JPH0257637A - Manufacture of spring with high fatigue strength and steel wire for spring for use therein - Google Patents

Manufacture of spring with high fatigue strength and steel wire for spring for use therein

Info

Publication number
JPH0257637A
JPH0257637A JP20733788A JP20733788A JPH0257637A JP H0257637 A JPH0257637 A JP H0257637A JP 20733788 A JP20733788 A JP 20733788A JP 20733788 A JP20733788 A JP 20733788A JP H0257637 A JPH0257637 A JP H0257637A
Authority
JP
Japan
Prior art keywords
spring
strength
steel
treatment
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20733788A
Other languages
Japanese (ja)
Inventor
Toshizo Tarui
敏三 樽井
Yoshiyuki Asano
浅野 厳之
Shinichi Suzuki
信一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20733788A priority Critical patent/JPH0257637A/en
Publication of JPH0257637A publication Critical patent/JPH0257637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture a spring having high fatigue strength by subjecting a steel with a specific composition to austenitizing treatment, to heating treatment under specific conditions, and to cooling and further subjecting the above steel to cold spring forming into the prescribed shape and then to strain age hardening treatment at a specific temp. CONSTITUTION:A steel which has a composition consisting of, by weight, 0.3-1.3% C, 0.8-2.5% Si, 0.5-2.0% Mn, 0.5-2.0% Cr, and the balance Fe with inevitable impurities and containing, if necessary, one or >=2 kinds among 0.1-0.5% Mo, 0.05-0.5% V, 0.002-0.5% Ti, 0.005-0.2% Nb, 0.0003-0.01% B, 0.1-2.0% Cu, 0.01-0.1% Al, and 0.01-0.05% N is subjected to austenitizing treatment. Subsequently, the above steel is held at 250-500 deg.C for 3sec-30min, air-cooled or rapidly cooled, and subjected to cold spring forming into the prescribed shape and then to strain age hardening treatment at 200-450 deg.C. By this method, the cold forming coiled spring having >= about 200kgf/mm<2> strength and high fatigue strength can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度が200kgf/mm”以上で且つ疲労
強度の高い冷間成形コイルばねの製造方法及びそれに用
いるばね用鋼線に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a cold-formed coil spring with a strength of 200 kgf/mm" or more and high fatigue strength, and a steel wire for the spring used therein. .

(従来の技術) 車両の軽量化のニーズあるいはエンジンの高出力化に伴
い懸架ばね、弁ばね等において高設計応力が可能なコイ
ルばね用銅が求められている。設計応力は「最新ばね技
術」 (日本ばね工業会)118真に記載されているよ
うに一般に疲労強度とへたり特性に依存するが、市場に
おける疲労による折損が少ないことからへたり特性で設
計応力を決めているのが実状であった。ところが、材料
面では高Si材の5UP7,5AE9254さらにV、
Nbを添加した鋼が開発され、また工法面ではホットセ
ソチングの実用化によりへたり特性は格段に改善されて
きた。このため高設計応力化が可能な疲労強度に優れた
ばね用銅が現在求められている。
(Prior Art) With the need to reduce the weight of vehicles or increase the output of engines, there is a need for copper for coil springs capable of high design stress in suspension springs, valve springs, etc. Design stress generally depends on fatigue strength and sag characteristics, as stated in "Latest Spring Technology" (Japan Spring Manufacturers Association) 118, but since there are few breakages due to fatigue in the market, design stress is determined based on sag characteristics. The actual situation is what determines. However, in terms of materials, 5UP7, 5AE9254, which is a high Si material, and V,
Nb-added steel has been developed, and with the practical use of hot seso-ching, the settling properties have been significantly improved. For this reason, there is currently a need for copper for springs with excellent fatigue strength that allows for high design stress.

従来、冷間成形コイルばねは、JIS3560゜356
1.3565.3566に規定されている鋼材あるいは
5AE9254等を用いて所定の寸法に仕上げた線を最
終工程で油焼入れ・焼戻しを行って所定の機械的性質を
与えた後冷間成形によって製造されている。このような
冷間成形コイルばねの疲労強度は、基本的にはばね材の
降伏強度と冷間成形によって生じるばね表面の引張り残
留応力で決まり、降伏強度が高いほど、引張り残留応力
が小さいほど疲労強度は増加する。強度だけを高めるな
らば現行のJIS規格等の鋼を用いて、焼入れ後の焼戻
し温度を低くすることで可能であるが、実際にこのよう
な低温焼戻し材を冷間でコイルばねを製造する際に問題
点が2つ生じる。1つは低温焼戻し材は延性が少ないた
めに冷間コイルばね成形時に折損しやすくなることであ
る。もう1つは成形できたとしても、強度が高いほど成
形後の引張り残留応力が増加するため、降伏強度が高く
てもコイルばねの疲労強度は逆に低下してしまうことで
ある。従って、ばね成形後引張り残留応力を低減させる
ために400〜500℃という降伏強度が低下する高温
で15〜30分燃鈍せざるをえないのが現状であった。
Conventionally, cold-formed coil springs meet JIS3560°356.
1.3565.3566 or 5AE9254 etc. to the specified dimensions, oil quenching and tempering is performed in the final process to give the specified mechanical properties, and then cold forming is performed. ing. The fatigue strength of such cold-formed coil springs is basically determined by the yield strength of the spring material and the tensile residual stress on the spring surface caused by cold forming.The higher the yield strength, and the lower the tensile residual stress, the higher the fatigue strength. Intensity increases. If only the strength is to be increased, it is possible to use steel that meets the current JIS standards and lower the tempering temperature after quenching, but in reality, when manufacturing coil springs using such low-temperature tempered material in the cold, Two problems arise. One is that low-temperature tempered materials have low ductility and are therefore prone to breakage during cold coil spring forming. Another problem is that even if the coil spring can be formed, the higher the strength, the more the tensile residual stress after forming, so even if the yield strength is high, the fatigue strength of the coil spring will decrease. Therefore, in order to reduce the tensile residual stress after forming the spring, it is currently necessary to anneal it for 15 to 30 minutes at a high temperature of 400 to 500°C, which lowers the yield strength.

