JPH04329824A - Production of martensitic stainless steel for cold forging - Google Patents

Production of martensitic stainless steel for cold forging

Info

Publication number
JPH04329824A
JPH04329824A JP12533391A JP12533391A JPH04329824A JP H04329824 A JPH04329824 A JP H04329824A JP 12533391 A JP12533391 A JP 12533391A JP 12533391 A JP12533391 A JP 12533391A JP H04329824 A JPH04329824 A JP H04329824A
Authority
JP
Japan
Prior art keywords
strength
steel
cold forging
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12533391A
Other languages
Japanese (ja)
Inventor
Tadashi Sawada
澤田 義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP12533391A priority Critical patent/JPH04329824A/en
Publication of JPH04329824A publication Critical patent/JPH04329824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a martensitic stainless steel for cold forging capable of making the most of the superior characteristics of SUS42011 and SUS42012 materials by means of a new heat treatment method capable of providing low hardness and tensile strength by annealing. CONSTITUTION:The steel can be produced by repeatedly subjecting, twice or more, a steel which has a composition consisting of, by weight ratio, 0.16-0.40% C, <=1.00% Si, <=1.00% Mn, <=0.030% S, 12.0-14.0% Cr, and the balance Fe with impurity elements and further containing, if necessary, one or >=2 kinds among 0.05-1.50% Mo, 0.01-0.20% Ti, 0.01-0.20% V, and 0.01-0.20% Nb to heat treatment consisting of heating up to 800-950 deg.C, holding for 2-16hr, and cooling down to a temp. between 600 deg.C and the Ar1 transformation point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は家電製品、屋根板止め用
等のボルト、ナット、シャフト等に用いられ、焼なまし
状態で優れた冷鍛性を有し、かつ耐食性と焼入硬化能が
優れた冷間鍛造用マルテンサイト系ステンレス鋼の製造
方法に関する。
[Industrial Application Field] The present invention is used for bolts, nuts, shafts, etc. for home appliances, roof plate fixings, etc., and has excellent cold forging properties in the annealed state, as well as corrosion resistance and quench hardenability. The present invention relates to a method for producing martensitic stainless steel for cold forging which has excellent properties.

【0002】0002

【従来の技術】家電製品、屋根板止め用等のボルト、ナ
ット、シャフト等のうち、冷間鍛造により所定の形状に
加工され、かつ高い強度と優れた耐食性を要求される部
品には、冷間加工時に加工可能な硬さが容易に得られ、
加工後の使用時には高い強度を付与できる材料が要求さ
れる。従来、前記要求に対応するための材料としてSU
S410、SUS420J1、SUS420J2といっ
た13%Cr マルテンサイト系ステンレス鋼が使用さ
れている。
[Prior Art] Among bolts, nuts, shafts, etc. for home appliances, roof panels, etc., parts that are processed into a predetermined shape by cold forging and that require high strength and excellent corrosion resistance are Processable hardness can be easily obtained during machining,
Materials that can provide high strength when used after processing are required. Conventionally, SU was used as a material to meet the above requirements.
13% Cr martensitic stainless steels such as S410, SUS420J1, and SUS420J2 are used.

【0003】これらの材料は、熱間圧延後の焼鈍処理に
よって冷間加工可能な硬さとし、所定形状に冷間加工を
施した後、焼入れ焼もどしして高い強度と靱性を付与し
て使用されている。
[0003] These materials are made hard enough to be cold-worked by annealing after hot rolling, and after being cold-worked into a predetermined shape, they are quenched and tempered to give them high strength and toughness. ing.

【0004】0004

【発明が解決しようとする課題】前記したボルト、ナッ
ト、シャフト等のうち、特に高強度を必要とする部品に
は、他のステンレス鋼に比べ優れた強度の得られるSU
S420J1、SUS420J2が使用される。しかし
ながら、SUS420J1、SUS420J2は、焼入
後に高い強度が得られる反面、JISG4303に規定
され通常行われている焼鈍条件である 800〜 90
0℃に加熱後徐冷ないし、 750℃に加熱後空冷とい
った熱処理方法では、冷間鍛造が容易な目安とされてい
る57kgf/mm2 以下の引張強さを得ることがで
きず、60kgf/mm2 以上の高い引張強さとなっ
てしまう。
[Problems to be Solved by the Invention] Among the above-mentioned bolts, nuts, shafts, etc., parts that require particularly high strength are made using SU, which has superior strength compared to other stainless steels.
S420J1 and SUS420J2 are used. However, although SUS420J1 and SUS420J2 can obtain high strength after quenching, they are annealed under the commonly used annealing conditions specified in JIS G4303.
With heat treatment methods such as heating to 0°C and then slow cooling, or heating to 750°C and then air cooling, it is not possible to obtain a tensile strength of 57kgf/mm2 or less, which is considered an easy standard for cold forging, and it is not possible to obtain a tensile strength of 60kgf/mm2 or more. This results in a high tensile strength.

