JPH04204378A - Immune reaction automatic analyzer - Google Patents

Immune reaction automatic analyzer

Info

Publication number
JPH04204378A
JPH04204378A JP33955190A JP33955190A JPH04204378A JP H04204378 A JPH04204378 A JP H04204378A JP 33955190 A JP33955190 A JP 33955190A JP 33955190 A JP33955190 A JP 33955190A JP H04204378 A JPH04204378 A JP H04204378A
Authority
JP
Japan
Prior art keywords
absorbance
wavelength
sample
value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33955190A
Other languages
Japanese (ja)
Other versions
JPH0743379B2 (en
Inventor
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2339551A priority Critical patent/JPH0743379B2/en
Publication of JPH04204378A publication Critical patent/JPH04204378A/en
Publication of JPH0743379B2 publication Critical patent/JPH0743379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To decide whether antigen of an inspection body is excessive or not by calculating a value(FP) of ratio of an absorbance difference, from the absorbance difference between different times after mixing a sample of two wavelength in a reaction reagent, compared with a preset reference FP value. CONSTITUTION:A measuring part 2 measures absorbance by 2-wavelength relating to a mixed solution of a sample with a reaction reagent. An arithmetic part 6 calculates a value(FP) of ratio of an absorbance difference by both wavelengths from the absorbance difference between different times after mixing the sample with the reaction reagent in each wavelength of the 2-wavelength, as FP=[A1(S)-A1(f)]/[A2(S)-A2(f) [A1(S): absorbance at the first time in the first wavelength Al(f): absorbance at second time by first wavelength A2(S): absorbance at first time by second wavelength A2(f): absorbance at second time by second wavelength]. A decision part 8 compares the calculated FP value with a preset reference FP value to decide antigen or antibody in an excessive region when the calculated FP value is smaller than the reference FP value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は血清など多成分を含む試料中の目的成分濃度又
は活性値を免疫反応を利用して測定する免疫反応自動分
析装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an automatic immune reaction analyzer that measures the concentration or activity value of a target component in a sample containing multiple components such as serum using immune reactions. .

(従来の技術) 血清などの検体を測定する方法として、検体に含まれる
目的成分と抗原抗体反応を行なう反応試薬を添加し、試
料中の抗原又は抗体と反応試薬中の抗体又は抗原とを反
応させ、生じた抗原抗体複合物による吸光度から試料中
の抗原又は抗体を定量する免疫比濁法がある。
(Prior art) As a method for measuring a sample such as serum, a reaction reagent that performs an antigen-antibody reaction with the target component contained in the sample is added, and the antigen or antibody in the sample is reacted with the antibody or antigen in the reaction reagent. There is an immunoturbidimetric method in which the antigen or antibody in a sample is quantified from the absorbance of the resulting antigen-antibody complex.

血清などの検体では目的成分が低濃度のものがら高濃度
のものまで広い濃度範囲のものが測定される。抗原抗体
複合物による吸光度を測定する場合、その抗原抗体複合
物の生成量は検体の抗原又は抗体の濃度が高くなるにつ
れて多くなり、かつ複合物の粒子径が大きくなるために
吸光度が上昇する。しかし、検体の抗原又は抗体の濃度
がある値以上になると、抗原抗体架橋反応が起こらなく
なるために抗原抗体複合物の粒子径が、小さくなり、吸
光度が低下してくる。この高濃度領域で吸光度が低下す
る現象はプロゾーン現象と呼ばれており、吸光度から検
体の定量分析を行なう場合にはこのプロゾーン現象が起
こっている領域では定量することができない。そのため
、プロゾーン現象が起こっていることがわかれば検体を
希釈して再び測定を行なうという操作がなされる。
In samples such as serum, target components are measured over a wide range of concentrations, from low concentrations to high concentrations. When measuring the absorbance due to an antigen-antibody complex, the amount of the antigen-antibody complex produced increases as the concentration of the antigen or antibody in the specimen increases, and the absorbance increases as the particle size of the complex increases. However, when the concentration of the antigen or antibody in the specimen exceeds a certain value, the antigen-antibody cross-linking reaction no longer occurs, so the particle size of the antigen-antibody complex becomes smaller and the absorbance decreases. This phenomenon in which the absorbance decreases in a high concentration region is called the prozone phenomenon, and when performing quantitative analysis of a sample from the absorbance, it is impossible to quantify in the region where the prozone phenomenon occurs. Therefore, if it is determined that the prozone phenomenon is occurring, the sample is diluted and the measurement is performed again.