このように冷間成形コイルばねの高疲労強度化には、冷
開成形性及び強度と引張り残留応力という相反する特性
のために限界があった。
As described above, there is a limit to increasing the fatigue strength of cold-formed coil springs due to the contradictory characteristics of cold-opening formability and strength and tensile residual stress.

これに対して、冷開成形性を向上させる従来の知見とし
て特開昭60−89553号公報にはNiを2%以上添
加することにより焼入れ後の残留オーステナイトを10
%以上にさせ高強度ばね用銅の冷開成形性を向上させる
ことが提案されているが、Niを添加しているためコス
トが高くなるという問題点がある。
On the other hand, as a conventional finding to improve cold-open formability, Japanese Patent Application Laid-Open No. 60-89553 discloses that by adding 2% or more Ni, residual austenite after quenching can be reduced by 10%.
% or more to improve the cold-opening formability of copper for high-strength springs, but there is a problem in that the cost increases due to the addition of Ni.

一方、冷間ばね成形で生じる引張り残留応力は高温の燃
鈍で低下することから、焼戻し軟化抵抗の強いMo、 
 V、 Nb等を添加し高強度化、高疲労強度化を図る
ことも行われているが、高温で焼鈍するために強度低下
をいかに少なくするかにかかっており、高疲労強度化に
は限界があった。
On the other hand, since the tensile residual stress generated during cold spring forming is reduced by high-temperature annealing, Mo, which has strong resistance to tempering softening,
Additions of V, Nb, etc. have been attempted to increase strength and fatigue strength, but since the steel is annealed at high temperatures, it depends on how much strength loss can be minimized, and there is a limit to achieving high fatigue strength. was there.

(発明が解決しようとする課題) 本発明は上記の如き実状に鑑みなされたものであって、
強度が200kgf/mm”以上の高強度材の冷間ばね
成形性を向上させるとともにばね成形後の引張り残留応
力を低下させて、コイルばねの高疲労強度化を実現する
方法を提供することを目的とするものである。
(Problem to be solved by the invention) The present invention was made in view of the above-mentioned circumstances, and
The purpose of this invention is to provide a method for realizing high fatigue strength of coil springs by improving the cold spring formability of high-strength materials with a strength of 200 kgf/mm" or more and reducing the tensile residual stress after spring forming. That is.

(課題を解決するための手段、作用) 本発明者らは上記の問題点解決のために鋭意研究した結
果、強度が200 kgf/IIn++”以上の高強度
材の冷間ばね成形性を向上させ、残留応力を低減させる
ためには降伏比を0.85以下にする必要があり、また
鋼材組成と熱処理条件を最適に選択することにより降伏
比を0.85以下にすることができるという全く新たな
知見を見い出した。さらに冷間ばね成形後、ばね成形に
よる歪を利用した歪時効硬化処理を施すことにより降伏
強度を格段に上げることができ、この結果ばねの高疲労
強度化が図られるという新知見を得て本発明をなしたも
のである。
(Means and effects for solving the problem) As a result of intensive research to solve the above problems, the present inventors have improved the cold spring formability of high-strength materials with a strength of 200 kgf/IIn++" or more. In order to reduce residual stress, it is necessary to reduce the yield ratio to 0.85 or less, and by optimally selecting the steel composition and heat treatment conditions, the yield ratio can be reduced to 0.85 or less. Furthermore, after cold spring forming, the yield strength can be significantly increased by applying strain age hardening treatment that takes advantage of the strain caused by the spring forming, resulting in higher fatigue strength of the spring. The present invention was made based on new findings.

本発明は以上の知見に基づいてなされるものであって、
その要旨とするところは、重量%で、C:0.3〜1.
3%    Si:0.8〜2.5%Mn:0.5〜2
.0%    Cr:0.5〜2.0%を含み、その他
必要に応じて Mo:0,1〜0.5%    V:0.05〜0.5
%Ti:0.002〜0.05% Nb:0.005〜
0.2%B : 0.0003〜0.0 1% Cu:
0.1〜2.0%八へ :o、ot〜0.1%   N
:0.01〜0.05%の1種または2種以上を含有し
、残部はFe及び不可避不純物よりなる鋼について、オ
ーステナイト化処理後250〜500℃に3秒〜30分
保定した後空冷または急冷ことにより降伏比を0.85
以下とし、引続き所定の形状に冷間ばね成形した後20
0〜450℃で歪時効硬化処理を施すことを特徴とする
高疲労強度ばね用m線及び高疲労強度ばねの製造方法に
関するものである。
The present invention has been made based on the above findings,
The gist is that C: 0.3-1.
3% Si: 0.8-2.5% Mn: 0.5-2
.. Contains 0% Cr: 0.5-2.0%, Mo: 0.1-0.5% V: 0.05-0.5 as required
%Ti: 0.002~0.05% Nb: 0.005~
0.2%B: 0.0003~0.01%Cu:
0.1~2.0% 8: o, ot~0.1% N
: For steels containing 0.01 to 0.05% of one or more elements, with the remainder consisting of Fe and unavoidable impurities, after austenitizing treatment, the steel is maintained at 250 to 500°C for 3 seconds to 30 minutes, and then air cooled or Rapid cooling reduces yield ratio to 0.85
After cold spring forming into a predetermined shape, 20
The present invention relates to an m-wire for a high fatigue strength spring and a method for manufacturing a high fatigue strength spring, which is characterized by performing strain age hardening treatment at 0 to 450°C.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まづ本発明の対象とする鋼の成分限定理由について述べ
る。
First, the reasons for limiting the composition of steel, which is the object of the present invention, will be described.

