JPH04329362A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JPH04329362A
JPH04329362A JP12839191A JP12839191A JPH04329362A JP H04329362 A JPH04329362 A JP H04329362A JP 12839191 A JP12839191 A JP 12839191A JP 12839191 A JP12839191 A JP 12839191A JP H04329362 A JPH04329362 A JP H04329362A
Authority
JP
Japan
Prior art keywords
sample
reagent
reaction
water
reaction container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12839191A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12839191A priority Critical patent/JPH04329362A/en
Publication of JPH04329362A publication Critical patent/JPH04329362A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To judge whether a reagent separate injecting action is normally performed or not by directly monitoring a reagent separately injected into a reaction container. CONSTITUTION:A comparison/judgment section 42 which compares the measured value of the absorption wavelength light of water in the near infrared region while water or an aqueous solution is filled in the reaction container and the measured value of the absorption wavelength light of water while a sample and an analysis reagent are separately injected into the reaction container within the measured values of a spectrometer 40 illuminating the light to the solution in the reaction container to measure the light absorption in the near infrared region and judges whether the liquid quantity is at the normal liquid quantity state for quantifying the sample constituent or not is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は反応容器中で試料と分析
試薬を所定の割合で混合し一定条件下で反応させ、その
光学的変化に基づいて試料成分の定量を行なう反応容器
直接測光方式の自動分析装置に関するものである。その
ような自動分析装置は、例えば血液や尿などの検体の生
化学検査を行なう自動生化学分析装置などとして利用さ
れている。
[Industrial Application Field] The present invention is a reaction vessel direct photometry method in which a sample and an analytical reagent are mixed at a predetermined ratio in a reaction vessel, reacted under certain conditions, and the sample components are quantified based on the optical changes. This invention relates to an automatic analyzer. Such automatic analyzers are used, for example, as automatic biochemical analyzers that perform biochemical tests on samples such as blood and urine.

【0002】0002

【従来の技術】自動分析装置で、検体を分注した反応容
器に分析試薬を分注するには、試薬吸引兼分注用プロー
ブにより試薬ボトル内の試薬を吸引して反応容器へ分注
する。その際、分注前に試薬ボトル内の試薬の液面を検
出することは行なわれている。しかし、試薬分注動作の
確認は直接には行なっていない。本発明者は、試薬分注
後の試薬液面に分注ノズルを保持して試薬液面の有無を
検知することにより、試薬分注が正常であったかどうか
を判断する方法を既に提案している(特開平2−405
62号公報参照)。
[Background Art] In order to dispense an analytical reagent into a reaction container into which a specimen has been dispensed, an automatic analyzer uses a reagent suction/dispensing probe to aspirate the reagent in a reagent bottle and dispense it into the reaction container. . In this case, the liquid level of the reagent in the reagent bottle is detected before dispensing. However, the reagent dispensing operation was not directly confirmed. The present inventor has already proposed a method for determining whether or not reagent dispensing was normal by holding the dispensing nozzle above the reagent liquid surface after reagent dispensing and detecting the presence or absence of the reagent liquid surface. (Unexamined Japanese Patent Publication No. 2-405
(See Publication No. 62).

【0003】0003

【発明が解決しようとする課題】本発明者が提案してい
る方法は、分注ノズルを試薬液面以下に保持することが
必要であるので、分注ノズルを反応容器内に挿入するこ
とのできる自動分析装置に適用されるものである。その
ため、反応容器の開口部の上方で試薬分注を行なう高速
試薬分注型の自動分析装置や、試薬分注を反応容器に直
結した送液ラインで行なうクローズド型自動分析装置に
は適用することはできない。本発明は反応容器内へ分注
された試薬を直接モニタして試薬分注動作が正常に行な
われたか否かを判断することができるようにすることを
目的とするものである。
[Problems to be Solved by the Invention] The method proposed by the present inventor requires the dispensing nozzle to be kept below the reagent liquid level, so it is difficult to insert the dispensing nozzle into the reaction vessel. This applies to automatic analyzers that can. Therefore, it cannot be applied to high-speed reagent dispensing type automatic analyzers that perform reagent dispensing above the opening of the reaction vessel, or closed type automatic analyzers that perform reagent dispensing through a liquid supply line directly connected to the reaction vessel. I can't. SUMMARY OF THE INVENTION An object of the present invention is to directly monitor the reagent dispensed into a reaction container to determine whether the reagent dispensing operation is performed normally.