プロゾーン現象が起こっているかどうかの判定を行なう
方法としては、検体と反応試薬を混合させて抗原抗体反
応を行なわせた後の吸光度の時間変化を単一波長で測定
し、初期の吸光度変化と長時間経過後の吸光度変化とか
らプロゾーン判定を行なう方法が用いられているが、単
一波長測定であるために安定した判定を行なうことはで
きない。
A method for determining whether or not a prozone phenomenon is occurring is to mix the sample and reaction reagent and perform an antigen-antibody reaction, then measure the change in absorbance over time at a single wavelength, and then compare the initial change in absorbance with the A method of making a prozone judgment based on the change in absorbance after a long period of time has been used, but since it is a single wavelength measurement, stable judgment cannot be made.

そこで、2波長で吸光度を測定し、次の式%式% からその値が一定値以下になれば抗原又は抗体が過剰で
あると判断する方法を本出願人は既に提案している。こ
こで、A1は検体にバッファ液を添加し、それに検体の
目的成分と抗原抗体反応を起こす反応試薬を添加した混
合溶液の一定時間後の第1の波長での吸光度、AlSb
は検体にバッファ液のみを添加した溶液の一定時間後の
第1の波長での吸光度、AlRbは反応試薬の一定時間
後の第1゛の波長での吸光度、AIBbはバッファ液に
水を添加したものの一定時間後の第1の波長での吸光度
、A2は検体にバッファ液を添加し、それに検体の目的
成分と抗原抗体反応を起こす反応試薬を添加した混合溶
液の一定時間後の第2の波長での吸光度、A2Sbは検
体にバッファ液のみを添加した溶液の一定時間後の第2
の波長での吸光度、A2Rbは反応試薬の一定時間後の
第2の波長での吸光度、A2Bbはバッファ液に水を添
加したものの一定時間後の第2の波長での吸光度である
わ (発明が解決しようとする課題) 上記の演算式により抗原又は抗体が過剰であるか否かを
判定する方法では、検体に反応試薬を添加したものの吸
光度の他に、検体にバッファ溶液を添加したものの吸光
度、反応試薬の吸光度や、バッファ液の吸光度などを測
定する必要があり、操作が煩雑になる。
Therefore, the present applicant has already proposed a method in which the absorbance is measured at two wavelengths, and if the value falls below a certain value, it is determined that the antigen or antibody is in excess based on the following formula % formula %. Here, A1 is the absorbance at the first wavelength after a certain period of time of a mixed solution in which a buffer solution is added to the specimen and a reaction reagent that causes an antigen-antibody reaction with the target component of the specimen is added.
is the absorbance at the first wavelength after a certain period of time of a solution in which only a buffer solution was added to the sample, AlRb is the absorbance at the first wavelength after a certain period of time of a reaction reagent, and AIBb is the absorbance at the first wavelength after a certain period of time of a solution in which only a buffer solution was added to the buffer solution. A2 is the absorbance at the first wavelength after a certain period of time, and A2 is the absorbance at the second wavelength after a certain period of time of a mixed solution in which a buffer solution is added to the specimen and a reaction reagent that causes an antigen-antibody reaction with the target component of the specimen is added. The absorbance at , A2Sb is the absorbance at
A2Rb is the absorbance of the reaction reagent at the second wavelength after a certain period of time, and A2Bb is the absorbance of the reaction reagent at the second wavelength after a certain period of time. Problems to be Solved) In the method of determining whether antigen or antibody is in excess using the above calculation formula, in addition to the absorbance of the sample to which a reaction reagent has been added, the absorbance of the sample to which a buffer solution has been added, It is necessary to measure the absorbance of the reaction reagent, the absorbance of the buffer solution, etc., which makes the operation complicated.