【0005】特に、SUS420J2は通常の焼鈍では
引張強さが65〜70kgf/mm2 程度と極めて高
くなってしまうため、冷間鍛造時に型、パンチ等への負
担が大きく、冷間加工は実質不可能に近いのが現状であ
る。
[0005] In particular, SUS420J2 has an extremely high tensile strength of about 65 to 70 kgf/mm2 when subjected to normal annealing, which places a heavy burden on the mold, punch, etc. during cold forging, making cold working virtually impossible. The current situation is close to that.

【0006】しかしながら、SUS420J1、SUS
420J2は焼入れ状態における硬さが他のステンレス
鋼に比べ高く、優れた強度が得られるので、その利点に
注目し、焼鈍後の硬さを低下できる新しい熱処理方法の
開発が強く望まれていた。
[0006]However, SUS420J1, SUS
420J2 has higher hardness in the hardened state than other stainless steels and provides excellent strength, so there has been a strong desire to take advantage of this and develop a new heat treatment method that can reduce the hardness after annealing.

【0007】本発明は、前記した問題点を解決すべくな
されたもので、焼鈍により低い硬さ、引張強さが得られ
る新しい熱処理方法を提供し、SUS420J1、SU
S420J2の材料の優れた特徴を最大限に活かすこと
のできる冷間鍛造用マルテンサイト系ステンレス鋼の製
造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a new heat treatment method that can obtain low hardness and tensile strength by annealing.
The purpose of the present invention is to provide a method for manufacturing martensitic stainless steel for cold forging that can make the most of the excellent characteristics of S420J2 material.

【0008】[0008]

【課題を解決するための手段】本発明者等は前記鋼の焼
鈍硬さを効率良く低下させることのできる焼鈍条件につ
いて様々の条件にて検討を重ねた結果、以下の知見を得
ることにより本発明を得た。
[Means for Solving the Problems] The present inventors have repeatedly studied various annealing conditions that can efficiently reduce the annealing hardness of the steel, and have obtained the following findings. Got an invention.

【0009】すなわち、A1変態点直上の温度に加熱保
持し、その後A1変態点直下の温度に冷却し、再度変態
点直上の温度に加熱保持するという処理を繰返すと、炭
化物の粗分散化が進み、一様に分散した球状炭化物が得
られ、その結果、引張強さの低下に効果が大きいことを
見出した。
That is, by repeating the process of heating and holding at a temperature just above the A1 transformation point, then cooling to a temperature just below the A1 transformation point, and heating and holding again at a temperature just above the transformation point, coarse dispersion of carbides progresses. It has been found that uniformly dispersed spherical carbide can be obtained, and as a result, it is highly effective in reducing tensile strength.

【0010】また、結晶粒度についても、加熱保持時間
、加熱温度を適切に設定することにより、限界加工率が
高く、強度の点でも最適な5〜10程度の粒度に容易に
調節できることを確認した。
[0010] It was also confirmed that by appropriately setting the heating holding time and heating temperature, the crystal grain size could be easily adjusted to a grain size of about 5 to 10, which has a high limit processing rate and is optimal in terms of strength. .

【0011】以上得られた知見を基に最適な熱処理条件
を模索した結果、同一の鋼を熱処理した場合でも、従来
のJIS で規定された熱処理方法に比べ約10kgf
/mm2 程度引張強さを低下できる熱処理条件を見出
し、SUS420J1、SUS420J2の熱処理後の
引張強さを冷間鍛造が容易な57kgf/mm2 以下
に抑えることに成功したものである。
[0011] As a result of searching for the optimal heat treatment conditions based on the knowledge obtained above, we found that even when the same steel is heat treated, it is approximately 10kgf lower than the conventional heat treatment method specified by JIS.
We have found heat treatment conditions that can reduce the tensile strength by about /mm2, and succeeded in suppressing the tensile strength of SUS420J1 and SUS420J2 after heat treatment to 57 kgf/mm2 or less, which is easy to cold forge.

【0012】また、SUS420J1、SUS420J
2の焼入焼もどし状態における強度の向上について検討
を加えた結果、Mo、Ti、V 、Nbを少量添加する
と、焼鈍時の引張強さにほとんど影響を与えることなく
、強度向上に効果のあることも見出したものである。
[0012] Also, SUS420J1, SUS420J
As a result of investigating the improvement of strength in the quenched and tempered state of 2, it was found that adding small amounts of Mo, Ti, V, and Nb is effective in improving strength without having almost any effect on the tensile strength during annealing. This is what I also found.