【0004】0004

【課題を解決するための手段】本発明は、図1に示され
るように、反応容器中の溶液に光照射を行なって近赤外
領域で光吸収を測定する分光器40の測定値のうち、反
応容器に水又は水溶液を充填した状態での近赤外領域の
水の吸収波長光の測定値と、反応容器に試料と分析試薬
を分注した状態での近赤外領域の水の吸収波長光の測定
値とを比較して、液量が試料成分の定量のための正常な
液量状態であるか否かを判定する比較判定部42を備え
ている。
[Means for Solving the Problems] As shown in FIG. 1, the present invention provides a solution among the measured values of a spectrometer 40 that irradiates a solution in a reaction container with light and measures light absorption in the near-infrared region. , Measured values of absorption wavelength light of water in the near-infrared region when the reaction container is filled with water or aqueous solution, and absorption of water in the near-infrared region when the sample and analytical reagent are dispensed into the reaction container. A comparison determination section 42 is provided that compares the measured value of the wavelength light and determines whether the liquid volume is in a normal liquid volume state for quantifying sample components.

【0005】[0005]

【作用】近赤外領域の水の吸収波長光を反応容器に照射
したときの測定値と、予め設定してある反応容器の光路
長(反応容器内の溶液の厚み)の水の吸収値、又は反応
容器が水浴中にある場合には水浴の水の厚みに相当する
水の吸収値とを比較して反応容器中の試薬液量が十分か
否かを判定する。試薬分注の前と後に試薬液量が十分で
あるか否かの判定を行ない、試薬分注が正常に実行され
たか否かを判断する。試薬分注が異常の場合、それが単
発的に発生するときはその分のみを再検査し、連続する
ときは分注器が異常であることを示す警報を出すなどの
処置を採ることができる。
[Function] Measured value when the reaction container is irradiated with water absorption wavelength light in the near-infrared region, and the absorption value of water at the preset optical path length of the reaction container (thickness of the solution in the reaction container). Alternatively, if the reaction container is in a water bath, it is determined whether the amount of reagent liquid in the reaction container is sufficient by comparing the absorption value of water corresponding to the thickness of water in the water bath. It is determined whether the amount of reagent liquid is sufficient before and after reagent dispensing, and it is determined whether reagent dispensing has been executed normally. If there is an abnormality in reagent dispensing, measures can be taken such as re-inspecting only that portion if it occurs once, or issuing an alarm indicating that the dispenser is abnormal if it occurs continuously. .

【0006】空気を対照として水の吸収を測定すると、
水の厚みが1cmのとき測定波長975nmでは吸光度
は0.23Abs、1070nmでは0.034Abs
、1200nmでは0.524Abs、1260nmで
は0.443Absである。図2(A),(B)に示さ
れるように、反応槽46が水浴になっている反応容器浸
漬型自動分析装置の場合、反応容器44が空のときの吸
光度は反応槽46に満たされた水の厚みから反応容器4
4相当の長さを差し引いた値になる。45,47は窓板
である。通常、反応容器に用いられるガラスやアクリル
樹脂などには900〜1300nm近辺に大きな吸収帯
はない。他方、図2(A)に示されるように反応容器4
4内に水溶液48が満たされた場合、測定光束50全体
が水溶液48中を通過するときの吸光度はほぼ反応槽4
6の水の厚みに相当することになる。もちろん、反応容
器44の壁の厚み分の吸光度は少なくなる。したがって
、反応槽46中の反応容器44に照射した水の吸収波長
での光束の吸光度は、図2(C)に示されるように、反
応容器44が空の場合のAwoから測定に支障のない液
面高さになった場合の吸光度Awfまでの間の吸光度を
示すことになる。
[0006] When measuring the absorption of water using air as a control,
When the thickness of water is 1 cm, the absorbance is 0.23 Abs at the measurement wavelength of 975 nm and 0.034 Abs at 1070 nm.
, 0.524 Abs at 1200 nm and 0.443 Abs at 1260 nm. As shown in FIGS. 2(A) and 2(B), in the case of a reaction vessel immersion type automatic analyzer in which the reaction vessel 46 is a water bath, the absorbance when the reaction vessel 44 is empty is the same as that when the reaction vessel 46 is filled. Due to the thickness of the water, the reaction vessel 4
It is the value obtained by subtracting the length equivalent to 4. 45 and 47 are window plates. Usually, glass, acrylic resin, etc. used for reaction vessels do not have a large absorption band in the vicinity of 900 to 1300 nm. On the other hand, as shown in FIG. 2(A), the reaction vessel 4
When the aqueous solution 48 is filled in the reaction tank 4, the absorbance when the entire measurement light beam 50 passes through the aqueous solution 48 is approximately equal to that of the reaction tank 4.
This corresponds to the thickness of water of 6. Of course, the absorbance decreases by the thickness of the wall of the reaction vessel 44. Therefore, as shown in FIG. 2(C), the absorbance of the light beam at the absorption wavelength of the water irradiated onto the reaction vessel 44 in the reaction tank 46 is determined from Awo when the reaction vessel 44 is empty, so that there is no problem in measurement. It shows the absorbance up to the absorbance Awf when the liquid level reaches the height.

