finder
JPH067047B2 (en) Non-contact diameter measuring device