また、上記の式では検体にバッファ液を添加した状態で
の吸光度を測定しなければならないので、試薬としては
検体と抗原抗体反応を起こさせる反応試薬のほかにバッ
ファ液も必要とし、そのため2試薬系の反応にしか適用
することができない。
In addition, in the above formula, the absorbance must be measured with a buffer solution added to the sample, so in addition to the reaction reagent that causes the antigen-antibody reaction with the sample, a buffer solution is also required, so two reagents are required. It can only be applied to system reactions.

本発明は検体の抗原又は抗体が過剰であるか否かを簡単
な操作により判定することができ、また2試薬系の反応
だけでなく、1試薬系の反応にも適用することのできる
判定機能を備えた自動分析装置を提供することを目的と
するものである。
The present invention has a determination function that can determine whether or not the antigen or antibody in a sample is excessive by a simple operation, and can be applied not only to two-reagent system reactions but also to one-reagent system reactions. The purpose of this invention is to provide an automatic analyzer equipped with the following.

(課題を解決するための手段) 第1図に本発明の判定機能部分を示す。(Means for solving problems) FIG. 1 shows the determination function part of the present invention.

2は免疫比濁法の分析装置で吸光度を測定する測定部で
あり、この測定部2は試料と反応試薬との混合溶液に対
して2波長で吸光度測定を行なうことのできる測定部で
ある。4は測定された吸光度を記憶するメモリ装置であ
る。6は演算部であり、演算部6では、2波長の各波長
における試料と反応試薬との混合後の異なる時刻間での
吸光度差から両波長による吸光度差の比の値FPを(た
だし、Al(s)は第1の波長で第1の時刻での吸光度
、Al(f)は第1の波長で第2の時刻での吸光度、A
2(s)は第2の波長で第1の時刻での吸光度、A2(
f)は第2の波長で第2の時刻での吸光度である) として算出する。8は判定部であり、算出されたFP値
を予め設定された基準FP値と比較し、基準FP値より
小さければ抗原又は抗体の過剰域であると判定する。
Reference numeral 2 denotes a measuring section for measuring absorbance with an immunoturbidimetric analyzer, and this measuring section 2 is a measuring section capable of measuring absorbance at two wavelengths for a mixed solution of a sample and a reaction reagent. 4 is a memory device that stores the measured absorbance. Reference numeral 6 denotes a calculation section, and the calculation section 6 calculates a value FP of the ratio of the absorbance difference between the two wavelengths from the absorbance difference at different times after mixing the sample and the reaction reagent at each of the two wavelengths (however, Al (s) is the absorbance at the first wavelength and the first time, Al(f) is the absorbance at the first wavelength and the second time, A
2(s) is the absorbance at the second wavelength and the first time, A2(
f) is the absorbance at the second wavelength and at the second time. Reference numeral 8 denotes a determination unit, which compares the calculated FP value with a preset reference FP value, and determines that the antigen or antibody is in the excessive range if it is smaller than the reference FP value.

(作用) ある試料に反応試薬を添加して抗原抗体反応を起こさせ
、その反応試薬添加後の時間に対する吸光度変化を2つ
の波長λ□とλ2で測定したとき、それぞれの波長での
吸光度が第2図に示されるように変化したものとする。
(Effect) When a reaction reagent is added to a sample to cause an antigen-antibody reaction, and the change in absorbance over time after the addition of the reaction reagent is measured at two wavelengths λ□ and λ2, the absorbance at each wavelength is Assume that the changes occur as shown in Figure 2.