【0013】以上の知見のもとに得られた本発明の第1
発明は、重量比にしてC:0.16〜0.40% 、S
i:1.00%以下、Mn:1.00%以下、S:0.
030%以下、Cr:12.0 〜14.0% を含有
し、残部がFeならびに不純物元素からなる鋼を 80
0〜 950℃の温度に加熱し、2〜16時間保持した
後、5〜50℃/hr の速度で 600℃〜Ar1 
変態点の温度まで冷却するという熱処理を2回以上繰返
し施すことを特徴とする冷間鍛造用マルテンサイト系ス
テンレス鋼の製造方法であり、第2発明は、前記第1発
明対象鋼にさらにMo:0.05 〜1.50% 、T
i:0.01 〜0.20% 、V:0.01〜0.2
0% 、Nb:0.01 〜0.20% のうち1種ま
たは2種以上を含有させ、焼入焼もどし状態における強
度を第1発明に比べさらに改善したものである。
The first aspect of the present invention obtained based on the above findings
In the invention, the weight ratio of C: 0.16 to 0.40%, S
i: 1.00% or less, Mn: 1.00% or less, S: 0.
030% or less, Cr: 12.0 to 14.0%, and the balance is Fe and impurity elements.
After heating to a temperature of 0 to 950°C and holding for 2 to 16 hours, heating to 600°C to Ar1 at a rate of 5 to 50°C/hr.
A second invention is a method for manufacturing a martensitic stainless steel for cold forging, characterized in that a heat treatment of cooling to a transformation point temperature is repeated two or more times, and the second invention is a method for manufacturing a martensitic stainless steel for cold forging, which is characterized in that the steel is further subjected to Mo: 0.05 ~ 1.50%, T
i:0.01~0.20%, V:0.01~0.2
0%, Nb: 0.01 to 0.20%, and the strength in the quenched and tempered state is further improved compared to the first invention.

【0014】次に、本発明の冷間鍛造用マルテンサイト
系ステンレス鋼の製造方法の対象鋼成分限定理由につい
て説明する。
Next, the reason for limiting the target steel components in the method of manufacturing martensitic stainless steel for cold forging of the present invention will be explained.

【0015】C:0.16〜0.40%C は必要な強
度を確保するために必要な元素であり、焼入焼もどし後
に優れた強度を得るためには、0.16% 以上含有さ
せることが必要である。本発明の範囲内においても、C
 含有率が高いほど高い強度が得られるが、特に高い強
度が要求され、例えばHv600 以上の焼入硬さが要
求される場合には、0.30% 以上の含有が必要であ
る。しかし、増加しすぎると焼鈍状態の強度が上昇し、
冷間鍛造が困難となるので、上限を0.40% とした
C: 0.16-0.40% C is an element necessary to ensure the necessary strength, and in order to obtain excellent strength after quenching and tempering, it should be contained at 0.16% or more. It is necessary. Within the scope of the present invention, C
The higher the content, the higher the strength obtained, but if particularly high strength is required, for example, quench hardness of Hv600 or more is required, the content should be 0.30% or more. However, if it increases too much, the strength of the annealed state will increase,
Since cold forging becomes difficult, the upper limit was set at 0.40%.

【0016】Si:1.00%以下 Siは脱酸に効果のある元素であるが、固溶強化により
強度が増加し、冷鍛性を低下する元素でもあるので、上
限を1.00% とした。従って、特に優れた冷鍛性を
得る必要がある場合には、0.30% 以下とするのが
望ましい。
Si: 1.00% or less Si is an element that is effective in deoxidizing, but it is also an element that increases strength through solid solution strengthening and reduces cold forgeability, so the upper limit is set at 1.00%. did. Therefore, when it is necessary to obtain particularly excellent cold forging properties, it is desirable to set the content to 0.30% or less.

【0017】Mn:1.00%以下 MnはSiと同様に脱酸に効果のある元素とともに、固
溶強化により強度を上昇させ、冷鍛性を低下する元素で
もある。よって、多量の含有は望ましくないので、上限
を1.00% とした。従って、Siと同様に特に優れ
た冷鍛性を要求される場合にはできるだけ低下する必要
があり、0.40% 以下とするのが望ましい。
Mn: 1.00% or less Like Si, Mn is an element that is effective in deoxidizing, and is also an element that increases strength through solid solution strengthening and reduces cold forgeability. Therefore, since a large amount of content is not desirable, the upper limit was set at 1.00%. Therefore, like Si, if particularly excellent cold forgeability is required, it is necessary to reduce it as much as possible, and it is desirable to keep it at 0.40% or less.

【0018】S:0.015%以下 S は冷間鍛造時、割れの起点となるMnS を生成し
、冷鍛性を著しく低下させるとともに、耐食性をも劣化
させる元素であり、上限を0.015%とした。特に冷
鍛性を重視する場合には0.005%以下とするのが望
ましい。
[0018] S: 0.015% or less S is an element that generates MnS, which becomes a starting point for cracks, during cold forging, and significantly reduces cold forging properties, as well as deteriorating corrosion resistance. %. In particular, when placing importance on cold forgeability, it is desirable that the content be 0.005% or less.