CTCは製品に所要の強度を付与するために必須の元素
であるが、0.3%未満では目的とする200kgf/
mn+”以上の強度が得られず、一方1.3%を越えて
も強度はもはや増加しないので0.3〜1.3%の範囲
に限定した。
CTC is an essential element to give the product the required strength, but if it is less than 0.3%, it will not reach the desired 200kgf/
It is not possible to obtain a strength of mn+'' or higher, and on the other hand, the strength no longer increases even if it exceeds 1.3%, so it is limited to a range of 0.3 to 1.3%.

Si:Siは固溶体硬化作用によって強度を高めるため
、ばねの耐へたり性を向上させるとともに本発明の最も
重要な点である冷間ばね成形前の降伏比を0.85以下
にするために不可欠な元素であるが、0.8%未満では
降伏比を0.85以下にすることが困難になり、一方2
.5%を越えると上記の効果が飽和するため0.8〜2
.5%に限定した。
Si: Si increases strength through solid solution hardening, so it is essential for improving the fatigue resistance of the spring and for reducing the yield ratio to 0.85 or less before cold spring forming, which is the most important aspect of the present invention. However, if it is less than 0.8%, it becomes difficult to reduce the yield ratio to 0.85 or less;
.. If it exceeds 5%, the above effect will be saturated, so 0.8 to 2
.. It was limited to 5%.

Mn : Mnは脱酸、脱硫のために必要であるばかり
でなり、鋼の焼入性を向上させさらに降伏比を0.85
以下にするために有効な元素であるが、065%未満で
は上記の効果が得られず、一方2%を越えると上記の効
果が飽和するため0.5〜2,0%の範囲に制限した。
Mn: Mn is not only necessary for deoxidation and desulfurization, but also improves the hardenability of steel and further increases the yield ratio to 0.85.
Although it is an effective element to reduce .

Cr : Crは焼入性を向上させCの黒鉛化を防止す
るためと降伏比を0.85以下にするために有効な元素
であるが、0.5%未満では前記作用の効果が得られず
、一方2.0%を越えると靭性が低下することから、0
.5〜2.0%に制限した。
Cr: Cr is an effective element for improving hardenability, preventing graphitization of C, and reducing the yield ratio to 0.85 or less, but if it is less than 0.5%, the above effect cannot be obtained. On the other hand, if it exceeds 2.0%, the toughness decreases, so 0.
.. It was limited to 5-2.0%.

以上が本発明の対象とする鋼の基本成分であるが、本発
明においては、この他に鋼の焼入性を向上させるととも
にオーステナイト化処理時の結晶粒度の粗大化の防止並
びにばね成形前の降伏比を低下させるためにMo、 V
、’ Ti、、Nb、  B、 Cut AN。
The above are the basic components of the steel targeted by the present invention, but in addition to this, the present invention also improves the hardenability of the steel, prevents coarsening of grain size during austenitizing treatment, and prevents coarsening of the grain size before spring forming. Mo, V to lower the yield ratio
,'Ti,,Nb,B,Cut AN.

Nの1種または2種以上を含有せしめることもできる。It is also possible to contain one or more types of N.

Mo : Moは焼入性と焼戻し軟化抵抗を増加させる
のに有効な元素であるが0.1%未満では効果がなく、
一方0.5%を越えても添加量に見合うだけの効果がな
いのでこれを上限とした。
Mo: Mo is an effective element for increasing hardenability and temper softening resistance, but it is ineffective if it is less than 0.1%.
On the other hand, even if it exceeds 0.5%, there is no effect commensurate with the added amount, so this was set as the upper limit.

■:■はMoと同様に焼入性と焼戻し軟化抵抗を増加さ
せる効果の他に、オーステナイト化処理時の結晶粒度の
粗粒化を抑制する効果があるが、0.05%未満では前
記作用の効果が得られず、一方0.5%を越えても効果
が飽和するため0.05〜0.5%に限定した。
■: Like Mo, ■ has the effect of increasing hardenability and temper softening resistance, and also has the effect of suppressing coarsening of the crystal grain size during austenitizing treatment, but if it is less than 0.05%, it has the effect of increasing the hardenability and temper softening resistance. However, the effect is saturated even if it exceeds 0.5%, so it is limited to 0.05 to 0.5%.

Ti : TiはNと結合してTiNを形成することに
よリオーステナイト化処理時の結晶粒度の粗大化を抑制
する効果があるが0.002%未満ではその効果が不十
分であり、一方0.05%を越えるとばね疲労に有害な
粗大なTiNが生成するため0.002〜0.05%の
範囲に制限した。
Ti: Ti has the effect of suppressing coarsening of crystal grain size during reaustenitization treatment by combining with N to form TiN, but if it is less than 0.002%, the effect is insufficient; If it exceeds .05%, coarse TiN will be produced which is harmful to spring fatigue, so it is limited to a range of 0.002 to 0.05%.

Nb : Nbはオーステナイト化処理時の結晶粒度の
粗大化を防止する効果があるが、0.005%未満では
その効果が不十分であり、一方0.2%を越えると効果
が飽和するため0.005〜0.2%に制限した。
Nb: Nb has the effect of preventing coarsening of grain size during austenitizing treatment, but if it is less than 0.005%, the effect is insufficient, while if it exceeds 0.2%, the effect is saturated, so It was limited to .005-0.2%.

B:Bは焼入性を向上させるために有効な元素であるが
0.0003%未満ではその効果が十分発揮されず、一
方0.01%を越えると粗大なり化合物を析出させて靭
性を劣化させるので、0゜0003〜0.01%に制限
した。
B: B is an effective element for improving hardenability, but if it is less than 0.0003%, its effect will not be fully demonstrated, while if it exceeds 0.01%, it will become coarse and precipitate compounds, degrading toughness. Therefore, it was limited to 0°0003 to 0.01%.