【0007】本発明を適用するに当って、反応容器が空
の場合の吸光度(Awo)と、測定に支障のない液面高
さにできる十分な液量の場合の吸光度(Awf)を入力
して設定しておくか、反応容器に液量がV1及びV2の
水(試薬でもよい)を分注し、そのときの吸光度Av1
,Av2を測定して液量対吸光度の関係を求めておく。
In applying the present invention, the absorbance when the reaction vessel is empty (Awo) and the absorbance when the liquid level is sufficient to reach a height that does not interfere with measurement (Awf) are input. Either set the absorbance Av1 at that time by dispensing water (reagents may be used) with liquid volumes V1 and V2 into the reaction container.
, Av2 to determine the relationship between liquid volume and absorbance.

【0008】実際の分析では、第1分析試薬(R1)に
続いて、一定時間経過後に第2分析試薬(R2)を追加
分注する場合が多いので、R1分注後R2分注前の吸光
度A1とR2分注後の吸光度A2について図2(C)に
示された関係から試料反応液が正しく調整されたか否か
(所定量のR1とR2が正しく分注されたか否か)を判
断する。判断の例としては、正常な測定が可能な液量か
どうかを判断する場合、A1(A2)≧Awoならば正
常、A1<AwoならばR1分注ミス(1試薬法)、2
試薬法のときA1からR1液量、A2からR2液量をそ
れぞれ求めてR1,R2の分注ミスを判定する。
In actual analysis, following the first analytical reagent (R1), the second analytical reagent (R2) is often additionally dispensed after a certain period of time, so the absorbance after dispensing R1 and before dispensing R2 From the relationship shown in FIG. 2(C) regarding the absorbance A2 after dispensing A1 and R2, it is determined whether the sample reaction solution has been correctly prepared (whether or not the predetermined amounts of R1 and R2 have been dispensed correctly). . As an example of judgment, when determining whether the liquid volume can be measured normally, if A1 (A2) ≧ Awo, it is normal; if A1 < Awo, R1 is a dispensing error (one reagent method);
In the case of the reagent method, the amount of liquid R1 is determined from A1, and the amount of liquid R2 is determined from A2, and a dispensing error in R1 and R2 is determined.

【0009】反応槽が空気浴になっている自動分析装置
の場合、空気は近赤外領域において吸収を示さないので
、反応容器が空のときの吸光度は図2(C)の関係で考
えるとAwo=吸光度0と考えることができるので、液
量対吸光度の関係は図2(D)のようになる。分注され
た液量が正常か否かの判断は上記と同様に行なうことが
できる。液量が正常か否かを判断する測定波長は近赤外
領域の2波長であり、そのうち少なくとも一方は水の吸
収波長であり、例えば975nm付近や1200nm付
近を選ぶ。1波長測定では測定光束内に液面や気泡が入
った場合、液面が正確に検知できないことがあるためで
ある。
In the case of an automatic analyzer in which the reaction vessel is an air bath, air does not exhibit absorption in the near-infrared region, so the absorbance when the reaction vessel is empty is considered from the relationship shown in Figure 2 (C). Since it can be considered that Awo=absorbance 0, the relationship between liquid volume and absorbance is as shown in FIG. 2(D). Whether or not the dispensed liquid amount is normal can be determined in the same manner as described above. The measurement wavelengths for determining whether the liquid amount is normal are two wavelengths in the near-infrared region, at least one of which is the absorption wavelength of water, for example, around 975 nm or around 1200 nm. This is because in single-wavelength measurement, if a liquid level or bubbles enter the measurement light beam, the liquid level may not be accurately detected.