【0019】Cr:12.00〜14.00%Crは本
発明対象鋼においてステンレス鋼としての優れた耐食性
を付与する基本元素であり、12.00%以上の含有が
必要である。しかし、Crは強力なフェライト生成元素
であり、多量に含有させると焼入性を損なうので、その
上限を14.00%とした。
Cr: 12.00-14.00% Cr is a basic element that imparts excellent corrosion resistance to stainless steel in the steel subject to the present invention, and must be contained in an amount of 12.00% or more. However, Cr is a strong ferrite-forming element, and if contained in a large amount, it impairs hardenability, so the upper limit was set at 14.00%.

【0020】Mo:0.05〜1.50% 、Ti:0
.01 〜0.20% 、V:0.01〜0.20% 
、Nb:0.01 〜0.20% のうち1種または2
種以上。Mo、Ti、V 、Nbは少量の添加で焼入焼
もどし状態における強度の改善に寄与する元素であり、
必要に応じて添加することにより強度を向上させること
ができる。 前記効果を得るためには最低でもMoは0.05% 、
Ti、V 、Nbはそれぞれ0.01% の含有が必要
である。しかし、多量に含有させると焼入性を損なうの
で、上限をMoは1.50% 、Ti、V 、Nbは0
.20% とした。
[0020] Mo: 0.05-1.50%, Ti: 0
.. 01 ~ 0.20%, V: 0.01 ~ 0.20%
, Nb: 1 or 2 of 0.01 to 0.20%
More than a species. Mo, Ti, V, and Nb are elements that contribute to improving the strength in the quenched and tempered state when added in small amounts.
Strength can be improved by adding it as necessary. In order to obtain the above effect, Mo should be at least 0.05%,
Ti, V, and Nb must each be contained at 0.01%. However, if it is contained in a large amount, hardenability will be impaired, so the upper limit is 1.50% for Mo and 0% for Ti, V, and Nb.
.. It was set at 20%.

【0021】次に本発明における熱処理条件の限定理由
について説明する。
Next, the reasons for limiting the heat treatment conditions in the present invention will be explained.

【0022】加熱温度を 800〜 950℃としたの
は、優れた冷鍛性が得られるように、結晶粒度を5〜1
0の範囲に制御し、一様に分散した球状炭化物を得て、
硬さを効率良く低下するために最適な温度であるからで
ある。もし、 800℃未満で熱処理すると、結晶粒が
細かくなりすぎて強度が十分に低下せず、 950℃を
越えると一様に分散した球状炭化物が得られないため、
硬さが十分に低下しないとともに、結晶粒が粗大化しす
ぎて冷間鍛造時に割れやすく加工が困難になる。
[0022] The heating temperature was set at 800 to 950°C because the grain size was set at 5 to 1 in order to obtain excellent cold forging properties.
control in the range of 0 to obtain uniformly dispersed spherical carbides,
This is because it is the optimum temperature for efficiently reducing hardness. If heat treatment is performed at a temperature below 800°C, the crystal grains will become too fine and the strength will not be sufficiently reduced, and if the temperature exceeds 950°C, uniformly dispersed spherical carbides will not be obtained.
The hardness does not decrease sufficiently, and the crystal grains become too coarse, making it easy to crack during cold forging and making processing difficult.

【0023】加熱保持時間を2〜16hrに限定したの
は、2hr未満では結晶粒の成長が不十分なため、焼鈍
状態における強度が高くなるためであり、逆に16hr
を越えると粒が大きくなりすぎ、強度は低下するが冷鍛
時に割れやすくなり、却って冷間加工が困難になるため
である。
The reason why the heating holding time is limited to 2 to 16 hr is that if it is less than 2 hr, the growth of crystal grains will be insufficient and the strength in the annealed state will increase.
This is because, if it exceeds this, the grains become too large and the strength decreases, but it also becomes more likely to crack during cold forging, making cold working even more difficult.

【0024】冷却最終温度を 600℃〜Ar1 変態
点の範囲に限定したのは、冷却が不完全だと炭化物の粗
分散化のために必要なγ→α+炭化物の変態が完了しな
いためであり、変態が終了するとそれ以上に冷却しても
組織に変化がなく、再度加熱する場合には余分なエネル
ギーを消費し、熱処理時間も長くなり、実用上適さない
ため、下限を 600℃とした。なお、Ar1 変態点
は本発明対象鋼の場合 750℃程度となる。
The reason why the final cooling temperature was limited to the range of 600° C. to Ar1 transformation point is that if the cooling is incomplete, the transformation of γ → α + carbide necessary for coarse dispersion of carbide will not be completed. Once the transformation is completed, there is no change in the structure even if the material is cooled further than that, and if it is heated again, extra energy is consumed and the heat treatment time becomes longer, which is not suitable for practical use, so the lower limit was set at 600°C. Note that the Ar1 transformation point is approximately 750°C in the case of the steel targeted by the present invention.