第1の時刻Sとそれからある時間後の時刻fは自由に設
定することができる。これらの2波長でのある時間を隔
てた吸光度の差から前記(1)式によりFP値を演算す
る。
The first time S and the time f after a certain time can be set freely. The FP value is calculated from the difference in absorbance at these two wavelengths at a certain time interval using the above equation (1).

このFP値は検体の抗原又は抗体の濃度が増加するにつ
れて減少し、プロゾーン領域に達するとほぼ一定した値
となる。
This FP value decreases as the concentration of the antigen or antibody in the specimen increases, and becomes a nearly constant value when it reaches the prozone region.

(実施例) 第3図は本発明が適用される自動分析装置の一例を表わ
したものである。
(Example) FIG. 3 shows an example of an automatic analyzer to which the present invention is applied.

10は反応ラインであり、反応ディスクの周囲に沿って
反応管12が配列されている。反応ライン10の近くに
はターンテーブル14が設けられ、ターンテーブル14
には検体試料を収容したカップが並べられる。16はピ
ペッタを備えた検体分注ノズル機構であり、ターンテー
ブル14上の検体カップから検体を吸引し、反応管12
に注入する。18は検体分注ノズル機構16に検体を吸
引し、反応管12に注入するためのピペッタポンプと、
検体を脱気水で押し出すためのダイリュータポンプであ
る。ターンテーブル14とピペッタポンプ・ダイリュー
タポンプ18はサンプラー制御コンピュータ22及びイ
ンターフェース20を介してマイクロコンピュータ24
によって制御される。17は検体分注ノズル機構16の
プローブや流路を洗浄するための洗浄液が湧き出す洗浄
槽である。
10 is a reaction line, and reaction tubes 12 are arranged along the periphery of the reaction disk. A turntable 14 is provided near the reaction line 10, and the turntable 14
Cups containing specimen samples are lined up. 16 is a sample dispensing nozzle mechanism equipped with a pipettor, which sucks the sample from the sample cup on the turntable 14 and transfers the sample to the reaction tube 12.
Inject into. 18 is a pipettor pump for aspirating the sample into the sample dispensing nozzle mechanism 16 and injecting it into the reaction tube 12;
This is a diluter pump for pushing out the sample with degassed water. The turntable 14 and the pipettor pump/diluter pump 18 are connected to a microcomputer 24 via a sampler control computer 22 and an interface 20.
controlled by Reference numeral 17 denotes a cleaning tank from which a cleaning liquid for cleaning the probe and flow path of the sample dispensing nozzle mechanism 16 gushes out.

反応管12にバッファ液や反応試薬を注入するために、
デイスペンサ26a、26bと試薬庫28が設けられて
いる。試薬庫28に配列された試薬瓶からデイスペンサ
26aによってバッファ液が吸引されて反応管12に注
入され、デイスペンサ26bによって反応試薬が吸引さ
れて反応管12に注入される。30はデイスペンサ26
a又は26bで試薬を吸引し反応管12に注入するため
のデイスペンサポンプであり、デイスペンサ26a、2
6bとデイスペンサポンプ30はデイスペンサ制御コン
ピュータ32とインターフェース20を介してマイクロ
コンピュータ24により制御される。27a、27bは
それぞれデイスペンサ26a、26bのプローブや流路
を洗浄するための洗浄液が湧き出す洗浄瓶である。
In order to inject the buffer solution and reaction reagent into the reaction tube 12,
Dispensers 26a, 26b and a reagent storage 28 are provided. A buffer solution is sucked by the dispenser 26 a from the reagent bottles arranged in the reagent storage 28 and injected into the reaction tube 12 , and a reaction reagent is sucked by the dispenser 26 b and injected into the reaction tube 12 . 30 is dispenser 26
A or 26b is a dispenser pump for sucking the reagent and injecting it into the reaction tube 12, and the dispenser 26a, 2
6b and dispenser pump 30 are controlled by microcomputer 24 via dispenser control computer 32 and interface 20. Reference numerals 27a and 27b are cleaning bottles from which cleaning liquid flows out to clean the probes and channels of the dispensers 26a and 26b, respectively.