【0010】0010

【実施例】図3は自動分析装置の一例のブロック図であ
る。反応ラインに配列された反応容器に試料を分注する
ために試料分注ノズル機構が設けられており、そのピペ
ッタにより試料の分注を行なうピペッタポンプ44は、
サンプラ制御部46からインターフェイス48を経てC
PU50より制御される。反応容器中で試料と反応させ
る分析試薬を反応容器に分注するために、ディスペンサ
が設けられており、そのディスペンサにより試薬を分注
するディスペンサポンプ52は試薬分注器制御部54か
らインターフェイス48を経てCPU50より制御され
る。反応ラインの反応容器内の溶液を撹拌したり、反応
終了後の反応容器を洗浄する洗浄機構を制御するために
、反応部制御部56が設けられており、反応部制御部5
6もインターフェイス48を経てCPU50より制御さ
れる。反応容器内の試料と分析試薬との反応を光学的に
検出するために分光器40が設けられており、分光器4
0の紫外可視域での検出出力は濃度演算部60からイン
ターフェイス48を経てCPU50に取り込まれる。 また、分光器40は反応容器の液量を判定するために水
の吸収波長でも測定を行ない、その測定信号はインター
フェイス48を経てCPU50に取り込まれる。図1に
おける比較判定部42はCPU50により実現される。 インターフェイス48には更にプリンタ62,キーボー
ド64、CRT66及びフロッピーディスクドライブ6
8が接続されている。
Embodiment FIG. 3 is a block diagram of an example of an automatic analyzer. A sample dispensing nozzle mechanism is provided for dispensing the sample into the reaction vessels arranged in the reaction line, and the pipettor pump 44 dispenses the sample using the pipettor.
C from the sampler control unit 46 via the interface 48
It is controlled by PU50. A dispenser is provided to dispense into the reaction container an analytical reagent to be reacted with a sample in the reaction container. It is then controlled by the CPU 50. A reaction section control section 56 is provided to stir the solution in the reaction vessel of the reaction line and to control a cleaning mechanism for cleaning the reaction vessel after the reaction is completed.
6 is also controlled by the CPU 50 via the interface 48. A spectrometer 40 is provided to optically detect the reaction between the sample and the analytical reagent in the reaction container.
The detection output in the ultraviolet-visible range of 0 is taken into the CPU 50 from the concentration calculation section 60 via the interface 48. The spectrometer 40 also measures the absorption wavelength of water in order to determine the amount of liquid in the reaction container, and the measurement signal is taken into the CPU 50 via the interface 48. The comparison and determination section 42 in FIG. 1 is realized by the CPU 50. The interface 48 further includes a printer 62, a keyboard 64, a CRT 66, and a floppy disk drive 6.
8 are connected.

【0011】図4に自動分析装置の基本反応ステップを
示す。洗浄された反応容器に水が充填されて水の吸収測
定波長(900〜1200nm領域)でAwfが測定さ
れ、反応成分の定量を行なうために紫外可視域の吸収波
長の2波長(λs,λr)でセルブランクAcbが測定
される。次に水が排出されてAwoが測定される。その
後、反応容器に試料が分注され、第1試薬R1が分注さ
れる。第2試薬R2が分注される前に水の吸収測定A1
と反応成分の定量域での測定Afが測定される。その後
、第2試薬R2が分注され、反応終点で水の吸収測定A
2と反応成分の定量測定Abがなされる。水の測定Aw
fとAwoは反応容器ごとに測定してもよいし、予め先
に測定して記憶装置に記憶させておいてもよい。
FIG. 4 shows the basic reaction steps of the automatic analyzer. The washed reaction vessel is filled with water, and Awf is measured at the absorption measurement wavelength of water (900 to 1200 nm region), and two wavelengths (λs, λr) of the absorption wavelength in the ultraviolet-visible region are used to quantify the reaction components. Cell blank Acb is measured. The water is then drained and the Awo measured. After that, the sample is dispensed into the reaction container, and the first reagent R1 is dispensed. Water absorption measurement A1 before the second reagent R2 is dispensed
and the measurement Af in the quantitative range of the reaction component is measured. After that, the second reagent R2 is dispensed, and at the end of the reaction water absorption measurement A
2 and the reaction components are quantitatively measured Ab. Water measurement Aw
f and Awo may be measured for each reaction vessel, or may be measured in advance and stored in a storage device.

【0012】反応成分の定量は図4のようにエンドポイ
ント法で試薬ブランク補正法にて定量されるときは、濃
度Cは C=K・[{(Ab−Acb)−fv(Af−Acb)
}−(Arb−Acb)]  (1)となる。ここでK
は濃度換算係数、fvは液量補正係数、Ardは試薬ブ
ランクを表わしている。
When the reaction components are quantified using the end point method and the reagent blank correction method as shown in FIG.
}-(Arb-Acb)] (1). Here K
is a concentration conversion coefficient, fv is a liquid volume correction coefficient, and Ard is a reagent blank.

【0013】反応液量チェック用の動作を図5に示す。 図4に示された基本反応ステップで得られた測定値から
1試薬法のときはA1がAwf±α(αは許容範囲)と
比較され、2試薬法のときはA2がAwf±αと比較さ
れ、それぞれの条件を満たすときに濃度Cが計算されて
出力される。もし液量が不足しているときは再度測定を
行ない、再測定においてもやはり試薬液量が正常でない
ときには警報を発して測定を中断する。濃度Cの計算で
は、1試薬法のときは次式 C=K・{(Ab−Acb)−(Arb−Acb)} 
 (2)により計算され、2試薬法のときは(1)式に
より計算される。
FIG. 5 shows the operation for checking the amount of reaction liquid. From the measured values obtained in the basic reaction steps shown in Figure 4, A1 is compared with Awf±α (α is the tolerance range) in the one-reagent method, and A2 is compared with Awf±α in the two-reagent method. Then, when each condition is satisfied, the concentration C is calculated and output. If the amount of liquid is insufficient, the measurement is performed again, and if the amount of reagent liquid is not normal in the remeasurement, an alarm is issued and the measurement is interrupted. In calculating the concentration C, when using the one-reagent method, use the following formula C=K {(Ab-Acb)-(Arb-Acb)}
It is calculated by (2), and in the case of the two-reagent method, it is calculated by equation (1).