【0025】冷却速度を5〜50℃/hr に限定した
のは、冷却速度が速すぎると、γ→α+炭化物の変態が
十分に起こらないためであり、5℃/hr 未満の速度
では熱処理に時間がかかりすぎ、実用上適さなくなるた
めである。
The reason why the cooling rate is limited to 5 to 50°C/hr is because if the cooling rate is too fast, the transformation of γ→α+ carbide will not occur sufficiently, and if the cooling rate is less than 5°C/hr, the heat treatment will not be possible. This is because it takes too much time and is not practical.

【0026】[0026]

【実施例】本発明の実施例を比較例および従来例と比較
して説明し、本発明の特徴を明らかにする。表1は実施
例として使用した供試材の化学成分を示すものである。
EXAMPLES Examples of the present invention will be explained in comparison with comparative examples and conventional examples to clarify the characteristics of the present invention. Table 1 shows the chemical components of the test materials used as examples.

【0027】[0027]

【表1】[Table 1]

【0028】表1において、1〜13鋼は本発明対象鋼
であり、1〜6鋼は第1発明、7〜13鋼は第2発明に
該当する鋼である。また、14〜16鋼は比較鋼であり
、その内14鋼はC 含有量の高い比較鋼、15鋼はC
 含有量の低い比較鋼、16鋼はCr含有量の低い比較
鋼である。
In Table 1, Steels 1 to 13 are steels to which the present invention applies, Steels 1 to 6 correspond to the first invention, and Steels 7 to 13 correspond to the second invention. Also, steels 14 to 16 are comparative steels, of which steel 14 is a comparative steel with a high C content, and steel 15 is a comparative steel with a high C content.
A comparative steel with a low content, Steel 16, is a comparative steel with a low Cr content.

【0029】表1に示した成分を有する供試材は電気炉
で溶解し、熱間圧延により線径20mmの線材を製造す
ることにより準備した。この供試材を使用して前述した
方法にて熱処理(焼鈍)を施し、焼鈍状態における引張
強さ、絞り、結晶粒度を測定した。また、使用時の強度
についても評価するために、焼入状態における硬さおよ
び焼入焼もどし状態における硬さ、引張強さを測定した
Test materials having the components shown in Table 1 were melted in an electric furnace and prepared by hot rolling to produce wire rods with a wire diameter of 20 mm. Using this sample material, heat treatment (annealing) was performed using the method described above, and the tensile strength, area of area, and crystal grain size in the annealed state were measured. In addition, in order to evaluate the strength during use, the hardness in the quenched state, the hardness and tensile strength in the quenched and tempered state were measured.

【0030】焼鈍処理は、前記供試材を後述する表2に
示す温度、時間の条件で保持し、 650℃まで冷却速
度20℃/hr で炉冷するという処理を2回繰返すこ
とにより行った。焼入処理は 980℃で1時間保持し
、油冷することにより行い、その後 750℃×1hr
 という条件で焼もどし処理し、強度特性の評価を行っ
た。
[0030] The annealing treatment was carried out by holding the sample material under the temperature and time conditions shown in Table 2 below, and cooling it in a furnace to 650°C at a cooling rate of 20°C/hr, which was repeated twice. . Quenching treatment was performed by holding at 980℃ for 1 hour, cooling with oil, and then heating at 750℃ for 1 hour.
It was tempered under these conditions and its strength characteristics were evaluated.

【0031】引張強さ、絞りはJIS4号引張試験片を
作成し、島津製作所製25t オートグラフを使用し、
引張速度1mm/min にて測定した。
[0031] For tensile strength and reduction of area, a JIS No. 4 tensile test piece was prepared, and a 25t autograph manufactured by Shimadzu Corporation was used.
Measurement was performed at a tensile speed of 1 mm/min.

【0032】結晶粒度は、JISG0552に規定され
た鋼のフェライト結晶粒度測定方法に基づき、粒度番号
を測定した。
[0032] The grain size was determined by measuring the grain size number based on the method for measuring ferrite grain size of steel specified in JIS G0552.

【0033】なお、必要な耐食性が得られることの確認
をするために、焼もどし状態において、腐食減量を測定
した。腐食減量は、 5%NaCl−2%H2O2の4
0℃水溶液中に24hr浸漬するという条件にて測定し
た。本試験条件の場合 3g/m2・hr以下であるこ
とが耐食性合格の目安となる。
[0033] In order to confirm that the necessary corrosion resistance was obtained, the corrosion loss was measured in the tempered state. Corrosion loss is 5% NaCl-2% H2O2
The measurement was performed under the condition of immersion in an aqueous solution at 0° C. for 24 hours. In the case of this test condition, a corrosion resistance of 3 g/m2·hr or less is a guideline for passing the corrosion resistance.