反応管12に注入された検体と試薬を撹拌するために撹
拌機構34が反応ライン1oの近くに設けられ、また反
応管12中の反応を光学的に検出する測定部として、反
応ライン10の近傍には反応管12の配列の周囲に沿っ
て往復方向に移動可能な分光器36が設けられている。
A stirring mechanism 34 is provided near the reaction line 1o to stir the sample and reagent injected into the reaction tube 12, and a stirring mechanism 34 is provided near the reaction line 10 as a measurement section for optically detecting the reaction in the reaction tube 12. is provided with a spectrometer 36 that is movable in a reciprocating direction along the periphery of the array of reaction tubes 12.

反応管12の洗浄を行なうために、反応ライン10の近
くには洗浄機構38が設けられている。
A cleaning mechanism 38 is provided near the reaction line 10 to clean the reaction tube 12.

40は洗浄機構38のノズルから反応管12に洗浄液を
注入し回収するための洗浄ポンプである。
40 is a cleaning pump for injecting and recovering cleaning liquid from the nozzle of the cleaning mechanism 38 into the reaction tube 12.

洗浄機構38では反応管12内の反応液をまず吸引し、
それらを図示しない廃液タンクに送る。
In the cleaning mechanism 38, the reaction liquid in the reaction tube 12 is first sucked,
They are sent to a waste liquid tank (not shown).

撹拌機構34、洗浄機構38及び洗浄ポンプ40は反応
部制御コンピュータ42及びインターフェース20を介
してマイクロコンピュータ24によって制御される。
The stirring mechanism 34, the washing mechanism 38, and the washing pump 40 are controlled by the microcomputer 24 via the reaction section control computer 42 and the interface 20.

分光器36の検出出力は、log変換部及びA/D変換
部44、並びにインターフェース2oを介してマイクロ
コンピュータ24に取り込まれる。
The detection output of the spectrometer 36 is taken into the microcomputer 24 via the log conversion section, the A/D conversion section 44, and the interface 2o.

反応管12は恒温循環水によって温度が一定に保たれる
The temperature of the reaction tube 12 is kept constant by constant temperature circulating water.

インターフェース20にはさらに、プリンタ48、キー
ボード50、CRT52及びフロッピーディスクドライ
ブ54が接続されている。
Further connected to the interface 20 are a printer 48, a keyboard 50, a CRT 52, and a floppy disk drive 54.

第1図におけるメモリ装置4、演算部6及び判定部8は
マイクロコンピュータ24により実現される。
The memory device 4, arithmetic unit 6, and determination unit 8 in FIG. 1 are realized by a microcomputer 24.

第4図から第6図により免疫グロブリンIgGの測定に
本発明を適用した例を示す。
4 to 6 show examples in which the present invention is applied to the measurement of immunoglobulin IgG.

第4図はIgGを高濃度に含む濃度が既知の血清(I 
gG濃度が約7000 m g / d c )の1゜
段階希釈系列に反応試薬を混合したときの測定波長34
0nm(A)と750nm (B)での吸光度(単位は
光学濃度○、D、)の時間変化を示す。
Figure 4 shows serum containing a high concentration of IgG (I
Measurement wavelength 34 when reaction reagents are mixed in a 1° serial dilution series with gG concentration of approximately 7000 mg/dc)
It shows the time change in absorbance (units are optical density ○, D) at 0 nm (A) and 750 nm (B).

反応時間は抗原抗体反応を起こさせる反応試薬を分注し
た時点をOとし、1目盛24秒で表わしている。各曲線
の数値1/10〜10/10は血清試料の希釈率を表わ
している。
The reaction time is expressed in units of 24 seconds per scale, with O representing the time point at which the reaction reagent causing the antigen-antibody reaction was dispensed. The numbers 1/10 to 10/10 of each curve represent the dilution rate of the serum sample.