Cu : Cuは焼入性を向上させるとともに降伏比を
低下させるのに有効な元素であるが、0.1%未満では
期待する効果が得られず、一方2,0%を越えるとCu
の効果が飽和するため0.1〜2.0%に制限した。
Cu: Cu is an effective element for improving hardenability and lowering the yield ratio, but if it is less than 0.1%, the expected effect cannot be obtained, while if it exceeds 2.0%, Cu
Since the effect of is saturated, it is limited to 0.1 to 2.0%.

Al:AlはTiと同様な効果を有するが、0.01%
未満ではその効果が発揮されず、一方0.1%を越えて
も効果が飽和するため0.01〜0.1%に限定した。
Al: Al has the same effect as Ti, but at 0.01%
If it is less than 0.1%, the effect will not be exhibited, and if it exceeds 0.1%, the effect will be saturated, so it was limited to 0.01 to 0.1%.

NUNは八β、 Ti、  Vと結合してそれぞれAI
!N。
NUN combines with 8β, Ti, and V to form AI, respectively.
! N.

TiN、 VNを形成し、オーステナイト化処理時の結
晶粒粗大化を防止する作用を持ち、さらに降伏比を低下
させばね成形後の歪時効硬化に有効な元素であるが、0
.01%未満では前記作用の硬化が顕著ではなく、一方
0.05%を越えると効果が飽和するため0.01〜0
.05%に限定した。
It is an element that forms TiN and VN and has the effect of preventing crystal grain coarsening during austenitizing treatment, and also reduces the yield ratio and is effective for strain age hardening after spring forming.
.. If it is less than 0.01%, the curing of the above effect is not noticeable, while if it exceeds 0.05%, the effect is saturated, so 0.01 to 0.
.. It was limited to 0.05%.

次に本発明の最も重要な点である冷間成形前の鋼の降伏
比を0.85以下とするためには、オーステナイト化処
理後250〜500℃に3秒〜30分保定した後空冷ま
たは急冷する必要がある。降伏比を0.85以下にする
ことによって冷間ばね成形性を向上させるとともに冷間
ばね成形で生じる引張り圧縮残留応力を従来用いられて
いる油焼入れ・焼戻し材より格段に低減さ゛せることが
可能となる。
Next, in order to make the yield ratio of the steel before cold forming, which is the most important point of the present invention, to 0.85 or less, after the austenitizing treatment, the steel should be held at 250 to 500°C for 3 seconds to 30 minutes, and then air cooled or Needs to be cooled quickly. By setting the yield ratio to 0.85 or less, it is possible to improve cold spring formability and to significantly reduce the tensile and compressive residual stress generated during cold spring forming compared to conventionally used oil-quenched and tempered materials. becomes.

まづ降伏比を0.85以下と限定した理由について説明
する。
First, the reason why the yield ratio was limited to 0.85 or less will be explained.

鋼材組成と熱処理により引張り強度が200kgf/m
m”以上で且つ降伏比を変化させた場合の冷間ばね成形
性の尺度となる伸び並びに冷間ばね成形後の残留応力、
ばね疲労強度に及ぼす影響を調べた一層゛を第1表に示
す。JIS3566であるA11:及びJIS3566
をベースにC量を増加させたB。
Tensile strength is 200kgf/m due to steel material composition and heat treatment.
elongation, which is a measure of cold spring formability, and residual stress after cold spring forming, when the yield ratio is changed over m'' and the yield ratio is changed.
Table 1 shows the results of the investigation of the effects on spring fatigue strength. A11 which is JIS3566: and JIS3566
B with increased amount of C based on .

C鋼は、通常行われている焼入れ・焼戻し処理によって
冷間ばね成形前に所定の強度を得たものである。焼入れ
・焼戻し材は、降伏比が0.9以上と高いために破断伸
びが小さく、特にC鋼は低温焼戻しを行ったため伸びが
低下し冷間ばね成形時に割れが発生した。またA、B鋼
の冷間ばね成形で生じる引張り残留応力は非常に高くな
る。このことは降伏強度を高くしても残留応力がこれに
ともない高くなるため、疲労強度は逆に低下することを
意味する。一方、本発明の鋼材組成と熱処理を施したり
、  E、  Fmは降伏比が0.85以下と従来工程
材に比べ低下しているため破断伸びにすぐれさらに残留
応力が非常に小さくなる。この結果本発明によるコイル
ばねの残留応力は従来の焼入れ・焼戻し材に比べ小さく
なるため疲労強度は後述するように焼入れ・焼戻し材よ
り格段に高くなる。
C steel has been given a predetermined strength by the commonly performed quenching and tempering treatments before cold spring forming. Quenched and tempered materials have a high yield ratio of 0.9 or more, so their elongation at break is small. In particular, C steel was tempered at a low temperature, so its elongation decreased and cracks occurred during cold spring forming. Furthermore, the tensile residual stress generated during cold spring forming of steels A and B becomes extremely high. This means that even if the yield strength is increased, the residual stress increases accordingly, and the fatigue strength conversely decreases. On the other hand, by applying the steel material composition and heat treatment of the present invention, E and Fm have a yield ratio of 0.85 or less, which is lower than that of conventionally processed materials, so they have excellent elongation at break and have extremely low residual stress. As a result, the residual stress of the coil spring according to the present invention is smaller than that of conventional hardened and tempered materials, so that the fatigue strength is much higher than that of hardened and tempered materials, as will be described later.