【0034】表2に前記方法にて測定した結果を示す。Table 2 shows the results measured by the above method.

【0035】表2から明らかなように、比較鋼を本発明
の熱処理方法にて処理した場合の特性を本発明対象鋼を
処理した場合と比較すると、14鋼はC 含有率が高い
ため、焼鈍後においても引張強さが57kgf/mm2
 を越える値となり、結晶粒も細かく、冷鍛性が劣るも
のであり、15鋼はC 含有率が低いため、焼鈍後の強
度は低下して冷鍛性には優れているが、焼入状態におけ
る硬さが低く、製品とした時の強度の点で劣るものであ
る。また、16鋼はCr含有率が低いため強度の点では
優れた特性を有するが、耐食性が劣るものである。
As is clear from Table 2, when comparing the characteristics of comparative steel treated with the heat treatment method of the present invention with that of the subject steel of the present invention, steel No. 14 has a high C content, so it is not annealed. Even after the tensile strength is 57kgf/mm2
15 steel has a low C content, so its strength after annealing decreases and it has excellent cold forgeability, but the quenched state It has low hardness and is inferior in strength when made into a product. Further, since steel No. 16 has a low Cr content, it has excellent properties in terms of strength, but it has poor corrosion resistance.

【0036】これに対し、本発明対象鋼である1〜13
鋼を本発明の方法にて処理した場合の特性は、いずれも
焼鈍後の引張強さが57kgf/mm2 以下という優
れた値となり、かつ焼入後及び焼入焼もどし後の強度及
び耐食性についても優れた結果を得ることができた。
On the other hand, steels 1 to 13 which are the subject of the present invention
The properties of steel treated by the method of the present invention are that the tensile strength after annealing is an excellent value of 57 kgf/mm2 or less, and the strength and corrosion resistance after quenching and after quenching and tempering are also excellent. We were able to obtain excellent results.

【0037】また、Mo、Ti、V 、Nbを含有した
7〜13鋼は、前記成分を含有していない1〜6鋼に比
べ、焼鈍状態における強度に影響を与えることなく、焼
入状態及び焼入焼もどし状態の強度を向上できることが
確認できた。
[0037] Furthermore, steels 7 to 13 containing Mo, Ti, V, and Nb have improved hardening and quenching properties without affecting the strength in the annealed state, compared to steels 1 to 6 that do not contain the above components. It was confirmed that the strength of the quenched and tempered state can be improved.

【0038】次に、最適な焼鈍条件を明らかにするため
に、熱処理条件を変化させた時の焼鈍状態における特性
を調べた別の実施例を示す。
Next, in order to clarify the optimum annealing conditions, another example will be shown in which the characteristics in the annealed state were investigated when the heat treatment conditions were changed.

【0039】表3は、表1に示した供試材のうち1、4
、6、10、12鋼を使用し、様々な焼鈍条件により熱
処理した場合の引張強さ、硬さ、絞り、結晶粒度、限界
加工率を調べた結果を示したものであり、試験No.1
〜6は本発明に該当し、No.7〜12は部分的に本発
明の条件を満足しない比較例、 No.13、14はS
US420J1、SUS420J2にJIS で定めら
れている通常の熱処理を施した従来例である。
Table 3 shows 1 and 4 of the test materials shown in Table 1.
, 6, 10, and 12 steels were used and heat treated under various annealing conditions, and the tensile strength, hardness, area of area, grain size, and limit workability were investigated. Test No. 1
-6 correspond to the present invention, and No. Nos. 7 to 12 are comparative examples that partially do not satisfy the conditions of the present invention; 13 and 14 are S
This is a conventional example in which US420J1 and SUS420J2 were subjected to normal heat treatment specified by JIS.

【0040】表3に示した引張強さ、硬さ、絞り、結晶
粒度の値は、表2の実施例と全く同一の方法により測定
した。また、限界加工率の測定は、日本塑性加工学会冷
間鍛造分科会の基準に基づいた圧縮試験(切欠付試験片
を使用)を行うことにより評価した。限界加工率は、圧
縮率55% にて割れの生じなかったものを○、55%
 以下の圧縮率にて割れの生じたものは、割れ発生率が
50% となる圧縮率を示した。
The values of tensile strength, hardness, area of area, and grain size shown in Table 3 were measured in exactly the same manner as in the examples shown in Table 2. Moreover, the measurement of the limit working rate was evaluated by performing a compression test (using a notched test piece) based on the standards of the Cold Forging Subcommittee of the Japan Society for Working of Plastics. The limit processing rate is ○, 55% when no cracks occur at a compression rate of 55%.
In the cases where cracks occurred at the following compression ratios, the compression ratios were such that the crack occurrence rate was 50%.