第5図には第4図の結果に基づいて4種類の反応時間で
の希釈系列と吸光度との関係を示す。いずれの測定波長
でも高濃度領域で吸光度が低下している。吸光度が低下
している領域(鎖線の右側領域)はプロゾーン現象が起
こっている領域であり、そのプロゾーン領域では測定さ
れた吸光度を検量線に当て嵌めて目的成分濃度を算出す
ると実際の濃度よりも低い濃度となり不正確となる。
FIG. 5 shows the relationship between the dilution series and the absorbance at four different reaction times based on the results shown in FIG. At all measurement wavelengths, the absorbance decreases in the high concentration region. The area where the absorbance decreases (the area to the right of the chain line) is the area where the prozone phenomenon occurs, and in that prozone area, when the target component concentration is calculated by applying the measured absorbance to the calibration curve, the actual concentration is calculated. The concentration will be lower than that and will be inaccurate.

そこで、本発明の(1)式に従って第2の時刻fを試薬
添加後24X15秒後の時刻とし、第1の時刻S(第6
図ではXで表わしている)を変えて演算を行なった結果
を第6図に示す。A(340)で示される測定波長34
0nmの15X24秒経過後の吸光度曲線の極大部より
右#l(すなわち高濃度側)ではFP値はほぼ一定にな
る。FP値を1.0に設定しておくことにより、希釈率
3/10以上の高濃度検体はプロゾーン域と判定するこ
とができる。
Therefore, according to the formula (1) of the present invention, the second time f is set as the time 24×15 seconds after the addition of the reagent, and the first time S (sixth
FIG. 6 shows the results of calculations performed with different values (represented by X in the figure). Measurement wavelength 34 denoted by A(340)
The FP value becomes almost constant at #1 to the right of the maximum part of the absorbance curve after 15×24 seconds at 0 nm (that is, on the high concentration side). By setting the FP value to 1.0, a high concentration sample with a dilution rate of 3/10 or more can be determined to be in the prozone region.

(発明の効果) 本発明によれば試料に反応試薬を混合した溶液を2つの
時刻で2波長測定してその試料が抗原又は抗体の過剰状
態か否かを判定するようにしたので、操作が簡単であり
、正確な判定を行なうことができる。
(Effects of the Invention) According to the present invention, a solution in which a reaction reagent is mixed with a sample is measured at two wavelengths at two times to determine whether or not the sample contains an excess of antigen or antibody. It is simple and allows accurate judgment.