さらに降伏比を低下させることによて鋼の延性が増加す
るため、従来冷間ばね成形が困難とされていた0、8%
C以上の鋼でもばね成形が可能となり一層のばねの高疲
労強度化が可能となる。以上のように冷間ばね成形時の
残留応力低減とばね成形性を向上させるためには降伏比
を0.85以下にする必要があるが、望ましくは0.7
5以下がよい。
Furthermore, by lowering the yield ratio, the ductility of the steel increases, so 0.8%, which was previously considered difficult to form into cold springs.
It is possible to form springs even with steel of C or higher, making it possible to further increase the fatigue strength of the spring. As mentioned above, in order to reduce residual stress during cold spring forming and improve spring formability, it is necessary to reduce the yield ratio to 0.85 or less, preferably 0.7.
5 or less is better.

次に降伏比を0.85以下とするための冷間ばね成形前
の熱処理条件として、オーステナイト化処理後250〜
500℃に3秒〜30分保定した後空冷あるいは急冷処
理を施すのであってこの処理によって本発明の対象とす
る成分系で0.85以下にすることが可能である。まず
250〜500’j:の温度範囲であるが、500℃を
超えるとパーライトが生成しやすくなるため本発明の目
標とするところの200Kgf/mm”以上の強度が得
られず、一方250℃未満に保定すると降伏強度が高く
なるため降伏比が0.85以下とならないためである。
Next, as the heat treatment conditions before cold spring forming in order to make the yield ratio 0.85 or less, after the austenitization treatment 250 ~
After being held at 500°C for 3 seconds to 30 minutes, air cooling or quenching treatment is performed, and by this treatment it is possible to reduce the temperature to 0.85 or less in the component system targeted by the present invention. First, the temperature range is from 250 to 500'j: However, if the temperature exceeds 500°C, pearlite tends to form, so it is not possible to obtain a strength of 200 Kgf/mm'' or more, which is the goal of the present invention. This is because the yield strength increases when the yield ratio is kept at 0.85 or less.

また保定時間は3秒未満では降伏比を0.85以下とす
ることができず、一方30分を超えても降伏比はほとん
ど変化せず、生産性も悪くなるため3゜分を限度とした
Furthermore, if the holding time is less than 3 seconds, the yield ratio cannot be kept below 0.85, while if the holding time exceeds 30 minutes, the yield ratio will hardly change and productivity will deteriorate, so a limit of 3° minutes was set. .

本発明の成分系と熱処理によってばね成形性が向上しま
たばね成形後の引張り残留応力は格段に低減するが、降
伏比が0.9以上ある従来工程で製造される焼入れ・焼
戻し材に比べ降伏比が小さいためにばね成形後は200
〜450℃の温度範囲で冷間ばね成形歪を利用した歪時
効硬化処理を施し降伏比を上げる必要がある。−例とし
て塑性歪を付与した時の歪時効硬化処理温度と降伏強度
、降伏比の関係を第1図に示す。同図から明らかなよう
に歪時効硬化処理によって降伏強度が増加し°降伏比を
0.9以上に高めることができる。この結果最終的に低
残留応力と高降伏強度化によって、ばねの高疲労強度化
並びにへたりの低下が可能となる。歪時効硬化処理温度
としては200℃未満では時効硬化を得るのに時間がか
かりすぎるため、一方450℃を超えると強度が低下す
るため200〜450℃の温度範囲とした。保定時間は
特に規定しないが5分以上行えば十分である。
Although the composition system and heat treatment of the present invention improve spring formability and significantly reduce tensile residual stress after spring forming, the yield ratio is higher than that of quenched and tempered materials manufactured by conventional processes, which have a yield ratio of 0.9 or more. 200 after spring forming because of the small
It is necessary to increase the yield ratio by performing strain aging hardening treatment using cold spring forming strain in the temperature range of ~450°C. - As an example, Figure 1 shows the relationship between strain age hardening temperature, yield strength, and yield ratio when plastic strain is applied. As is clear from the figure, the strain age hardening treatment increases the yield strength and can increase the yield ratio to 0.9 or more. As a result, it is possible to increase the fatigue strength of the spring and reduce fatigue due to the low residual stress and high yield strength. The strain age hardening treatment temperature was set to be in the range of 200 to 450°C since it would take too much time to obtain age hardening if it was less than 200°C, whereas if it exceeded 450°C the strength would decrease. The retention time is not particularly specified, but 5 minutes or more is sufficient.

(実施例1) 第2表に供試材の化学組成ならびにオーステナイト化処
理後の熱処理条件を示す。同表中試験番号1〜3,5〜
8.10〜12が本発明例で、その他は比較例である。
(Example 1) Table 2 shows the chemical composition of the sample material and the heat treatment conditions after the austenitization treatment. Test numbers 1-3, 5- in the same table
8.10 to 12 are examples of the present invention, and the others are comparative examples.

これらの供試材はいずれも真空溶解により300kg鋼
塊を溶製し、鍛造および熱間圧延、冷間伸線を行って製
造されたものである。これらの供試材を用いてオーステ
ナイト化処理後、所定の熱処理を施し、引張り試験を行
い0.2%降伏強度1引張強度、降伏比を求めた。これ
らの試験結果を第2表に併記する。
All of these test materials were manufactured by vacuum melting a 300 kg steel ingot, forging, hot rolling, and cold wire drawing. After austenitizing using these test materials, a predetermined heat treatment was performed, and a tensile test was performed to determine the 0.2% yield strength, 1 tensile strength, and yield ratio. These test results are also listed in Table 2.

同表に見られるように本発明例はいずれも強度が200
 Kgf/mm2以上でかつ降伏比が0.85以下とな
っている。この結果前述したように高強度材の冷間ばね
成形性が向上するとともに、ばね成形時に生じる残留応
力も従来の焼入れ・焼戻し材に比べ低下させることがで
きる。
As seen in the same table, all of the examples of the present invention have a strength of 200
Kgf/mm2 or more and yield ratio is 0.85 or less. As a result, as described above, the cold spring formability of the high-strength material is improved, and the residual stress generated during spring forming can be reduced compared to conventional hardened and tempered materials.