【0041】[0041]

【表3】[Table 3]

【0042】表3から明らかなように、比較例、従来例
と本発明による熱処理を施した場合の焼鈍状態における
特性を比較すると、 No.7〜10はそれぞれ加熱温
度、加熱回数、冷却速度、加熱時間の点で本発明の条件
を満足していないため、結晶粒の成長が十分でなく、強
度が十分に下がらず冷鍛性が劣るものであり、 No.
11は加熱時間が長すぎるため、強度は低下するが結晶
粒が粗大化し、限界加工率の点で劣るものであり、No
.12 は加熱温度が高いため、11と同様に限界加工
率が劣るとともに、一様な球状炭化物が得られず強度の
低下が不十分となり、冷鍛性が著しく劣るものである。 また、従来例であるNo.13 、14は引張強さが6
3kgf/mm2 以上の値となり、特にNo.14 
は70kgf/mm2 を越え、冷間鍛造が実質不可能
となる。
As is clear from Table 3, when the characteristics in the annealed state are compared between the comparative example, the conventional example, and the heat treatment according to the present invention, No. Samples 7 to 10 do not satisfy the conditions of the present invention in terms of heating temperature, number of heating times, cooling rate, and heating time, so the growth of crystal grains is insufficient, the strength is not sufficiently lowered, and the cold forging property is poor. It is No.
No. 11 has too long heating time, so the strength decreases but the crystal grains become coarser and the limit processing rate is inferior.
.. Since the heating temperature is high in No. 12, the limit working rate is inferior like No. 11, and uniform spherical carbides cannot be obtained, resulting in insufficient reduction in strength and extremely poor cold forging properties. In addition, the conventional example No. 13 and 14 have tensile strength of 6
The value is more than 3kgf/mm2, especially No. 14
exceeds 70 kgf/mm2, making cold forging virtually impossible.

【0043】それに対し、本発明の条件を満足するNo
.1〜6は、加熱温度、加熱時間、冷却温度、冷却速度
を適切な条件に調節し、A1変態温度の上下で加熱冷却
を2回以上繰返したことにより、球状炭化物を一様に分
散させ、最適な結晶粒度を得ることができたため、優れ
た冷鍛性(強度が低く、限界加工率が高い)を得ること
ができた。
On the other hand, No. 2 that satisfies the conditions of the present invention
.. In Nos. 1 to 6, the heating temperature, heating time, cooling temperature, and cooling rate were adjusted to appropriate conditions, and heating and cooling were repeated two or more times above and below the A1 transformation temperature, thereby uniformly dispersing spherical carbides. Since we were able to obtain the optimum grain size, we were able to obtain excellent cold forgeability (low strength and high limit workability).

【0044】[0044]

【発明の効果】本発明の冷間鍛造用マルテンサイトステ
ンレス鋼の製造方法は、Ar1 変態温度の上下で加熱
、冷却を2回以上繰返し施すという新しい熱処理方法を
見出したことにより、SUS420J2の焼鈍後の引張
強さを57kgf/mm2 以下に抑えることができ、
部品成形のための冷間加工が従来の焼鈍を施した場合に
比べ著しく容易になった。従って、本発明の熱処理方法
はSUS420J1、SUS420J2のもつ高い強度
を十分に活かすことが可能となり、特に冷間加工を必要
とし、かつ強度、耐食性をともに要求される部品への適
用の拡大を可能とするものである。
Effects of the Invention The method for manufacturing martensitic stainless steel for cold forging of the present invention has been developed by discovering a new heat treatment method in which heating and cooling are repeated twice or more above and below the Ar1 transformation temperature. The tensile strength of can be suppressed to 57 kgf/mm2 or less,
Cold working for forming parts is now much easier than when conventional annealing is performed. Therefore, the heat treatment method of the present invention can fully utilize the high strength of SUS420J1 and SUS420J2, and can be applied to parts that particularly require cold working and require both strength and corrosion resistance. It is something to do.

【表2】[Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量比にしてC:0.16〜0.40
% 、Si:1.00%以下、Mn:1.00%以下、
S:0.030%以下、Cr:12.0 〜14.0%
 を含有し、残部がFeならびに不純物元素からなる鋼
を 800〜 950℃の温度に加熱し、2〜16時間
保持した後、5〜50℃/hr の速度で 600℃〜
Ar1 変態点の温度まで冷却するという熱処理を2回
以上繰返し施すことを特徴とする冷間鍛造用マルテンサ
イト系ステンレス鋼の製造方法。
[Claim 1] C: 0.16 to 0.40 in terms of weight ratio
%, Si: 1.00% or less, Mn: 1.00% or less,
S: 0.030% or less, Cr: 12.0 to 14.0%
A steel containing iron with the remainder consisting of Fe and impurity elements is heated to a temperature of 800 to 950°C, held for 2 to 16 hours, and then heated to 600°C at a rate of 5 to 50°C/hr.
Ar1 A method for producing martensitic stainless steel for cold forging, characterized by repeatedly performing heat treatment of cooling to a transformation point temperature two or more times.
【請求項2】  重量比にしてC:0.16〜0.40
% 、Si:1.00%以下、Mn:1.00%以下、
S:0.030%以下、Cr:12.0 〜14.0%
 を含有し、さらにMo:0.05 〜1.50% 、
Ti:0.01 〜0.20% 、V:0.01〜0.
20% 、Nb:0.01 〜0.20% のうち1種
または2種以上を含有し、残部がFeならびに不純物元
素からなる鋼を 800〜 950℃の温度に加熱し、
2〜16時間保持した後、5〜50℃/hr の速度で
 600℃〜Ar1 変態点の温度まで冷却するという
熱処理を2回以上繰返し施すことを特徴とする冷間鍛造
用マルテンサイト系ステンレス鋼の製造方法。
[Claim 2] C: 0.16 to 0.40 in terms of weight ratio
%, Si: 1.00% or less, Mn: 1.00% or less,
S: 0.030% or less, Cr: 12.0 to 14.0%
further contains Mo: 0.05 to 1.50%,
Ti: 0.01-0.20%, V: 0.01-0.
20%, Nb: 0.01 to 0.20%, and the remainder is Fe and impurity elements, heated to a temperature of 800 to 950°C,
A martensitic stainless steel for cold forging, characterized in that a heat treatment of holding the steel for 2 to 16 hours and then cooling it to a temperature of 600°C to Ar1 transformation point at a rate of 5 to 50°C/hr is repeated two or more times. manufacturing method.
JP12533391A 1991-04-27 1991-04-27 Production of martensitic stainless steel for cold forging Pending JPH04329824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12533391A JPH04329824A (en) 1991-04-27 1991-04-27 Production of martensitic stainless steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12533391A JPH04329824A (en) 1991-04-27 1991-04-27 Production of martensitic stainless steel for cold forging

Publications (1)

Publication Number Publication Date
JPH04329824A true JPH04329824A (en) 1992-11-18

Family

ID=14907518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12533391A Pending JPH04329824A (en) 1991-04-27 1991-04-27 Production of martensitic stainless steel for cold forging

Country Status (1)

Country Link
JP (1) JPH04329824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419046B1 (en) * 1999-12-29 2004-02-19 주식회사 포스코 Method for Manufacturing Martensite Stainless Steel Coil by Batch Annealing Furnace
GB2374605B (en) * 2000-01-17 2004-02-25 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
KR100515604B1 (en) * 2001-12-21 2005-09-16 주식회사 포스코 The method for improving surface quality of hot rolled chrome-based stainless steel
KR100523107B1 (en) * 2000-06-23 2005-10-19 주식회사 포스코 Method for heat treating hot rolled 420-type martensitic stainless steel
JP2006037173A (en) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd Martensitic stainless steel for dicing saw tape frame and production method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419046B1 (en) * 1999-12-29 2004-02-19 주식회사 포스코 Method for Manufacturing Martensite Stainless Steel Coil by Batch Annealing Furnace
GB2374605B (en) * 2000-01-17 2004-02-25 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
KR100523107B1 (en) * 2000-06-23 2005-10-19 주식회사 포스코 Method for heat treating hot rolled 420-type martensitic stainless steel
KR100515604B1 (en) * 2001-12-21 2005-09-16 주식회사 포스코 The method for improving surface quality of hot rolled chrome-based stainless steel
JP2006037173A (en) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd Martensitic stainless steel for dicing saw tape frame and production method therefor
JP4587731B2 (en) * 2004-07-28 2010-11-24 日新製鋼株式会社 Martensitic stainless steel for dicing saw tape frame and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0058016B1 (en) Process for producing steel wire or rods of high ductility and strength
JP2001240940A (en) Bar wire rod for cold forging and its production method
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
KR100910332B1 (en) Invar alloy wire excellent in strength and turning characteristics and method for production thereof
US4563222A (en) High strength bolt and method of producing same
JPS6223929A (en) Manufacture of steel for cold forging
JP2005281857A (en) Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JPS6159379B2 (en)
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JP2007277654A (en) Cold forged components, manufacturing method for obtaining the same, and steel material
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JP4265819B2 (en) Cold forging steel with excellent nitriding properties and method for producing the same
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP3407569B2 (en) Method for producing high-carbon hot-rolled steel sheet and high-carbon cold-rolled steel sheet excellent in formability
JPH0559430A (en) Production of martensitic stainless steel for cold forging
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JPS60406B2 (en) Manufacturing method for high-tensile bolts
JP2719916B2 (en) Martensitic stainless steel for cold forging and its manufacturing method
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPH04131323A (en) Production of heat treatment saving type high tensile steel wire having excellent fatigue resistance and wear resistance
JPS61253347A (en) Low carbon steel having superior cold workability