【0014】本発明が適用される具体的な自動分析装置
の一例は図6に示されるものである。  血液などの検
体は検体容器に入れられ、複数本の検体容器が配置され
た検体ラック2がベルトコンベア式の搬送路4に沿って
移動させられる。搬送路4は図で左から右方向に検体ラ
ック2を移送する往路4aと、逆に右から左方向へ検体
ラックを移送する復路4bとからなっている。図で往路
4aの左端部分には検体ラック2を往路4aに送り出す
検体ラック供給部6が設けられており、復路4bの左端
部分には測定終了後の検体ラック2を収納する収納部8
が設けられている。図で搬送路4の右端部分には往路4
aを送られてきた検体ラック2を一次収容し、復路4b
に送り出すラック待機部10が設けられている。検体ラ
ック2は往路4aを移送中に分析ユニット26a,26
bの検体分注位置で停止させられ、分析ユニット26a
,26bの反応管に分注される。復路4bでは往路4a
で分注されて測定された検体の測定結果に従って、再検
査の必要のある検体が再分注される。
A specific example of an automatic analyzer to which the present invention is applied is shown in FIG. A sample such as blood is placed in a sample container, and a sample rack 2 in which a plurality of sample containers are arranged is moved along a belt conveyor type transport path 4. The transport path 4 consists of an outgoing path 4a for transporting the sample rack 2 from left to right in the figure, and a return path 4b for transporting the sample rack from right to left. In the figure, a sample rack supply section 6 for feeding the sample rack 2 to the outward path 4a is provided at the left end of the outward path 4a, and a storage section 8 for storing the sample rack 2 after measurement is provided at the left end of the return path 4b.
is provided. In the figure, the right end portion of the conveyance path 4 shows the outgoing path 4.
The sample rack 2 that was sent a is temporarily stored, and the return trip 4b
A rack standby section 10 is provided for sending out racks. While the sample rack 2 is being transported on the outbound route 4a, the analysis units 26a, 26
The analysis unit 26a is stopped at the sample dispensing position b.
, 26b. On the return trip 4b, the outbound trip 4a
According to the measurement results of the sample dispensed and measured, the sample that needs to be retested is re-dispensed.

【0015】搬送路4に沿って2台の分析ユニット12
aと12bが配置されている。いずれも同じ構造をして
いる。各分析ユニットにはキュベットを兼ねる反応容器
15が配置された反応ディスク14が搬送路4の近くに
配置されており、搬送路4a,4bには反応ディスク1
4の近傍の検体分注位置で検体ラック2を停止させる停
止装置(図示略)が設けられている。搬送路4a又は4
b上に停止させられた検体ラック2から検体を反応容器
15に分注するために、ノズルを備えたピペッタ16が
配置されている。各分析ユニット12a,12bには反
応容器15に試薬を分注するために2台のターンテーブ
ル式試薬庫18a,18bが配置されており、各試薬庫
18a,18bには試薬を反応容器15に分注するディ
スペンサ20a,20bが設けられている。反応ディス
ク14で分析終了後の反応容器を洗浄するために洗浄機
構22が設けられている。反応ディスク14には検体と
試薬が入れられた反応容器15の反応を測定するために
、光学式分析部が設けられているが図示は省略されてい
る。
Two analysis units 12 are installed along the transport path 4.
a and 12b are arranged. Both have the same structure. In each analysis unit, a reaction disk 14 in which a reaction container 15 that also serves as a cuvette is arranged is placed near the transport path 4, and a reaction disk 14 is placed in the transport paths 4a and 4b.
A stopping device (not shown) is provided to stop the sample rack 2 at a sample dispensing position near the sample rack 4 . Conveyance path 4a or 4
A pipettor 16 equipped with a nozzle is disposed to dispense a sample from the sample rack 2 stopped on the sample rack 2 into the reaction container 15. Two turntable-type reagent stores 18a, 18b are arranged in each analysis unit 12a, 12b for dispensing reagents into the reaction container 15. Dispensers 20a and 20b are provided for dispensing. A cleaning mechanism 22 is provided to clean the reaction container after analysis is completed using the reaction disk 14. The reaction disk 14 is provided with an optical analysis section for measuring the reaction in the reaction container 15 containing the sample and reagent, but it is not shown.

【0016】検体ラック供給部6と収納部8にはインタ
ーフェースとCPU24が設けられており、各分析ユニ
ット12aと12bにもそれぞれインターフェースとC
PU26a,26bが設けられており、待機部10にも
インターフェースとCPU28が設けられている。それ
らのCPU24,26a,26b,28はメインCPU
30と接続されている。メインCPU30にはさらにC
RT32、キーボード34及びプリンタ36が接続され
ている。
The sample rack supply section 6 and storage section 8 are provided with an interface and a CPU 24, and each analysis unit 12a and 12b is also provided with an interface and a CPU 24, respectively.
PUs 26a and 26b are provided, and the standby section 10 is also provided with an interface and a CPU 28. Those CPUs 24, 26a, 26b, 28 are main CPUs
It is connected to 30. The main CPU 30 also has C
An RT 32, a keyboard 34 and a printer 36 are connected.

【0017】図6の自動分析装置の動作について説明す
る。各項目の測定に必要な試薬は分析ユニットの試薬庫
18a,18bにセットされる。検体ラック2を供給部
6に並べ、キーボード34から動作を開始させると、反
応容器15は洗浄機構22で洗浄水により洗浄される。 洗浄をすませた反応容器15には水が入れられてブラン
ク測定がなされる。ブランク測定をすませた反応容器1
5が検体分注位置に移動したとき、検体ラック2が搬送
路の往路4aを送られてきて、検体分注位置で停止させ
られ、まず最初に分析する測定項目のためにピペッタ1
6によって検体が測定項目ごとに定められた検体量だけ
反応容器15に分注される。検体分注後のピペッタ16
のノズルは図には現れていない洗浄ポットに移動してノ
ズルの内外が純水により洗浄される。その後、順次次の
同一検体の次の項目又は次の別の検体の分注が他の反応
容器15に行なわれる。反応ディスク14で検体の分注
された反応容器15が試薬分注位置へ移動してくると、
ディスペンサ20a又は20bによって所定の試薬が所
定量吸引されて反応容器15に分注される。分注後、デ
ィスペンサ20a,20bのプローブは図には現われて
いない洗浄位置に移動してプローブの内外が純水で洗浄
される。その後、ディスペンサ20a,20bは次の試
薬の分注動作に移る。
The operation of the automatic analyzer shown in FIG. 6 will be explained. Reagents necessary for measurement of each item are set in reagent storages 18a and 18b of the analysis unit. When the sample racks 2 are arranged in the supply section 6 and the operation is started from the keyboard 34, the reaction container 15 is washed with washing water by the washing mechanism 22. After washing, water is poured into the reaction vessel 15 and a blank measurement is performed. Reaction vessel 1 after blank measurement
When the sample rack 5 moves to the sample dispensing position, the sample rack 2 is sent along the outgoing path 4a of the transport path, is stopped at the sample dispensing position, and the pipetter 1 is moved to the sample dispensing position for the first measurement item to be analyzed.
6, the sample is dispensed into the reaction container 15 in an amount determined for each measurement item. Pipettor 16 after sample dispensing
The nozzle moves to a cleaning pot, which is not shown in the figure, and the inside and outside of the nozzle are cleaned with pure water. Thereafter, the next item of the same sample or the next different sample is sequentially dispensed into other reaction vessels 15. When the reaction container 15 into which the sample has been dispensed with the reaction disk 14 moves to the reagent dispensing position,
A predetermined amount of a predetermined reagent is sucked by the dispenser 20a or 20b and dispensed into the reaction container 15. After dispensing, the probes of the dispensers 20a and 20b are moved to a cleaning position not shown in the figure, and the inside and outside of the probes are cleaned with pure water. Thereafter, the dispensers 20a and 20b move on to the next reagent dispensing operation.

【0018】検体ラック2は往路を進んで待機部10で
待機し、検体の分析結果を待って復路4bへ送り出され
、収納部8へ収納される。復路4bを移動中に、再検査
の必要のある検体は検体分注位置で停止させられて再び
検体分注が行なわれる。反応ディスク14では検体と試
薬が混ぜられた反応液の吸光度が測定部により測定され
る。分析の終了した反応容器15は洗浄位置で反応液が
吸引されて排出され、水洗され、反応容器内の水切りが
行なわれて新たな検体の反応容器として準備される。   図6のように往路と複路のベルトライン試料搬送シ
ステムを有する自動分析装置に本発明を適用すれば、往
路で試薬分注ミスが生じても複路で再検査を行なうとい
った対応を素早く行なうことができるようになる。
The sample rack 2 travels on the outward path, waits in the standby section 10, waits for the analysis results of the samples, is sent to the return path 4b, and is stored in the storage section 8. While moving on the return path 4b, the sample that needs to be retested is stopped at the sample dispensing position, and sample dispensing is performed again. In the reaction disk 14, the absorbance of a reaction solution containing a sample and a reagent is measured by a measuring section. After the analysis has been completed, the reaction vessel 15 is at a washing position where the reaction liquid is sucked and discharged, washed with water, and the water inside the reaction vessel is drained, thereby preparing it as a reaction vessel for a new sample. If the present invention is applied to an automatic analyzer that has a belt line sample transport system with a forward path and a dual path as shown in Figure 6, even if a reagent dispensing error occurs on the forward path, it will be possible to quickly take measures such as retesting on the dual path. You will be able to do this.