これに対して比較例であるNo4はSi量が低いために
降伏比が0.86と高くなっている。また比較例である
No9,1.3.14はいずれもオーステナイト化処理
後の熱処理条件が不適切な例である。
On the other hand, Comparative Example No. 4 had a high yield ratio of 0.86 due to the low Si content. Comparative examples Nos. 9 and 1.3.14 are all examples in which the heat treatment conditions after the austenitizing treatment were inappropriate.

即ち、No9は熱処理温度が高すぎて目標とする引張強
度200Xgf/ms”が得られず、またNo13は保
定時間が短すぎて、No14は保定温度が低すぎていず
れも降伏比が0.85以下にならなかった例である。
That is, in No. 9, the heat treatment temperature was too high and the target tensile strength of 200 x gf/ms could not be obtained, and in No. 13, the holding time was too short, and in No. 14, the holding temperature was too low, and the yield ratio was 0.85 in both cases. This is an example where the following was not achieved.

(実施例2) 第1表、第2表のうち比較例であるA、Bと本発明例で
ある■、■、■、■、[相]、■の供試鋼についてコイ
ルばねの疲労試験と耐へたり性を調べるためにコイルば
ねの締め付は試験を行った。線径41、ばね径26mm
、ばね高さ64mn+、有効巻数5のコイルばねを冷間
成形後、第3表に示す温度で熱処理を行い、引続きショ
ットピーニング、セッチングをし、疲労試験ならびに締
め付は試験を行った。疲労試験は、ばね形状から計算さ
れる最大剪断応力が70±50 Kgf/mm”になる
条件で10’回まで行い、また最大剪断応力が120 
Kgf/mm”になる荷重でコイルばねを締め付け、9
6時間放置した後のばね高さの変化からへたり特性の指
標となる残留歪を求めた。これらの結果を第3表に示す
(Example 2) Fatigue test of coil springs for test steels A and B as comparative examples and ■, ■, ■, ■, [phase], ■ as examples of the present invention in Tables 1 and 2 A test was conducted on the tightening of the coil spring to examine its resistance to fatigue. Wire diameter 41, spring diameter 26mm
After cold forming a coil spring with a spring height of 64 mm+ and an effective number of turns of 5, it was heat treated at the temperature shown in Table 3, followed by shot peening and setting, and a fatigue test and a tightening test were conducted. The fatigue test was conducted up to 10 times under the conditions that the maximum shear stress calculated from the spring shape was 70 ± 50 Kgf/mm, and the maximum shear stress was 120
Tighten the coil spring with a load of 9 kgf/mm.
Residual strain, which is an index of fatigue characteristics, was determined from the change in spring height after being left for 6 hours. These results are shown in Table 3.

第3表かられかるように、本発明により製造したコイル
ばねはいずれも比較例である焼入れ焼戻しで製造された
ものよりも疲労寿命が高くなっている。これは、降伏比
を0.85以下に制限することによって焼入れ・焼戻し
材と比べ冷間ばね成形時に生じる残留応力が小さくなる
ことと、焼入れ・焼戻し材では冷間成形が困難な高強度
材の冷間ばね成形が可能になったことに起因する。また
本発明により製造されたコイルばねは残留剪断歪も焼入
れ・焼戻し材に比べ少ない。
As can be seen from Table 3, all of the coil springs manufactured according to the present invention have a longer fatigue life than those manufactured by quenching and tempering, which is a comparative example. This is because by limiting the yield ratio to 0.85 or less, the residual stress generated during cold spring forming is smaller than that of quenched and tempered materials, and because it is difficult to cold form high strength materials with quenched and tempered materials. This is due to the fact that cold spring forming is now possible. Further, the coil spring manufactured according to the present invention has less residual shear strain than a hardened and tempered material.