反応試薬分注直後の液は撹拌による揺らぎなどがあり、
正確な吸光度を測定しにくい。撹拌の影響を避けるため
に第1の時刻での測定点を後の方にすると、第2の時間
での吸光度との差が/I\さくなり、再現性が得にくく
なる。しかし、本発明では2波長で測定するので、撹拌
による液の揺らぎを補正することができ、反応試薬分注
直後の値を使用することができるので、感度を大きくす
ることができる。
Immediately after dispensing the reaction reagent, the liquid may fluctuate due to stirring.
Difficult to measure accurate absorbance. If the measurement point at the first time is set later in order to avoid the influence of stirring, the difference from the absorbance at the second time will be /I\\, making it difficult to obtain reproducibility. However, in the present invention, since measurement is performed using two wavelengths, fluctuations in the liquid due to stirring can be corrected, and values immediately after dispensing the reaction reagent can be used, so sensitivity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の判定機能部分を示すブロック図、第2
図は抗原抗体反応複合体による吸光度の時間変化を示す
図、第3図は本発明が適用される自動分析装置の一例を
示す構成図、第4図は抗原抗体反応複合体による吸光度
の時間変化を示す図、第5図は試料濃度による吸光度変
化を示す図、第6図は本発明により算出されたFP値を
吸光度とともに示す図である。 2・・・・・・測定部、4・・・・・・メモリ装置、6
・・・・・・演算部、8・・・・・・判定部。 特許出願人 株式会社島津製作所
FIG. 1 is a block diagram showing the determination function part of the present invention, and FIG.
The figure shows the change in absorbance over time due to the antigen-antibody reaction complex, Figure 3 is a configuration diagram showing an example of an automatic analyzer to which the present invention is applied, and Figure 4 shows the change in absorbance over time due to the antigen-antibody reaction complex. FIG. 5 is a diagram showing changes in absorbance depending on sample concentration, and FIG. 6 is a diagram showing FP values calculated according to the present invention together with absorbance. 2... Measuring unit, 4... Memory device, 6
. . . Arithmetic section, 8 . . . Judgment section. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)試料に反応試薬を添加し、試料中の抗原又は抗体
と反応試薬中の抗体又は抗原とを反応させ、生じた抗原
抗体複合物による吸光度から試料中の抗原又は抗体を定
量する免疫比濁法の分析装置において、吸光度を測定す
る測定部は試料と反応試薬との混合溶液に対して2波長
で吸光度測定を行なうことのできる測定部であり、測定
された吸光度を記憶するメモリ装置と、2波長の各波長
における試料と反応試薬との混合後の異なる時刻間での
吸光度差から両波長による吸光度差の比の値FPを FP=[A1(s)−A1(f)]/[A2(s)−A
2(f)](ただし、A1(s)は第1の波長で第1の
時刻での吸光度、A1(f)は第1の波長で第2の時刻
での吸光度、A2(s)は第2の波長で第1の時刻での
吸光度、A2(f)は第2の波長で第2の時刻での吸光
度である) として算出する演算部と、算出されたFP値を予め設定
された基準FP値と比較し、基準FP値より小さければ
抗原又は抗体の過剰域であると判定する判定部とを備え
たことを特徴とする免疫反応自動分析装置。
(1) Immune ratio in which a reaction reagent is added to a sample, the antigen or antibody in the sample is reacted with the antibody or antigen in the reaction reagent, and the antigen or antibody in the sample is quantified from the absorbance of the resulting antigen-antibody complex. In a turbidity method analyzer, the measuring section that measures absorbance is a measuring section that can measure the absorbance at two wavelengths for a mixed solution of a sample and a reaction reagent, and it has a memory device that stores the measured absorbance. , from the absorbance difference at different times after mixing the sample and reaction reagent at each of the two wavelengths, the value FP of the ratio of the absorbance difference between the two wavelengths is calculated as FP=[A1(s)-A1(f)]/[ A2(s)-A
2(f)] (where A1(s) is the absorbance at the first wavelength and the first time, A1(f) is the absorbance at the first wavelength and the second time, and A2(s) is the absorbance at the second time. A2(f) is the absorbance at the second wavelength and the second time, and A2(f) is the absorbance at the second wavelength and the second time. 1. An automatic immune reaction analyzer comprising: a determination unit that compares the FP value with the reference FP value and determines that the antigen or antibody is in the excessive range if the FP value is smaller than the standard FP value.
JP2339551A 1990-11-30 1990-11-30 Immune reaction automatic analyzer Expired - Fee Related JPH0743379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339551A JPH0743379B2 (en) 1990-11-30 1990-11-30 Immune reaction automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339551A JPH0743379B2 (en) 1990-11-30 1990-11-30 Immune reaction automatic analyzer

Publications (2)

Publication Number Publication Date
JPH04204378A true JPH04204378A (en) 1992-07-24
JPH0743379B2 JPH0743379B2 (en) 1995-05-15

Family

ID=18328541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339551A Expired - Fee Related JPH0743379B2 (en) 1990-11-30 1990-11-30 Immune reaction automatic analyzer

Country Status (1)