【0019】[0019]

【発明の効果】本発明では試薬分注動作が正常に行なわ
れたか否かを反応容器中の液量から直接に測定して判断
することができる。その結果、不正確な分析値の発生を
防止することができる。試薬分注直後に反応容器内の反
応液(全体に占める割合としては試薬が大部分である)
量をチェックすることができ、試薬分注異常を迅速にキ
ャッチすることができ、再分析を迅速に行なうことがで
きる。試薬分注ミスが連続した場合、例えば3回続発し
た場合など、試薬分注器が異常であるとして試料の採取
を中断し、貴重な試料の無駄使いを防ぐことができる。 本発明の自動分析装置は、クローズド型試薬送液分注方
式の自動分析装置にも適用することができ、また、反応
容器の開口部の上方で試薬分注を行なうオープン型の高
速試薬分注型自動分析装置にも適用することができる。
According to the present invention, it is possible to judge whether or not the reagent dispensing operation has been carried out normally by directly measuring the amount of liquid in the reaction container. As a result, generation of inaccurate analysis values can be prevented. Reaction liquid in the reaction container immediately after reagent dispensing (reagent accounts for the majority of the total)
The amount can be checked, reagent dispensing abnormalities can be quickly detected, and reanalysis can be performed quickly. If reagent dispensing errors occur consecutively, for example three times in a row, it is possible to interrupt sample collection as a result of an abnormality in the reagent dispenser, thereby preventing wastage of valuable samples. The automatic analyzer of the present invention can be applied to a closed-type reagent feeding and dispensing automatic analyzer, and an open-type high-speed reagent dispensing system that performs reagent dispensing above the opening of the reaction container. It can also be applied to type automatic analyzers.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を示すブロック図である。FIG. 1 is a block diagram illustrating the present invention.

【図2】本発明の動作を説明する図であり、(A)は反
応容器に液が十分入っている場合、(B)は反応容器が
空の場合を表わし、(C)は反応槽が水浴になっている
場合の液量と吸光度の関係を示す図、(D)は反応槽が
空気浴の場合の液量と吸光度の関係を示す図である。
FIG. 2 is a diagram illustrating the operation of the present invention; (A) shows a case where the reaction vessel is fully filled with liquid, (B) shows a case where the reaction vessel is empty, and (C) shows a case where the reaction vessel is empty. A diagram showing the relationship between the liquid volume and absorbance when the reaction tank is a water bath, and (D) a diagram showing the relationship between the liquid volume and absorbance when the reaction tank is an air bath.

【図3】自動分析装置の一例のブロック図である。FIG. 3 is a block diagram of an example of an automatic analyzer.

【図4】自動分析装置の基本反応ステップを示す図であ
る。
FIG. 4 is a diagram showing basic reaction steps of an automatic analyzer.

【図5】動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of operation.

【図6】本発明が適用される自動分析装置の具体例を示
す構成図である。
FIG. 6 is a configuration diagram showing a specific example of an automatic analyzer to which the present invention is applied.

【符号の説明】[Explanation of symbols]

40        分光器 42        比較判定部 44        反応容器 46        反応槽 48        反応溶液 50        測定光束 40 Spectrometer 42 Comparison and judgment section 44 Reaction container 46 Reaction tank 48 Reaction solution 50 Measurement light flux

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  反応容器中で試料と分析試薬を所定の
割合で混合し一定条件下で反応させ、その光学的変化に
基づいて試料成分の定量を行なう反応容器直接測光方式
の自動分析装置において、反応容器に水又は水溶液を充
填した状態での近赤外領域の水の吸収波長光の測定値と
、反応容器に試料と分析試薬を分注した状態での近赤外
領域の水の吸収波長光の測定値とを比較して、液量が試
料成分の定量のための正常な液量状態であるか否かを判
定する比較判定部を備えたことを特徴とする自動分析装
置。
Claim 1: In an automatic analyzer using a reaction vessel direct photometry method, in which a sample and an analytical reagent are mixed at a predetermined ratio in a reaction vessel, reacted under certain conditions, and the sample components are quantified based on the optical change. , Measured values of absorption wavelength light of water in the near-infrared region when the reaction container is filled with water or aqueous solution, and absorption of water in the near-infrared region when the sample and analytical reagent are dispensed into the reaction container. 1. An automatic analyzer comprising: a comparison/judgment unit that compares a measured value of wavelength light to determine whether a liquid volume is in a normal liquid volume state for quantifying a sample component.
JP12839191A 1991-04-30 1991-04-30 Automatic analyzer Pending JPH04329362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12839191A JPH04329362A (en) 1991-04-30 1991-04-30 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12839191A JPH04329362A (en) 1991-04-30 1991-04-30 Automatic analyzer

Publications (1)

Publication Number Publication Date
JPH04329362A true JPH04329362A (en) 1992-11-18

Family

ID=14983652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12839191A Pending JPH04329362A (en) 1991-04-30 1991-04-30 Automatic analyzer

Country Status (1)

Country Link
JP (1) JPH04329362A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989908A (en) * 1995-09-20 1997-04-04 Horiba Ltd Method of detecting liquid level by automatic hemocytometer
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus
JP2004028963A (en) * 2002-06-28 2004-01-29 Aloka Co Ltd Specimen analyzer
JP2004108842A (en) * 2002-09-17 2004-04-08 Hitachi High-Technologies Corp Automatic analyzing device and its method
US7934416B2 (en) 2006-12-27 2011-05-03 Rohm Co., Ltd. Method of determining whether liquid amount or quality of liquid reagent is normal in liquid-reagent-containing microchip and liquid-reagent-containing microchip
WO2011099279A1 (en) * 2010-02-09 2011-08-18 ベックマン コールター, インコーポレイテッド Method of managing accuracy in dispensing, method of correcting dispensing volume, method of managing agitating performance, automatic analyzing device, and analyzing kit
JP2012037478A (en) * 2010-08-11 2012-02-23 Nippon Koden Corp Analysis apparatus
JP2014532882A (en) * 2011-11-07 2014-12-08 ベックマン コールター, インコーポレイテッド Robot arm
JP2016156677A (en) * 2015-02-24 2016-09-01 株式会社日立ハイテクノロジーズ Specimen inspection automatization system and method for checking specimen
JP2018040705A (en) * 2016-09-08 2018-03-15 株式会社柴崎製作所 Measurement device, inspection device, measurement method, and inspection method
CN112074744A (en) * 2018-03-16 2020-12-11 株式会社日立高新技术 Automatic analyzer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989908A (en) * 1995-09-20 1997-04-04 Horiba Ltd Method of detecting liquid level by automatic hemocytometer
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus
JP2004028963A (en) * 2002-06-28 2004-01-29 Aloka Co Ltd Specimen analyzer
JP2004108842A (en) * 2002-09-17 2004-04-08 Hitachi High-Technologies Corp Automatic analyzing device and its method
US7934416B2 (en) 2006-12-27 2011-05-03 Rohm Co., Ltd. Method of determining whether liquid amount or quality of liquid reagent is normal in liquid-reagent-containing microchip and liquid-reagent-containing microchip
WO2011099279A1 (en) * 2010-02-09 2011-08-18 ベックマン コールター, インコーポレイテッド Method of managing accuracy in dispensing, method of correcting dispensing volume, method of managing agitating performance, automatic analyzing device, and analyzing kit
JP2012037478A (en) * 2010-08-11 2012-02-23 Nippon Koden Corp Analysis apparatus
JP2014532882A (en) * 2011-11-07 2014-12-08 ベックマン コールター, インコーポレイテッド Robot arm
JP2016156677A (en) * 2015-02-24 2016-09-01 株式会社日立ハイテクノロジーズ Specimen inspection automatization system and method for checking specimen
JP2018040705A (en) * 2016-09-08 2018-03-15 株式会社柴崎製作所 Measurement device, inspection device, measurement method, and inspection method
CN112074744A (en) * 2018-03-16 2020-12-11 株式会社日立高新技术 Automatic analyzer
EP3767300A4 (en) * 2018-03-16 2022-05-11 Hitachi High-Tech Corporation Automatic analysis device

Similar Documents

Publication Publication Date Title
JP6576833B2 (en) Automatic analyzer
US9989549B2 (en) Automatic analyzer
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
JPH04329362A (en) Automatic analyzer
JP5140491B2 (en) Automatic analyzer and dispensing accuracy confirmation method
JP3102160B2 (en) Immunoturbidimetric analysis method
JPH04138365A (en) Automatic chemical analyzing method and apparatus
JPH0510953A (en) Method for judging and analyzing prozone in antigen antibody reaction
JPH05281242A (en) Equipment for automatic analysis
JPH0694717A (en) Prozone criterion and analysis method in antigen antibody reaction
JPH0815265A (en) Automatic chemical analysis apparatus
JPH04204378A (en) Immune reaction automatic analyzer
US20190369130A1 (en) Automatic Analyzer
JP3109443U (en) Automatic analyzer
EP3767301A1 (en) Automatic analysis device
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
JPH1073601A (en) Autoanalyzer
CN113866417A (en) Specific protein measurement method
JP2841914B2 (en) Biochemical automatic analyzer
JP2001264344A (en) Analyzing device
JP3259431B2 (en) Immunoturbidimetric analysis method
JPH1123580A (en) Biochemical automatic analysis device
JPH085562A (en) Automatic analytic method
JPH1019900A (en) Automatic analyzer
JP5192316B2 (en) Automatic analyzer