(発明の効果) 以上の実施例からも明らかなごとく、本発明は鋼材組成
とオーステナイト化後の熱処理条件とを最適に選択する
ことによって引張強度200Kgf/mmt以上のばね
用鋼線の降伏比を0.85以下にし、冷間コイルばね成
形時に生じる残留窓・力を低下させるとともに冷間成形
性を向上させることが可能となる。さらに冷間ばね成形
後、成形歪を利用した歪時効硬化処理で降伏強度の高強
度化を図ることができ、最終的に残留応力の低減と降伏
強度の増加によりコイルばねの高疲労強度化を可能にし
たものであり、産業上の効果は極めて顕著なものがある
(Effects of the Invention) As is clear from the above examples, the present invention improves the yield ratio of a spring steel wire with a tensile strength of 200 Kgf/mmt or more by optimally selecting the steel material composition and the heat treatment conditions after austenitization. By making it 0.85 or less, it is possible to reduce the residual window and force generated during cold coil spring forming, and to improve cold formability. Furthermore, after cold spring forming, it is possible to increase the yield strength through strain age hardening treatment that utilizes forming strain, and ultimately increases the fatigue strength of the coil spring by reducing residual stress and increasing yield strength. The industrial effect has been extremely remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼線に塑性歪を与えた時の歪時効硬化処理温度
と降伏強度変化、降伏比変化の関係を示す図。 特許出願人  新日本製鐵株式会社
Figure 1 is a diagram showing the relationship between strain age hardening treatment temperature, yield strength change, and yield ratio change when plastic strain is applied to a steel wire. Patent applicant Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.3〜1.3% Si:0.8〜2.5%Mn:
0.5〜2.0% Cr:0.5〜2.0%を含み、そ
の他必要に応じて Mo:0.1〜0.5% V:0.05〜0.5%Ti
:0.002〜0.05% Nb:0.005〜0.2
%B:0.0003〜0.01% Cu:0.1〜2.
0%Al:0.01〜0.1% N:0.01〜0.0
5%の1種または2種以上を含有し、残部はFe及び不
可避不純物よりなる鋼について、オーステナイト化処理
後250〜500℃に3秒〜30分保定した後空冷また
は急冷し、引続き所定の形状に冷間ばね成形した後20
0〜450℃で歪時効硬化処理を施すことを特徴とする
高疲労強度ばねの製造方法。
(1) In weight%, C: 0.3-1.3% Si: 0.8-2.5% Mn:
Contains 0.5-2.0% Cr: 0.5-2.0%, Mo: 0.1-0.5% V: 0.05-0.5% Ti
:0.002~0.05% Nb:0.005~0.2
%B: 0.0003-0.01% Cu: 0.1-2.
0% Al: 0.01-0.1% N: 0.01-0.0
For steel containing 5% of one or more of the above, with the remainder consisting of Fe and unavoidable impurities, the steel is kept at 250 to 500°C for 3 seconds to 30 minutes after austenitizing treatment, then air cooled or rapidly cooled, and then shaped into a predetermined shape. After cold spring forming to 20
A method for manufacturing a high fatigue strength spring, which comprises subjecting the spring to strain age hardening treatment at 0 to 450°C.
(2)重量%で、 C:0.3〜1.3% Si:0.8〜2.5%Mn:
0.5〜2.0% Cr:0.5〜2.0%を含み、そ
の他必要に応じて Mo:0.1〜0.5% V:0.05〜0.5%Ti
:0.002〜0.05% Nb:0.005〜0.2
%B:0.0003〜0.01% Cu:0.1〜2.
0%Al:0.01〜0.1% N:0.01〜0.0
5%の1種または2種以上を含有し、残部はFe及び不
可避不純物よりなる鋼について、オーステナイト化処理
後250〜500℃に3秒〜30分保定した後空冷また
は急冷することにより降伏比を0.85以下とすること
を特徴とする高疲労強度ばね用鋼線。
(2) In weight%, C: 0.3-1.3% Si: 0.8-2.5% Mn:
Contains 0.5-2.0% Cr: 0.5-2.0%, Mo: 0.1-0.5% V: 0.05-0.5% Ti
:0.002~0.05% Nb:0.005~0.2
%B: 0.0003-0.01% Cu: 0.1-2.
0% Al: 0.01-0.1% N: 0.01-0.0
For steel containing 5% of one kind or two or more kinds, with the remainder consisting of Fe and unavoidable impurities, the yield ratio can be adjusted by holding at 250 to 500 °C for 3 seconds to 30 minutes after austenitizing treatment, and then air cooling or rapid cooling. A high fatigue strength spring steel wire characterized by having a tensile strength of 0.85 or less.
JP20733788A 1988-08-23 1988-08-23 Manufacture of spring with high fatigue strength and steel wire for spring for use therein Pending JPH0257637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20733788A JPH0257637A (en) 1988-08-23 1988-08-23 Manufacture of spring with high fatigue strength and steel wire for spring for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20733788A JPH0257637A (en) 1988-08-23 1988-08-23 Manufacture of spring with high fatigue strength and steel wire for spring for use therein

Publications (1)

Publication Number Publication Date
JPH0257637A true JPH0257637A (en) 1990-02-27

Family

ID=16538075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20733788A Pending JPH0257637A (en) 1988-08-23 1988-08-23 Manufacture of spring with high fatigue strength and steel wire for spring for use therein

Country Status (1)

Country Link
JP (1) JPH0257637A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268041A (en) * 1991-02-22 1992-09-24 Mitsubishi Steel Mfg Co Ltd High strength spring steel
US5368656A (en) * 1992-01-16 1994-11-29 Inland Steel Company Steel spring and method for producing same
WO1997045565A1 (en) * 1996-05-29 1997-12-04 Datec Scherdel Datentechnik, Forschungs- Und Entwicklungs-Gmbh Relaxation-resistant steel spring
GB2352726A (en) * 1999-08-04 2001-02-07 Secr Defence A steel and a heat treatment for steels
CN100360699C (en) * 2005-08-12 2008-01-09 王明顺 Quenched alloy cast iron stylotrachealis
US7387694B2 (en) * 2002-10-10 2008-06-17 Rexroth Star Gmbh Method of making a hardened steel part, especially a roll load-bearing steel part
EP2096184A1 (en) * 2006-10-31 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho Steel wire for spring excellent in fatigue property and drawing property
WO2012018144A1 (en) 2010-08-04 2012-02-09 日本発條株式会社 Spring and manufacture method thereof
WO2012121115A1 (en) 2011-03-04 2012-09-13 日本発條株式会社 Spring and manufacturing method thereof
CN104060182A (en) * 2014-05-27 2014-09-24 安徽红桥金属制造有限公司 Spring and surface treatment process thereof
KR20150108043A (en) 2011-08-18 2015-09-24 신닛테츠스미킨 카부시키카이샤 Spring steel and spring
US9267183B2 (en) 2006-02-28 2016-02-23 Kobe Steel, Ltd. Wire with excellent suitability for drawing and process for producing the same
DE102016204194A1 (en) * 2016-03-15 2017-09-21 Comtes Fht A. S. Spring components made of a steel alloy and manufacturing process
KR20180043826A (en) 2015-09-04 2018-04-30 신닛테츠스미킨 카부시키카이샤 Spring wire and spring
DE112020005011T5 (en) 2019-10-16 2022-07-07 Nhk Spring Co., Ltd. VALVE SPRING
DE112020005007T5 (en) 2019-10-16 2022-07-07 Nippon Steel Corporation STEEL WIRE
DE112020005003T5 (en) 2019-10-16 2022-07-07 Aisin Corporation DAMPER SPRING
KR20220143735A (en) 2020-02-21 2022-10-25 닛폰세이테츠 가부시키가이샤 steel wire
CN115335545A (en) * 2020-02-21 2022-11-11 日本制铁株式会社 Valve spring
DE112021001187T5 (en) 2020-02-21 2022-12-15 Nippon Steel Corporation DAMPER SPRING

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268041A (en) * 1991-02-22 1992-09-24 Mitsubishi Steel Mfg Co Ltd High strength spring steel
US5368656A (en) * 1992-01-16 1994-11-29 Inland Steel Company Steel spring and method for producing same
WO1997045565A1 (en) * 1996-05-29 1997-12-04 Datec Scherdel Datentechnik, Forschungs- Und Entwicklungs-Gmbh Relaxation-resistant steel spring
GB2352726A (en) * 1999-08-04 2001-02-07 Secr Defence A steel and a heat treatment for steels
WO2001011096A1 (en) * 1999-08-04 2001-02-15 Qinetiq Limited Improved bainitic steel
US6884306B1 (en) 1999-08-04 2005-04-26 Qinetiq Limited Baintic steel
US7387694B2 (en) * 2002-10-10 2008-06-17 Rexroth Star Gmbh Method of making a hardened steel part, especially a roll load-bearing steel part
CN100360699C (en) * 2005-08-12 2008-01-09 王明顺 Quenched alloy cast iron stylotrachealis
US9267183B2 (en) 2006-02-28 2016-02-23 Kobe Steel, Ltd. Wire with excellent suitability for drawing and process for producing the same
EP2096184A1 (en) * 2006-10-31 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho Steel wire for spring excellent in fatigue property and drawing property
EP2096184A4 (en) * 2006-10-31 2011-04-20 Kobe Steel Ltd Steel wire for spring excellent in fatigue property and drawing property
US8192562B2 (en) 2006-10-31 2012-06-05 Kobe Steel, Ltd. Spring steel wire excellent in fatigue characteristic and wire drawability
WO2012018144A1 (en) 2010-08-04 2012-02-09 日本発條株式会社 Spring and manufacture method thereof
US11378147B2 (en) 2010-08-04 2022-07-05 Nhk Spring Co., Ltd. Spring and manufacture method thereof
US9341223B2 (en) 2011-03-04 2016-05-17 Nhk Spring Co., Ltd. Spring and manufacture method thereof
WO2012121115A1 (en) 2011-03-04 2012-09-13 日本発條株式会社 Spring and manufacturing method thereof
KR20150108043A (en) 2011-08-18 2015-09-24 신닛테츠스미킨 카부시키카이샤 Spring steel and spring
US9523404B2 (en) 2011-08-18 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Spring steel and spring
CN104060182A (en) * 2014-05-27 2014-09-24 安徽红桥金属制造有限公司 Spring and surface treatment process thereof
KR20180043826A (en) 2015-09-04 2018-04-30 신닛테츠스미킨 카부시키카이샤 Spring wire and spring
US10844920B2 (en) 2015-09-04 2020-11-24 Nippon Steel Corporation Spring steel wire and spring
DE102016204194A1 (en) * 2016-03-15 2017-09-21 Comtes Fht A. S. Spring components made of a steel alloy and manufacturing process
DE112020005007T5 (en) 2019-10-16 2022-07-07 Nippon Steel Corporation STEEL WIRE
DE112020005011T5 (en) 2019-10-16 2022-07-07 Nhk Spring Co., Ltd. VALVE SPRING
DE112020005003T5 (en) 2019-10-16 2022-07-07 Aisin Corporation DAMPER SPRING
US20240077123A1 (en) * 2019-10-16 2024-03-07 Nippon Steel Corporation Valve spring
US11952650B2 (en) 2019-10-16 2024-04-09 Nippon Steel Corporation Steel wire
KR20220143735A (en) 2020-02-21 2022-10-25 닛폰세이테츠 가부시키가이샤 steel wire
CN115335545A (en) * 2020-02-21 2022-11-11 日本制铁株式会社 Valve spring
DE112021001166T5 (en) 2020-02-21 2022-12-08 Nippon Steel Corporation STEEL WIRE
DE112021001170T5 (en) 2020-02-21 2022-12-08 Nippon Steel Corporation VALVE SPRING
DE112021001187T5 (en) 2020-02-21 2022-12-15 Nippon Steel Corporation DAMPER SPRING
CN115335545B (en) * 2020-02-21 2023-08-11 日本制铁株式会社 Valve spring

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
KR100336339B1 (en) Steel wire for high-strength springs and method of producing the same
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP2001240940A (en) Bar wire rod for cold forging and its production method
JPH039168B2 (en)
JPH01177318A (en) Manufacture of coiled spring excellent in fatigue strength
JPS6159379B2 (en)
JPH0830246B2 (en) High strength spring steel
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JP2790303B2 (en) Method of manufacturing high fatigue strength spring and steel wire used for the method
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JP3149681B2 (en) Machine structural steel with excellent cold forgeability
JPH11246943A (en) High strength valve spring and its manufacture
JPS58193323A (en) Preparation of high strength spring
JP3371490B2 (en) Method of manufacturing tough steel for machine structure with excellent cold forgeability
JPS63157816A (en) Manufacture of carburizing steel material
JP5125658B2 (en) Induction hardening steel with excellent workability and strength characteristics after induction hardening and induction hardening parts with excellent strength characteristics
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method
JPS6353208A (en) Spheroidizing annealing method for alloy steel for machine structural use
JPH01184223A (en) Production of suspension spring for automobile having superior setting resistance at high temperature
JPH0533283B2 (en)
KR0143498B1 (en) Making method of pc wire rod
JPH10147816A (en) Production of hot rolled high carbon steel plate and cold rolled high carbon steel sheet, excellent in formability
JP2024500152A (en) Wire rods and parts with improved delayed fracture resistance and their manufacturing method