Country Link
JP (1) JPH0743379B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528292A (en) * 2007-05-22 2010-08-19 ベクトン・ディキンソン・アンド・カンパニー Dyes with a ratiometric fluorescence response to detect metabolites
EP2837937A1 (en) 2013-08-15 2015-02-18 Roche Diagniostics GmbH Method for the detection of the prozone effect of photometric assays
CN104969069A (en) * 2012-12-28 2015-10-07 雅培医护站股份有限公司 Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
CN110567900A (en) * 2019-09-29 2019-12-13 迈克医疗电子有限公司 method and device for judging antigen excess in sample reaction and optical detection system
JP2022501604A (en) * 2018-09-28 2022-01-06 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド How to detect hook effects associated with the desired analyses during or due to a diagnostic assay being performed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149564A (en) * 1986-12-12 1988-06-22 Sekisui Chem Co Ltd Method for judging antigen-antibody reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149564A (en) * 1986-12-12 1988-06-22 Sekisui Chem Co Ltd Method for judging antigen-antibody reaction

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528292A (en) * 2007-05-22 2010-08-19 ベクトン・ディキンソン・アンド・カンパニー Dyes with a ratiometric fluorescence response to detect metabolites
CN104969069A (en) * 2012-12-28 2015-10-07 雅培医护站股份有限公司 Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
US9671398B2 (en) 2012-12-28 2017-06-06 Abbott Point Of Care Inc. Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
CN104969069B (en) * 2012-12-28 2017-09-12 雅培医护站股份有限公司 For the apparatus and method for the dynamic range for identifying hook effect and expansion point of care immunoassays
EP2837937A1 (en) 2013-08-15 2015-02-18 Roche Diagniostics GmbH Method for the detection of the prozone effect of photometric assays
WO2015022406A1 (en) * 2013-08-15 2015-02-19 Roche Diagnostics Gmbh Method for the detection of the prozone effect of photometric assays
CN105339794A (en) * 2013-08-15 2016-02-17 豪夫迈·罗氏有限公司 Method for the detection of the prozone effect of photometric assays
JP2016530514A (en) * 2013-08-15 2016-09-29 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for detecting prozone effects in photometric assays
US10809258B2 (en) 2013-08-15 2020-10-20 Roche Diagnostics Operations, Inc. Method for the detection of the prozone effect of photometric assays
JP2022501604A (en) * 2018-09-28 2022-01-06 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド How to detect hook effects associated with the desired analyses during or due to a diagnostic assay being performed
CN110567900A (en) * 2019-09-29 2019-12-13 迈克医疗电子有限公司 method and device for judging antigen excess in sample reaction and optical detection system
CN110567900B (en) * 2019-09-29 2022-07-05 迈克医疗电子有限公司 Method and device for judging antigen excess in sample reaction and optical detection system

Also Published As

Publication number Publication date
JPH0743379B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US11971425B2 (en) Automatic analysis device and automatic analysis method
JPH04329362A (en) Automatic analyzer
JPH04204378A (en) Immune reaction automatic analyzer
JP3206999B2 (en) Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same
JP3168633B2 (en) Prozone determination method and analysis method in antigen-antibody reaction
JP4635138B2 (en) Analysis method of specific components
JP2000221195A (en) Prozone judging method, storage medium storing the same and automatic analyzer using the same
JP2604043B2 (en) Automatic analyzer
JP4705182B2 (en) Specific component analyzer
JPH02287260A (en) Automatic analyzer
JPH0694717A (en) Prozone criterion and analysis method in antigen antibody reaction
JPH0510953A (en) Method for judging and analyzing prozone in antigen antibody reaction
JP2508115B2 (en) Automatic biochemical analyzer
JPH03181861A (en) Automatic analyser
JPH06109740A (en) Immunity nephelometry analyzing method
JP3109443U (en) Automatic analyzer
JPH04249744A (en) Automatic apparatus for biochemical analysis
JP7420976B2 (en) Automatic analyzer and analysis method
JP2533527B2 (en) Automatic analyzer
JPS6060558A (en) Analyzing method for plural measurements
JPH03140844A (en) Multi-item analysis of minute sample
JPH0526144B2 (en)
JPS5987362A (en) Method of sample analysis
JPH08247950A (en) Concentration analysis method
JPH09127124A (en) Automatic analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees