JPH04304225A - New compound, resin, resin composition, and cured article - Google Patents

New compound, resin, resin composition, and cured article

Info

Publication number
JPH04304225A
JPH04304225A JP9266391A JP9266391A JPH04304225A JP H04304225 A JPH04304225 A JP H04304225A JP 9266391 A JP9266391 A JP 9266391A JP 9266391 A JP9266391 A JP 9266391A JP H04304225 A JPH04304225 A JP H04304225A
Authority
JP
Japan
Prior art keywords
formula
product
resin
epoxy resin
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266391A
Other languages
Japanese (ja)
Other versions
JP2856565B2 (en
Inventor
Kazuyuki Murata
和幸 村田
Hiromi Morita
博美 森田
Ichiro Kimura
一郎 木村
Tomiyoshi Ishii
石井 富好
Masahiro Hamaguchi
昌弘 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP9266391A priority Critical patent/JP2856565B2/en
Publication of JPH04304225A publication Critical patent/JPH04304225A/en
Application granted granted Critical
Publication of JP2856565B2 publication Critical patent/JP2856565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a resin compsn. having both a high thermal resistance and low water absorption properties by using a resin having a specific structural formula. CONSTITUTION:A dimethylol compd. of formula I or II (wherein R is 1-4C alkyl, aryl, or halogen) is condensed with dihydroxynaphthalene of formula III in the presence of an acid catalyst to give a resin of formula IV (wherein A is a group of formula V or VI; X is H or a group of formula VII; and n is 0-10). An epoxy resin which comprises the resin of formula IV wherein X is the group of formula VII, a curative which comprises the resin of formula IV wherein X is H, and an accelerator are compounded to give a resin compsn.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電子部品の封止又は積
層用の材料として有用な化合物、樹脂、樹脂組成物及び
その硬化物に関する。 【0002】 【従来の技術】従来から電気・電子部品、特にICの封
止剤の分野では、エポキシ樹脂、フェノールノボラック
樹脂、硬化促進剤を主成分とした樹脂組成物が広く用い
られている。 【0003】しかし、近年のICにおける高密度・高集
積化は、封止剤に対して高耐熱化、低吸水化を要求する
ようになった。とりわけ、ICの高密度実装におけるハ
ンダ浴浸漬という苛酷な条件は、硬化物に対する高耐熱
化、低吸水化の要求をますます強めている。 【0004】しかし、従来の組成物においてエポキシ樹
脂として一般に用いられているクレゾールノボラック型
エポキシ樹脂では、ハンダ浴浸漬という苛酷な条件に対
して耐熱性の面で不充分である。又、耐熱性を有すると
して提案されている特開昭63−264622号公報記
載のフェノール性水酸基を有する芳香族アルデヒドとフ
ェノール類を縮合して得られるポリフェノールをエポキ
シ化したポリエポキシ化合物などでは硬化物の耐熱性の
向上は認められるものの、軟化点の上昇、あるいは溶融
粘度の上昇がみられ作業性を損なうという欠点を有し、
又、吸水率の面でもクレゾールノボラック型エポキシ樹
脂には及ばない。 【0005】一方、硬化剤として一般に使用されている
フェノールノボラック樹脂は耐熱性の面で未だ不充分で
あり、低分子量体(2核体フェノールノボラック)を少
なくする試みがなされているものの、ますます苛酷にな
っていく条件下(例えば、ハンダ浴浸漬)では満足な結
果をもたらしていない。そこで耐熱性、低吸水性の硬化
物を与え、更に良好な作業性を兼ね備えた樹脂の開発が
待ち望まれている。 【0006】 【発明が解決しようとする課題】本発明は、このように
苛酷になっていく条件にも耐え得る、高耐熱性でしかも
低吸水性の硬化物を与える樹脂組成物及びその硬化物を
提供するものである。 【0007】 【課題を解決するための手段】本発明者らは、上記の相
反する2つの特性、高耐熱性、低吸水性を兼ね備えた樹
脂組成物の開発を目的に鋭意検討した結果、ナフトール
環を導入した特定の構造の化合物を使用することにより
上記目的を実現できることを見出だし本発明を完成する
に至った。 【0008】即ち、本発明は、(1)式[1]【000
9】 【化17】 【0010】(式中、Aは、式[A1]【0011】 【化18】 【0012】又は式[A2] 【0013】 【化19】 【0014】を、Rは炭素数1〜4のアルキル基、アリ
ール基又はハロゲン原子を、XはH又は式[XE]【0
015】 【化20】 【0016】を示し、nは0〜10の値をとる。)で表
される樹脂、(2)式[2] 【0017】 【化21】 【0018】(式中、Rは炭素数1〜4のアルキル基、
アリール基又はハロゲン原子を示す。)で表される化合
物、(3)式[3] 【0019】 【化22】 【0020】で表される化合物、(4)式[4]【00
21】 【化23】 【0022】で表される化合物、(5)式[5]【00
23】 【化24】 【0024】で表される化合物、(6)式[6]【00
25】 【化25】 【0026】(式中、Rは炭素数1〜4のアルキル基、
アリール基又はハロゲン原子を示す。)で表されるエポ
キシ化合物、(7)式[7] 【0027】 【化26】 【0028】で表されるエポキシ化合物、(8)式[8
] 【0029】 【化27】 【0030】で表されるエポキシ化合物、(9)式[9
] 【0031】 【化28】 【0032】で表されるエポキシ化合物、(10)式[
10] 【0033】 【化29】 【0034】(式中、Rは、炭素数1〜4のアルキル基
、アリール基又はハロゲン原子を示す。)又は式[11
] 【0035】 【化30】 【0036】(式中、Rは前記と同じ意味を示す)で表
されるジメチロール化合物と式[12]【0037】 【化31】 【0038】で表されるジヒドロキシナフタレンとを反
応させて得られ、上記(1)の式[1]においてn=O
でX=Hの化合物を30重量%以上含む、上記(1)の
式[1]においてXがHである樹脂、 【0039】(11)上記(10)の樹脂を、式[13
] 【0040】 【化32】 【0041】(式中、Yはハロゲン原子を示す)で表さ
れるエピハロヒドリン化合物と反応させて得られ、上記
(1)の式[1]においてn=OでXが上記(1)の式
[XE]を示す化合物を30重量%以上含む、上記(1
)の式[1]においてXが上記(1)の式[XE]を示
す樹脂、 【0042】(12)エポキシ樹脂、硬化剤及び硬化促
進剤を含むエポキシ樹脂組成物において、(A)エポキ
シ樹脂として、上記(1)の式[1]においてXが上記
(1)の式[XE]を示す樹脂又は上記(11)の樹脂
を用い、及び/又は(B)硬化剤として、上記(1)の
式[1]においてXがHである樹脂又は上記(10)の
樹脂を用いる、エポキシ樹脂組成物、 【0043】(13)上記(12)のエポキシ樹脂組成
物の硬化物、に関するものである。 【0044】以下本発明を詳細に説明する。本発明の樹
脂は、上記式[1]で示されるが、式[1]においてn
=0の化合物を30重量%以上含むものが好ましく、特
に35重量%以上含むものが好ましい。上記式[1]中
のnの数は0〜10であり、好ましくは0〜5で、特に
好ましくは0〜2である。nの値が高すぎると粘度が増
し作業性を損なう。 【0045】Rにおいて、炭素数1〜4のアルキル基と
しては、メチル基、エチル基、n−プロピル基、イソプ
ロピル基、n−ブチル基、s−ブチル基、t−ブチル基
が挙げられ、特にメチル基が好ましい。アリール基とし
ては、フェニル基、4−メチルフェニル基、2−メチル
フェニル基等が挙げられる。ハロゲン原子としては、塩
素原子、フッ素原子、臭素原子、ヨウ素原子等が挙げら
れるが、特に塩素原子、臭素原子が好ましい。 【0046】本発明の化合物及び樹脂のうち、特に好ま
しいものは、式[4]、[5]、[8]又は、[9]で
表される化合物及びこれを含んでなる樹脂である。特に
、上記(10)及び(11)の樹脂は、式[1]におい
てn=0の化合物の含有量が多く、分子量分布がシャー
プになるためナフトール環を有するにも拘らず溶融粘度
が低く作業性に優れ、又高耐熱性、低吸水性の硬化物を
与えることかできる。 【0047】本発明の化合物及び樹脂は、例えば、次の
ようにして製造することができる。即ち、式[10]あ
るいは[11]で表されるジメチロール化合物と式[1
2]で表されるジヒドロキシナフタレンとを酸触媒の存
在下に脱水縮合させることにより製造できる。式[10
]で表されるジメチロール化合物としては、4,6−ジ
メチロール−2−メチルフェノール、2,6−ジメチロ
ール−4−メチルフェノール、2,6−ジメチロール−
4−エチルフェノール、2,6−ジメチロール−4−n
−ブチルフェノール、2,6−ジメチロール−4−se
c−ブチルフェノール、2,6−ジメチロール−4−t
ert−ブチルフェノール、2,6−ジメチロール−4
−クロロフェノール、2,6−ジメチロール−4−ブロ
モフェノール、2,6−ジメチロール−4−フェニルフ
ェノール等が挙げられるが、特に、4,6−ジメチロー
ル−2−メチルフェノール、2,6−ジメチロール−4
−メチルフェノールが好ましい。 【0048】また、式[11]で表されるジメチロール
化合物としては、式[14] 【0049】 【化33】 【0050】で表される化合物であるオルソクレゾール
の2核体ジメチロール化合物が好適に用いられる。式[
12]で表されるジヒドロキシナフタレンとしては、1
,2−ジヒドロキシナフタレン、1,3−ジヒドロキシ
ナフタレン、1,4−ジヒドロキシナフタレン、1,5
−ジヒドロキシナフタレン、1,6−ジヒドロキシナフ
タレン、1,7−ジヒドロキシナフタレン、1,8−ジ
ヒドロキシナフタレン、2,3−ジヒドロキシナフタレ
ン、2,4−ジヒドロキシナフタレン、2,5−ジヒド
ロキシナフタレン、2,6−ジヒドロキシナフタレン、
2,7−ジヒドロキシナフタレン、2,8−ジヒドロキ
シナフタレンが挙げられるが特に1,6−ジヒドロキシ
ナフタレン1,4−ジヒドロキシナフタレンが好ましい
。  これらは、単独でも2種類以上混合して用いても
良い。 【0051】酸触媒としては、塩酸、硫酸、リン酸、し
ゅう酸、p−トルエンスルホン酸等が使用でき、酸触媒
は式[10]あるいは[11]で表されるジメチロール
化合物の0.1 〜30重量%用いるのが好ましい。ま
た、ジヒドロキシナフタレンは式[10]あるいは[1
1]で表されるジメチロール化合物に対して2〜10モ
ル倍用いるのが好ましい。反応は、無溶媒でも、ベンゼ
ン、トルエン、メチルイソブチルケトン等の溶媒中でも
行うことができる。反応温度は、20〜150℃の範囲
が好ましい。反応終了後、使用した触媒を水洗等により
除去し、更に未反応物を溶媒抽出により除去した後、溶
媒を減圧下に除去することにより目的の樹脂(式[1]
においてXがHを示すもの)が得られる。 【0052】この様にして得られる樹脂は、式[1]に
おいてX=H、n=0の化合物を30重量%以上含むも
のが好ましく、特に35重量%以上含むものが好ましい
。 【0053】次に、このようにして得られた、式[1]
においてX=Hの樹脂に、式[13]で示されるエピハ
ロヒドリン化合物を塩基性化合物の存在下で反応させる
ことにより、(式[1]においてXが式[XE]を示す
樹脂が容易に得られる。前記式[13]において、Yで
表されるハロゲン原子としてCl、Br、I等が挙げら
れ、式[13]の化合物としては、具体的には、エピク
ロルヒドリン、エピブロムヒドリン、エピヨードヒドリ
ン等が挙げられ、これらの混合物を用いることもできる
が、工業的にはエピクロルヒドリンが好適に使用される
。 【0054】式[1]においてX=Hの樹脂とエピハロ
ヒドリン化合物の反応は、公知の方法により行うことが
できる。例えば、式[1]においてX=Hの樹脂と、そ
の水酸基当量に対して過剰モル量のエピハロヒドリン化
合物とをテトラメチルアンモニウムクロリド、テトラメ
チルアンモニウムブロミド、トリエチルアンモニウムク
ロリドなどの第4級アンモニウム塩または水酸化ナトリ
ウム、水酸化カリウムなどのアルカリ金属水酸化物など
の存在下で反応させ、第4級アンモニウム塩などを用い
た場合は開環付加反応の段階で反応が止まるので次いで
上記アルカリ金属水酸化物を加えて閉環反応させる。 【0055】また最初からアルカリ金属水酸化物を加え
て反応させる場合は、開環付加反応及び閉環反応を一気
に行わせる。エピハロヒドリン化合物の使用割合は、式
[1]においてX=Hの樹脂の水酸基1当量に対して通
常1〜50モル、好ましくは、3〜15モルの範囲であ
る。 【0056】又、この際、反応を円滑に行わせる為、メ
タノールなどのアルコール類、或いはアセトン、ジオキ
サン又はジメチルスルホキシド、ジメチルスルホン、ジ
メチルホルムアミドなどの非プロトン性極性溶媒を用い
ることができ、特にジメチルスルホキシドを用いること
が好ましい。 【0057】アルカリ金属水酸化物の使用量は、式[1
]においてX=Hの樹脂の水酸基当量1に対して通常0
.8〜1.5モル、好ましくは0.9〜1.3モルの範
囲であり、第4級アンモニウム塩を使用する場合その使
用量は、式[1]においてX=Hの樹脂の水酸基当量1
に対して通常0.001〜1.0モル、好ましくは0.
005〜0.5モルの範囲である。反応温度は通常30
〜130℃、好ましくは40〜120℃である。また反
応で生成した水を反応系外に除去しながら反応を進行さ
せることもできる。 【0058】反応終了後、副生した塩を水洗、濾過等に
より、除去することにより式 [1]においてXが式[
XE]を示すエポキシ樹脂が得られる。この様にして得
られるエポキシ樹脂は、式[1]においてn=0、Xが
式[XE]を示す化合物を30重量%以上含むものが好
ましく、特に35%以上含むものが好ましい。 【0059】以下、本発明のエポキシ樹脂組成物につい
て説明する。前記(12)のエポキシ樹脂組成物におい
て、上記(1)の式[1]においてXが式[XE]を示
す樹脂又は上記(11)の樹脂(以下、本発明のエポキ
シ樹脂という)は単独で又は、他のエポキシ樹脂と併用
して使用することができる。併用する場合、本発明のエ
ポキシ樹脂の全エポキシ樹脂中に占める割合は30重量
%以上が好ましく、特に40重量%以上が好ましい。 【0060】本発明のエポキシ樹脂と併用される他のエ
ポキシ樹脂としては、ノボラック型エポキシ樹脂、ビス
フェノールA型エポキシ樹脂、ビスフェノールF型エポ
キシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エ
ポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる
が、ノボラック型エポキシ樹脂が耐熱性の点で特に有利
である。具体的には、クレゾールノボラック型エポキシ
樹脂、フェノールノボラック型エポキシ樹脂、臭素化フ
ェノールノボラック型エポキシ樹脂などが挙げられるが
これらに限定されるものではない。これらは単独で用い
てもよく、2種以上併用してもよい。 【0061】前記(12)のエポキシ樹脂組成物におい
て、上記(1)の式[1]においてXがHである樹脂又
は上記(10)の樹脂(以下、本発明のノボラック型樹
脂という)は単独で又は、他の硬化剤と併用して使用す
ることができる。併用する場合、本発明のノボラック型
樹脂の全硬化剤中に占める割合は、30重量%以上が好
ましく、特に40重量%以上が好ましい。 【0062】本発明のノボラック型樹脂と併用される他
の硬化剤としては、例えば、脂肪族ポリアミン、芳香族
ポリアミン、ポリアミドポリアミン等のポリアミン系硬
化剤、無水ヘキサヒドロフタル酸、無水メチルテトラヒ
ドロフタル酸等の酸無水物系硬化剤、フェノールノボラ
ック、クレゾールノボラック等のフェノール系硬化剤、
三フッ化ホウ素等のルイス酸又はそれらの塩類、ジシア
ンジアミド類等の硬化剤等が挙げられるが、これらに限
定されるものではない。これらは単独で用いてもよく、
2種以上併用してもよい。 【0063】前記(12)のエポキシ樹脂組成物におい
て、エポキシ樹脂として本発明のエポキシ樹脂を用いる
場合、硬化剤としては、前記の他の硬化剤や本発明のノ
ボラック型樹脂を用いることができる。 【0064】又、前記のエポキシ樹脂組成物において、
硬化剤として本発明のノボラック型樹脂を用いる場合、
エホキシ樹脂としては、前記の他のエポキシ樹脂や本発
明のエポキシ樹脂を用いることができる。 【0065】本発明のエポキシ樹脂組成物において、硬
化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対
して0.5〜1.5当量が好ましく特に0.6〜1.2
当量が好ましい。 【0066】硬化促進剤としては、2−メチルイミダゾ
ール、2−エチルイミダゾール等の、イミダゾール系化
合物、2−(ジメチルアミノメチル)フェノール等の第
3アミン系化合物、トリフェニルホスフィン化合物等が
挙げられ、公知の種々の硬化剤促進剤が使用でき、特に
限定されるものではない。硬化促進剤の使用量はエポキ
シ樹脂100重量部に対して0.01〜15重量部の範
囲が好ましく、特に、0.1〜10重量部の範囲が好ま
しい。 【0067】本発明のエポキシ樹脂組成物には、さらに
必要に応じて公知の添加剤を配合することができ、添加
剤としては、例えば、シリカ、アルミナ、タルク、ガラ
ス繊維等の無機充填剤、シランカップリング剤のような
充填剤の表面処理剤、離型剤、顔料等が挙げられる。 【0068】本発明のエポキシ樹脂組成物は、各成分を
均一に混合することにより得られ、通常130〜170
℃の温度で30〜300秒の範囲で予備硬化し、さらに
150〜200℃の温度で2〜8時間、後硬化すること
により充分な硬化反応が進行し、本発明の硬化物が得ら
れる。 【0069】こうして得られる硬化物は、耐熱性を保持
しながら、低吸水性を有するという二つの特性を兼ね備
えた優れた性能を有する。従って、本発明の上記化合物
又は樹脂は、耐熱性、低吸水性の要求される広範な分野
で、エポキシ樹脂として、あるいは、硬化剤として用い
ることができる。具体的には、絶縁材料、積層板、封止
材料等あらゆる電気・電子材料の配合成分として有用で
ある。又、成形材料、複合材料等の分野に用いることも
できる。 【0070】エポキシ樹脂成分、硬化剤成分の両方に本
発明エポキシ樹脂と本発明のノボラック型樹脂を用いる
ことによりその効果は倍増する。さらに、本発明の樹脂
は、ナフトール環を有するにも拘らず軟化点が低く抑え
られているためトランスファー成型等、従来通りの手法
を用いることができ作業性も良好である。 【0071】 【実施例】以下に実施例を挙げて本発明を具体的に説明
する。 【0072】実施例1.4−メチルフェノール162g
(1.5モル)、パラホルムアルデヒド90g及び水1
00mlを温度計、冷却管、滴下ロート及び攪拌機を付
けたフラスコに仕込み、窒素を吹き込みながら攪拌した
。室温下、15%水酸化ナトリウム水溶液120g(水
酸化ナトリウムとして0.45モル)を発熱に注意しな
がら液温が50℃を越えないようにゆっくり滴下した。 【0073】その後、水浴中で50℃まで加熱し、10
時間反応させた。反応終了後、水300mlを加え室温
まで冷却し発熱に注意しながら10%塩酸水溶液で中和
し、その後析出した結晶を濾取した。濾液のpHが6〜
7になるまで洗浄し、減圧下(10mmHg)50℃で
乾燥し、白色結晶の2,6−ジメチロール−4−メチル
フェノール(AM)202gを得た。 【0074】こうして得られた白色結晶(AM)168
gを温度計、冷却管、及び攪拌機を付けたフラスコに仕
込み、1,6−ジヒドロキシナフタレン640g及びメ
チルイソブチルケトン1000mlを加えて窒素雰囲気
下、室温で攪拌した。そして、p−トルエンスルホン酸
1.7gを発熱に注意しながら液温が50℃を越えない
ようにゆっくり滴下した。添加後、水浴中で50℃まで
加温し2時間反応させた後、分液ロートに移し水洗した
。 【0075】洗浄水が、中性を示すまで水洗後、更に水
/メタノール溶液(水/メタノール=60/40(重量
%))により未反応のジヒドロキシナフタレンを抽出し
た後、有機層から溶媒及び未反応物を減圧下に除去する
ことにより本発明の樹脂(A−1)430gを得た。生
成物(A−1)の軟化温度(JIS  K2425  
環球法)は115℃で水酸基当量(g/mol)は88
であった。 【0076】実施例2.実施例1において1,6−ジヒ
ドロキシナフタレンの使用量を400gとした以外は実
施例1と同様の操作により生成物(A−2)438gを
得た。生成物(A−2)の軟化温度は118℃で水酸基
当量(g/mol)は86であった。 【0077】実施例3.実施例1において1,6−ジヒ
ドロキシナフタレンの代わりに1,4−ジヒドロキシナ
フタレン640gを用いた以外は実施例1と同様の操作
により生成物■(A−3)426gを得た。生成物(A
−3)の軟化温度は120℃で水酸基当量(g/mol
)は89であった。 【0078】実施例4.4−t−ブチルフェノール22
5g(1.5モル)、パラホルムアルデヒド90g及び
水100mlを温度計、冷却管、滴下ロート及び攪拌機
を付けた1リットルのフラスコに仕込み、窒素を吹き込
みながら攪拌した。室温下、15%水酸化ナトリウム水
溶液120g(水酸化ナトリウムとして0.45モル)
を発熱に注意しながら液温が50℃を越えないようにゆ
っくり滴下した。 【0079】その後、水浴中で50℃まで加熱し、10
時間反応させた。反応終了後、水300mlを加え室温
まで冷却し発熱に注意しながら10%塩酸水溶液で中和
した。クロロホルムを500ml加えて油層を分離し、
水/メタノール溶液(水/メタノール=80/20(重
量%))にて洗浄した後、無水硫酸ナトリウムを加えて
乾燥した。その後減圧下でクロロホルムを除去し粘稠な
液体として2,6−ジメチロール−4−t−ブチルフェ
ノール(AB)285g(純度85%)を得た。 【0080】こうして得られた2,6−ジメチロール4
−t−ブチルフェノール(AB)247gを温度計、冷
却管、及び攪拌機を付けたフラスコに仕込み、1,6−
ジヒドロキシナフタレン640g及びメチルイソブチル
ケトン1000mlを加えて窒素雰囲気下、室温で攪拌
した。そして、p−トルエンスルホン酸1.7gを発熱
に注意しながら液温が50℃を越えないようにゆっくり
滴下した。添加後、水浴中で50℃まで加温し2時間反
応させた後、分液ロートに移し水洗した。 【0081】洗浄水が、中性を示すまで水洗後、更に水
/メタノール溶液(水/メタノール=60/40(重量
%))により未反応のジヒドロキシナフタレンを抽出し
た後、有機層から溶媒及び未反応物を減圧下に除去する
ことにより本発明の樹脂(A−4)480gを得た。生
成物(A−4)の軟化温度(JIS  K2425  
環球法)は105℃で水酸基当量(g/mol)は10
1であった。 【0082】実施例5.実施例4において1,6−ジヒ
ドロキシナフタレンの代わりに1,4−ジヒドロキシナ
フタレン640gを用いた以外は実施例4と同様の操作
により生成物■(A−5)476gを得た。生成物(A
−5)の軟化温度は102℃で水酸基当量(g/mol
)は99であった。 【0083】実施例6.実施例1において2,6−ジメ
チロール−4−メチルフェノールの代りに2,6−ジメ
チロール4−クロロフェノール(AC)189gを用い
た以外は、実施例1と同様にして生成物(A−6)46
0gを得た。生成物(A−6)の軟化温度(JIS  
K2425  環球法)は116℃で水酸基当量(g/
mol)は93であった。 【0084】実施例7.実施例6において1,6−ジヒ
ドロキシナフタレンの代わりに1,4−ジヒドロキシナ
フタレン640gを用いた以外は実施例6と同様の操作
により生成物■(A−7)472gを得た。生成物(A
−7)の軟化温度は117℃で水酸基当量(g/mol
)は95であった。 【0085】実施例8.実施例1において2,6−ジメ
チロール4−メチルフェノールの代りに2,6−ジメチ
ロール4−フェニルフェノール(AP)295g(純度
78%)を用いた以外は、実施例1と同様にして生成物
(A−8)508gを得た。生成物(A−8)の軟化温
度(JIS  K2425  環球法)は125℃で水
酸基当量(g/mol)は104であった。 【0086】実施例9.実施例8において1,6−ジヒ
ドロキシナフタレンの代わりに1,4−ジヒドロキシナ
フタレン640gを用いた以外は実施例8と同様の操作
により生成物■(A−9)472gを得た。生成物(A
−9)の軟化温度は128℃で水酸基当量(g/mol
)は105であった。 【0087】実施例10.オルソクレゾール162g(
1.5モル)、パラホルムアルデヒド90g及び水10
0mlを温度計、冷却管、滴下ロート及び攪拌機を付け
た1リットルのフラスコに仕込み、窒素を吹き込みなが
ら攪拌した。室温下、15%水酸化ナトリウム水溶液5
0g(水酸化ナトリウムとして0.19モル)を発熱に
注意しながら液温が50℃を越えないようにゆっくり滴
下した。その後、水浴中で50℃まで加熱し、10時間
反応させた。反応終了後、水300mlを加え室温まで
冷却し発熱に注意しながら10%塩酸水溶液で中和し、
その後析出した結晶を濾取した。濾液のpHが6〜7に
なるまで洗浄し、減圧下(10mmHg)50℃で乾燥
し、白色結晶(式[14]の化合物)(AO)197g
を得た。 【0088】こうして得られた白色結晶(AO)197
gを温度計、冷却管、及び攪拌機を付けたフラスコに仕
込み、1,6−ジヒドロキシナフタレン450g及びメ
チルイソブチルケトン500mlを加えて窒素雰囲気下
、室温で攪拌した。そして、p−トルエンスルホン酸2
gを発熱に注意しながら液温が50℃を越えないように
ゆっくり滴下した。 【0089】添加後、水浴中で50℃まで加温し2時間
反応させた後、分液ロートに移し水洗した。洗浄水が、
中性を示すまで水洗後、更に水/メタノール溶液(水/
メタノール=60/40(重量%))により未反応のジ
ヒドロキシナフタレンを抽出した後、有機層から溶媒及
び未反応物を減圧下に除去することにより、本発明の樹
脂(A−10)388gを得た。生成物(A−10)の
軟化温度(JIS  K2425  環球法)は96℃
で水酸基当量(g/mol)は99であった。 【0090】実施例11.実施例10において1,6−
ジヒドロキシナフタレンの使用量を281gとした以外
は実施例10と同様の操作により生成物(A−11)3
93gを得た。生成物(A−11)の軟化温度は108
℃で水酸基当量(g/mol)は97であった。 【0091】実施例12.実施例10において1,6−
ジヒドロキシナフタレンの代わりに1,4−ジヒドロキ
シナフタレン450gを用いた以外は実施例10と同様
の操作により生成物(A−12)385gを得た。生成
物(A−12)の軟化温度は107℃で水酸基当量(g
/mol)は96であった。 【0092】実施例13.実施例12において1,4−
ジヒドロキシナフタレンの使用量を281gとした以外
は実施例12と同様の操作により生成物(A−13)3
79gを得た。生成物(A−13)の軟化温度は110
℃で水酸基当量(g/mol)は99であった。 【0093】分析例1.実施例1〜9で得られた本発明
の樹脂である生成物(A−1)〜(A−9)についてG
PC分析を行い、式[2]で表される化合物のものと思
われるピークを分取し、マススペクトル(FAB−MS
)によって分析した。その結果、生成物(A−1)〜(
A−3)についてはM+ 452、生成物(A−4)、
(A−5)についてはM+ 494、生成物(A−6)
、(A−7)についてはM+ 472と474、生成物
(A−8)、(A−9)についてはM+ 514が得ら
れた。 【0094】また同様に、実施例10〜13で得られた
生成物(A−10)〜(A−13)については式〔5〕
の化合物と思われるピークを分取しマススペクトルによ
って分析した所、M+ 572が得られた。従って、実
施例1〜13で得られた生成物(A−1)〜(A−13
)中には、各々第1〜2表に示すような含有量で式[2
]あるいは式[5]で表される化合物が含まれることが
確認された。 【0095】尚、GPC分析条件は、次のとおり。 GPC装置:島津製作所      (カラム:TSK
−G−3000XL(1本)+TSK−G−2000X
L(2本))溶媒:テトラヒドロフラン    1ml
/min検出:UV(254nm) 【0096】                          
       第1表               
   生成物中に含まれる使途[2]で表される化合物
生成物                構造式   
       (分子量)      含有量(重量%
)(A−1)      下記式[15]      
  (452)          55(A−2) 
     下記式[15]        (452)
          45(A−3)      下記
式[16]        (452)       
   53(A−4)      下記式[17]  
      (494)          52(A
−5)      下記式[18]        (
494)          50(A−6)    
  下記式[19]      (472.5)   
     56(A−7)      下記式[20]
      (472.5)        53(A
−8)      下記式[21]        (
514)          54(A−9)    
  下記式[22]        (514)   
       52【0097】 【化34】 【0098】 【化35】 【0099】 【化36】 【0100】 【化37】 【0101】 【化38】 【0102】 【化39】 【0103】 【化40】 【0104】 【化41】 【0105】                          
       第2表               
 生成物中に含まれる式[5]で表される化合物生成物
                構造式      
    (分子量)      含有量(重量%)(A
−10)    下記式[23]        (5
72)          52(A−11)    
下記式[23]        (572)     
     43(A−12)    下記式[24] 
       (572)          53(
A−13)    下記式[24]        (
572)          42【0106】 【化42】 【0107】 【化43】 【0108】実施例14.温度計、攪拌装置、滴下ロー
ト及び生成水分離装置のついた1リットルの反応器に実
施例1で得た生成物(A−1)(水酸基当量(g/mo
l)88)176g及びエピクロルヒドリン920gを
仕込み窒素置換を行った後、48%水酸化ナトリウム水
溶液170gを5時間かけて滴下した。滴下中は反応温
度60℃、圧力100〜150mmHgの条件下で生成
水及び水酸化ナトリウム水溶液の水をエピクロルヒドリ
ンとの共沸により連続的に反応系外に除去し、エピクロ
ルヒドリンは系内に戻した。 【0109】ついで過剰の未反応エピクロルヒドリンを
減圧下に回収した後、メチルイソブチルケトン1000
mlを加え水層が中性を示すまで水洗した。有機層から
メチルイソブチルケトンを減圧下に除去し、その後再び
メチルイソブチルケトンを400g加え再溶解した。得
られたメチルイソブチルケトン溶液に20%水酸化ナト
リウム水溶液40gを加え反応温度70℃で2時間反応
した。 【0110】反応終了後、水層が中性を示すまで水で洗
浄し、油層からメチルイソブチルケトンを減圧下に除去
し、淡黄色の固体(B−1)285gを得た。本発明の
エポキシ樹脂である生成物(B−1)の軟化温度(JI
S  K2425)は88℃でエポキシ当量(g/mo
l)は149であった。 【0111】実施例15.温度計、攪拌装置及び滴下ロ
ートの付いた反応器に実施例1で得た生成物(A−1)
(水酸基当量(g/mol)88)176g、エピクロ
ルヒドリン920g及びジメチルスルホキシド460g
を仕込み窒素置換を行った後、30℃の水浴中にて水酸
化ナトリウム80gを徐々に加えた。発熱に注意しなが
ら30℃にて5時間、50℃にて2時間、さらに70℃
にて1時間反応を行った。ついで水を加えて水層が中性
を示すまで洗浄した。その後油層からエピクロルヒドリ
ン及びジメチルスルホキシドを減圧下に除去した。 【0112】次にメチルイソブチルケトンを400g加
え再溶解した。得られたメチルイソブチルケトン溶液に
20%水酸化ナトリウム水溶液40gを加えて反応温度
70℃で2時間反応した。反応終了後、水層が中性を示
すまで水で洗浄し、油層からメチルイソブチルケトンを
減圧下に除去し、淡黄色の固体(B−2)280gを得
た。本発明のエポキシ樹脂である生成物(B−2)の軟
化温度は90℃でエポキシ当量(g/mol)は148
であった。 【0113】実施例16.生成物(A−1)の代わりに
実施例2で得た生成物(A−2)(水酸基当量■(g/
mol)86)172gを用いた以外は実施例14と同
様にして反応を行い生成物(B−3)307gを得た。 本発明のエポキシ樹脂である生成物(B−3)の軟化温
度は86℃でエポキシ当量(g/mol)は149であ
った。 【0114】実施例17.生成物(A−1)の代わりに
実施例3で得た生成物(A−3)(水酸基当量■(g/
mol)89)178gを用いた以外は実施例14と同
様にして反応を行い生成物(B−4)298gを得た。 本発明のエポキシ樹脂である生成物(B−4)の軟化温
度は91℃でエポキシ当量(g/mol)は150であ
った。 【0115】実施例18.生成物(A−1)の代わりに
実施例4で得た生成物(A−4)(水酸基当量■(g/
mol)101)202gを用いた以外は実施例14と
同様にして反応を行い生成物(B−5)305gを得た
。本発明のエポキシ樹脂である生成物(B−5)の軟化
温度は92℃でエポキシ当量(g/mol)は157で
あった。 【0116】実施例19.生成物(A−1)の代わりに
実施例5で得た生成物(A−5)(水酸基当量■(g/
mol)99)198gを用いた以外は実施例14と同
様にして反応を行い生成物(B−6)303gを得た。 本発明のエポキシ樹脂である生成物(B−6)の軟化温
度は90℃でエポキシ当量(g/mol)は156であ
った。 【0117】実施例20.生成物(A−1)の代わりに
実施例6で得た生成物(A−6)(水酸基当量■(g/
mol)93)186gを用いた以外は実施例14と同
様にして反応を行い生成物(B−7)280gを得た。 本発明のエポキシ樹脂である生成物(B−7)の軟化温
度は97℃でエポキシ当量(g/mol)は155であ
った。 【0118】実施例21.生成物(A−1)の代わりに
実施例7で得た生成物(A−7)(水酸基当量■(g/
mol)95)190gを用いた以外は実施例14と同
様にして反応を行い生成物(B−8)277gを得た。 本発明のエポキシ樹脂である生成物(B−8)の軟化温
度は96℃でエポキシ当量(g/mol)は158であ
った。 【0119】実施例22.生成物(A−1)の代わりに
実施例8で得た生成物(A−8)(水酸基当量■(g/
mol)104)208gを用いた以外は実施例14と
同様にして反応を行い生成物(B−9)308gを得た
。本発明のエポキシ樹脂である生成物(B−9)の軟化
温度は99℃でエポキシ当量(g/mol)は163で
あった。 【0120】実施例23.生成物(A−1)の代わりに
実施例9で得た生成物(A−9)(水酸基当量(g/m
ol)105)210gを用いた以外は実施例14と同
様にして反応を行い生成物(B−10)299gを得た
。本発明のエポキシ樹脂である生成物(B−10)の軟
化温度は101℃でエポキシ当量(g/mol)は16
4であった。 【0121】実施例24.生成物(A−1)の代わりに
実施例10で得た生成物(A−10)(水酸基当量(g
/mol)96)192gを用いた以外は実施例14と
同様にして反応を行い生成物(B−11)294gを得
た。本発明のエポキシ樹脂である生成物(B−11)の
軟化温度は89℃でエポキシ当量(g/mol)は15
7であった。 【0122】実施例25.生成物(A−1)の代わりに
実施例11で得た生成物(A−11)(水酸基当量(g
/mol)97)194gを用いた以外は実施例14と
同様にして反応を行い生成物(B−12)290gを得
た。本発明のエポキシ樹脂である生成物(B−12)の
軟化温度は88℃でエポキシ当量(g/mol)は15
5であった。 【0123】実施例26.生成物(A−1)の代わりに
実施例12で得た生成物(A−12)(水酸基当量(g
/mol)96)192gを用いた以外は実施例14と
同様にして反応を行い生成物(B−13)292gを得
た。本発明のエポキシ樹脂である生成物(B−13)の
軟化温度は90℃でエポキシ当量(g/mol)は15
6であった。 【0124】実施例27.生成物(A−1)の代わりに
実施例13で得た生成物(A−13)(水酸基当量(g
/mol)99)198gを用いた以外は実施例14と
同様にして反応を行い生成物(B−14)294gを得
た。本発明のエポキシ樹脂である生成物(B−14)の
軟化温度は91℃でエポキシ当量(g/mol)は15
4であった。 【0125】分析例2.実施例14〜27で得られた生
成物(B−1)〜(B−14)について分析例1と同様
にGPC分析を行い、式[6]あるいは式[9]で表さ
れる化合物のものと思われるピークを分取し、マススペ
クトル(FAB−MS)によって分析した。その結果、
生成物(B−1)〜(B−4)についてはM+ 732
、生成物(B−5)、(B−6)についてはM+774
、生成物(B−7)、(B−8)についてはM+ 75
2と754、及び生成物(B−9)、(B−10)につ
いてはM+ 794が、生成物(B−11)〜(B−1
4)についてはM+ 908が得られた。従って、実施
例14〜27で得られた生成物(B−1)〜(B−14
)中には、各々第3−4表に示すような含有量で式[6
]あるいは式[9]で表される化合物が含まれることが
確認された。 【0126】                          
       第3表               
     生成物中に含まれる式[6]で表される化合
物生成物                    構
造式        (分子量)      含有量(
重量%)(B−1)        下記式[25] 
       (732)          49(
B−2)        下記式[25]      
  (732)          48(B−3) 
       下記式[25]        (73
2)          38(B−4)      
  下記式[26]        (732)   
       47(B−5)        下記式
[27]        (774)        
  45(B−6)        下記式[28] 
       (774)          44(
B−7)        下記式[29]      
(752.5)        48(B−8)   
     下記式[30]      (752.5)
        46(B−9)        下記
式[31]        (794)       
   45(B−10)      下記式[32] 
       (794)          42【
0127】 【化44】 【0128】 【化45】 【0129】 【化46】 【0130】 【化47】 【0131】 【化48】 【0132】 【化49】 【0133】 【化50】 【0134】 【化51】 【0135】                          
       第4表               
 生成物中に含まれる式[9]で表される化合物  生
成物                  構造式  
        (分子量)      含有量(重量
%)(B−11)      下記式[33]    
    (908)          46  (B
−12)      下記式[33]        
(908)          38  (B−13)
      下記式[34]        (908
)          47  (B−14)    
  下記式[34]        (908)   
       36  【0136】 【化52】 【0137】 【化53】 【0138】なお、生成物(A−1)〜(B−14)の
nの値(平均値)(式[1]における)は次のとおりで
ある。     生成物        nの値       
         生成物        nの値  
(A−1)      0.5           
   (B−1)      0.5    (A−2
)      0.8              (
B−2)      0.5    (A−3)   
   0.6              (B−3)
      0.8    (A−4)      0
.7              (B−4)    
  0.6    (A−5)      0.9  
            (B−5)      0.
7    (A−6)      0.7      
        (B−6)      0.9   
 (A−7)      0.8          
    (B−7)      0.7    (A−
8)      0.6              
(B−8)      0.8    (A−9)  
    0.9              (B−9
)      0.6    (A−10)    0
.9              (B−10)   
 0.9    (A−11)    1.1    
          (B−11)    0.9  
  (A−12)    1.0          
    (B−12)    1.1    (A−1
3)    1.2              (B
−13)    1.0              
                         
 (B−14)    1.2  【0139】応用実
施例1〜13.硬化剤として実施例1〜13で得られた
生成物(A−1)〜(A−13)を、エポキシ樹脂とし
てクレゾールノボラック型エポキシ樹脂EOCN−10
20を用い、2−メチルイミダゾール(2MZ)を硬化
促進剤とし、これらを第5表に示す割合で配合した組成
物を70〜80℃で15分間ロール混練した。これを冷
却後、粉砕、タブレット化し、更にトランスファー成型
機により成型後、160℃で2時間予備硬化して、18
0℃で8時間、後硬化を行って硬化物(試験片)を得た
。この硬化物のガラス転移温度(Tg)及び吸水率を測
定した。硬化物の評価結果を第5表に示した。 【0140】応用実施例14〜26.硬化剤として市販
フェノールノボラック樹脂(PN(H−1))を、エポ
キシ樹脂として実施例14〜27で得られた生成物(B
−1)〜(B−14)を用い、2−メチルイミダゾール
(2MZ)を硬化促進剤とし、これらを第6表に示す割
合で配合し、以下応用実施例1〜13と同様にして試験
を行った。硬化物の評価結果を第6表に示した。 【0141】応用実施例27〜35.硬化剤として実施
例1〜13で得られた生成物を、エポキシ樹脂として実
施例14〜27で得られた生成物を用い、2−メチルイ
ミダゾール(2MZ)を硬化促進剤とし、これらを第7
表に示す割合で配合し、以下応用実施例1〜13と同様
にして試験を行った。硬化物の評価結果を第7表に示し
た。 【0142】応用比較例1〜3.第8表に示す割合で市
販の硬化剤としてフェノールノボラック樹脂(PN■(
H−1))をエポキシ樹脂としてクレゾールノボラック
型エポキシ樹脂(EOCN1020)、芳香族アルデヒ
ドとフェノールを縮合して得られるポリフェノールのポ
リエポキシ化合物(EPPN502)、ビスフェノール
型エポキシ樹脂(エポミックR301)を用い、硬化促
進剤を配合し、応用実施例1〜13と同様の操作により
硬化物の評価を行った。その評価結果を第8表に示した
。 【0143】なお、ガラス転移温度及び吸水率の測定装
置及び測定条件は以下の通り。   ガラス転移温度(℃)    :熱機械測定装置(
TMA)真空理工(株)              
              TM−7000  昇温
速度  2℃/min   吸水率(%)      
      :試  験  片      直径   
 50                      
        (硬化物)      厚さ    
  3    円板                
            条      件     
 100℃の水中で20時間            
                         
       煮沸した後の重量増加量       
                         
                    (重量%)
【0144】                          
     第5表(1)              
                        応
用実施例                     
             1        2  
      3        4         
     生成物(A−1)    88      
        生成物(A−2)         
     86硬化剤        生成物(A−3
)                        
89              生成物(A−4) 
                         
        101              
生成物(A−5)              生成物
(A−6)              生成物(A−
7)エポキシ樹脂  EOCN−1020    20
0    200    200      200硬
化促進剤(2MZ)            2.0 
   2.0    2.0      2.0ガラス
転移温度(℃)            190   
 188    187      181吸水率  
  (%)                0.8 
   0.9    0.8      0.9【01
45】                          
     第5表(2)              
                        応
用実施例                     
             5        6  
      7              生成物(
A−1)              生成物(A−2
)硬化剤        生成物(A−3)     
         生成物(A−4)        
      生成物(A−5)    99     
         生成物(A−6)        
      93              生成物
(A−7)                    
    95エポキシ樹脂  EOCN−1020  
  200    200    200硬化促進剤(
2MZ)            2.0    2.
0    2.0ガラス転移温度(℃)       
     180    183    181吸水率
    (%)                0.
9    0.8    0.9 【0146】                          
     第5表(3)              
                         
     応用実施例               
                       8 
         9          10   
           生成物(A−8)      
104              生成物(A−9)
                  105硬化剤 
       生成物(A−10)         
                     96  
            生成物(A−11)    
          生成物(A−12)      
        生成物(A−13)エポキシ樹脂  
EOCN−1020        200     
 200      200硬化促進剤(2MZ)  
              2.0      2.
0      2.0ガラス転移温度(℃)     
           192      188  
    188吸水率    (%)        
            0.8      0.8 
     0.8 【0147】                          
     第5表(4)              
                         
     応用実施例               
                       11
        12        13     
         生成物(A−8)        
      生成物(A−9)硬化剤        
生成物(A−10)              生成
物(A−11)      97          
    生成物(A−12)            
      96              生成物
(A−13)                   
             99エポキシ樹脂  EO
CN−1020        200      2
00        200硬化促進剤(2MZ)  
              2.0      2.
0        2.0ガラス転移温度(℃)   
             186      187
        186吸水率    (%)    
                0.9      
0.9        0.9【0148】                          
     第6表(1)              
                         
     応用実施例               
                       14
      15      16      17 
                 生成物(B−1)
    148                  
生成物(B−3)              149
                  生成物(B−4
)                        
150エポキシ樹脂      生成物(B−5)  
                         
     157                 
 生成物(B−6)                
  生成物(B−7)               
   生成物(B−8)硬化剤           
 PN  (H−1)  106      106 
   106  106硬化促進剤(2MZ)    
            1.5      1.5 
   1.5  1.6ガラス転移温度(℃)    
            188      186 
   182  179吸水率  (%)      
                0.8      
0.8    0.9  0.9 【0149】                          
     第6表(2)              
                         
     応用実施例               
                       18
        19        20     
             生成物(B−1)    
              生成物(B−3)   
               生成物(B−4)エポ
キシ樹脂      生成物(B−5)       
           生成物(B−6)    15
6                  生成物(B−
7)                155    
              生成物(B−8)   
                         
158硬化剤            PN  (H−
1)    106      106      1
06硬化促進剤(2MZ)             
     1.6      1.6      1.
6ガラス転移温度(℃)              
    180      184      182
吸水率  (%)                 
       0.9      0.8      
0.8 【0150】                          
     第6表(3)              
                         
       応用実施例             
                         
  21        22        23 
                 生成物(B−9)
    163                  
生成物(B−10)              16
4                  生成物(B−
11)                      
    157エポキシ樹脂      生成物(B−
12)                  生成物(
B−13)                  生成
物(B−14)硬化剤            PN 
 (H−1)    106      106   
   106硬化促進剤(2MZ)         
         1.6      1.6    
  1.6ガラス転移温度(℃)          
        186      185     
 188吸水率  (%)             
           0.9      0.9  
    0.8 【0151】                          
     第6表(4)              
                      応用実
施例                       
                 24      
  25        26           
       生成物(B−9)          
        生成物(B−10)        
          生成物(B−11)エポキシ樹脂
      生成物(B−12)  155     
             生成物(B−13)   
           156           
       生成物(B−14)         
                 155硬化剤  
          PN  (H−1)    10
6      106      106硬化促進剤(
2MZ)                  1.6
      1.6      1.6ガラス転移温度
(℃)                  187 
     183      182吸水率  (%)
                        0
.9      0.9      0.9【0152
】                          
     第7表(1)              
                         
     応用実施例               
                       27
        28        29     
             生成物(B−1)    
148                  生成物(
B−3)                149  
                生成物(B−4) 
                         
  150エポキシ樹脂      生成物(B−6)
                  生成物(B−8
)────────────────────────
────────────             
     生成物(A−1)      88    
              生成物(A−2)   
               86        
          生成物(A−3)       
                       89
硬化剤            生成物(A−5)  
                生成物(A−7) 
                 生成物(A−11
)硬化促進剤(2MZ)              
    1.5      1.5      1.5
ガラス転移温度(℃)               
   192      193      189吸
水率  (%)                  
      0.7      0.7      0
.8 【0153】                          
     第7表(2)              
                         
     応用実施例               
                       30
        31        32     
             生成物(B−1)    
              生成物(B−3)   
               生成物(B−4)エポ
キシ樹脂      生成物(B−6)    156
                  生成物(B−8
)              158───────
─────────────────────────
────                  生成物
(A−1)                  生成
物(A−2)                  生
成物(A−3)硬化剤            生成物
(A−5)      99            
      生成物(A−7)           
     95                  
生成物(A−11)                
            97硬化促進剤(2MZ) 
                 1.6     
 1.6      1.6ガラス転移温度(℃)  
                186      
188      184吸水率  (%)     
                   0.8   
   0.9      0.8 【0154】                          
     第7表(3)              
                         
     応用実施例               
                       33
        34        35     
             生成物(B−9)    
148エポキシ樹脂      生成物(B−11) 
           149           
       生成物(B−13)         
                 150─────
─────────────────────────
──────                  生
成物(A−8)    88硬化剤         
   生成物(A−10)             
 86                  生成物(
A−12)                    
        89硬化促進剤(2MZ)     
             1.5      1.5
      1.5ガラス転移温度(℃)      
            194      192 
     188吸水率  (%)         
               0.8      0
.7      0.7【0155】                          
       第8表               
                         
    応用比較例                
                        1
          2          3   
             EOCN−1020   
 200エポキシ樹脂    EPPN−502   
               168       
         エポミックR−301      
                    470硬化
剤          PN−  (H−1)    
106      106      106硬化促進
剤(2MZ)                  2
.0      1.7      4.7ガラス転移
温度(℃)                  16
2      177      125吸水率  (
%)                       
 1.4      2.0      1.2 【0156】尚、配合した市販の樹脂は次のとおり。 PN (H−1)  :  (日本化薬製)  フェノ
ールノボラック樹脂              水酸
基当量(g/mol)106            
  軟化温度                85℃
 EOCN−1020:  (日本化薬製)クレゾール
ノボラック型エポキシ樹脂             
 エポキシ当量(g/mol)200        
      軟化温度               
 65℃【0157】 エホ゜ミック R−301 :(三井石油化学エポキシ
製)              ビスフェノールA型
エポキシ樹脂              エポキシ当
量(g/mol)470              
軟化温度  68℃EPPN502   :(日本化薬
製)    ポリエポキシ化合物          
    エポキシ当量(g/mol)168     
         軟化温度            
    70℃【0158】 【発明の効果】本発明の樹脂は、軟化温度が低く抑えら
れ、作業性に優れている。また、これを用いて得られる
硬化物は、耐熱性の指標であるガラス転移温度、熱変形
温度が高くしかも吸水率を従来の樹脂に比べて低くする
ことができる。従って、本発明の樹脂は、近年の高耐熱
、低吸水性の要求に充分応えることができ、この性能を
利用して広範な分野、具体的には、電子部品の封止材料
、成形材料または積層用の材料として極めて有用である
Description: FIELD OF THE INVENTION The present invention relates to compounds, resins, resin compositions, and cured products thereof useful as materials for sealing or laminating electronic components. [0002] Conventionally, resin compositions containing epoxy resins, phenol novolac resins, and curing accelerators as main components have been widely used in the field of encapsulants for electrical and electronic components, particularly ICs. However, the recent trend toward higher density and higher integration in ICs has required encapsulants to have high heat resistance and low water absorption. In particular, the harsh conditions of immersion in a solder bath during high-density mounting of ICs are increasingly demanding higher heat resistance and lower water absorption for cured products. However, cresol novolac type epoxy resins, which are generally used as epoxy resins in conventional compositions, are insufficient in terms of heat resistance against the harsh conditions of immersion in a solder bath. In addition, in the polyepoxy compound, which is obtained by epoxidizing a polyphenol obtained by condensing an aromatic aldehyde having a phenolic hydroxyl group and phenols, as described in JP-A No. 63-264622, which has been proposed as having heat resistance, the cured product is Although it has been recognized that the heat resistance has improved, it has the disadvantage of increasing the softening point or melt viscosity, impairing workability.
Also, it is not as good as cresol novolak type epoxy resin in terms of water absorption. On the other hand, the phenol novolac resins commonly used as curing agents are still insufficient in terms of heat resistance, and although attempts have been made to reduce the amount of low molecular weight substances (binuclear phenol novolaks), Under increasingly severe conditions (eg solder bath immersion), satisfactory results have not been achieved. Therefore, there is a need for the development of a resin that provides a cured product with heat resistance and low water absorption, and also has better workability. SUMMARY OF THE INVENTION The present invention provides a resin composition that can withstand these increasingly severe conditions and provides a cured product with high heat resistance and low water absorption, and a cured product thereof. It provides: [Means for Solving the Problems] As a result of intensive studies aimed at developing a resin composition that has the above-mentioned two contradictory properties, high heat resistance and low water absorption, the present inventors found that naphthol The inventors have discovered that the above object can be achieved by using a compound having a specific structure into which a ring has been introduced, and have completed the present invention. That is, the present invention provides formula (1) [1] 000
9 [Chemical formula 17] [0010] (wherein A is the formula [A1] [Chemical formula 18] [Chemical formula 18] [Chemical formula 18] [0012] or the formula [A2] [Chemical formula 19] [Chemical formula 19] [0014], R is carbon an alkyl group, aryl group or halogen atom of numbers 1 to 4, X is H or the formula [XE] 0
##STR20## where n takes a value of 0 to 10. ), (2) formula [2] [0018] (wherein R is an alkyl group having 1 to 4 carbon atoms,
Indicates an aryl group or a halogen atom. ), (3) a compound represented by formula [3] [0020], (4) a compound represented by formula [4] 00
21] Compound represented by [Chemical formula 23] [0022], (5) formula [5] 00
23] Compound represented by [Chemical formula 24] [0024], (6) formula [6] 00
25] [0026] (wherein R is an alkyl group having 1 to 4 carbon atoms,
Indicates an aryl group or a halogen atom. ), (7) an epoxy compound represented by formula [7], (8) an epoxy compound represented by formula [8]
] [0029] Epoxy compound represented by [Chemical formula 27] [0030], (9) formula [9
] [0031] Epoxy compound represented by [Chemical formula 28] [0032], formula (10) [
10] [0033] [0034] (wherein, R represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or a halogen atom) or the formula [11
] A dimethylol compound represented by the formula [12] [Chemical formula 30] [0036] (wherein R has the same meaning as above) and a dihydroxy compound represented by the formula [12] [Chemical formula 31] [0038] It is obtained by reacting with naphthalene, and in the formula [1] of (1) above, n=O
A resin in which X is H in the formula [1] of the above (1), which contains 30% by weight or more of a compound where X=H;
] [0040] [0041] (In the formula, Y represents a halogen atom) obtained by reacting with an epihalohydrin compound represented by (1) contains 30% by weight or more of a compound representing the formula [XE] of (1) above;
) in the formula [1], where X represents the formula [XE] in the above (1); (12) an epoxy resin composition containing an epoxy resin, a curing agent, and a curing accelerator; As, in the formula [1] of the above (1), using a resin in which X represents the formula [XE] of the above (1) or the resin of the above (11), and/or (B) as a curing agent, the above (1) (13) A cured product of the epoxy resin composition of (12) above, using a resin in which X is H in formula [1] or the resin of (10) above. . The present invention will be explained in detail below. The resin of the present invention is represented by the above formula [1], and in the formula [1], n
Those containing 30% by weight or more of the compound with =0 are preferred, and those containing 35% by weight or more are particularly preferred. The number of n in the above formula [1] is 0 to 10, preferably 0 to 5, particularly preferably 0 to 2. If the value of n is too high, the viscosity will increase and workability will be impaired. In R, examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group. Methyl group is preferred. Examples of the aryl group include a phenyl group, 4-methylphenyl group, and 2-methylphenyl group. Examples of the halogen atom include chlorine atom, fluorine atom, bromine atom, and iodine atom, with chlorine atom and bromine atom being particularly preferred. Among the compounds and resins of the present invention, particularly preferred are compounds represented by formulas [4], [5], [8], or [9] and resins containing the same. In particular, the resins (10) and (11) above have a high content of the compound where n=0 in formula [1], and have a sharp molecular weight distribution, so they have a low melt viscosity and are easy to work with despite having naphthol rings. It can provide cured products with excellent properties, high heat resistance, and low water absorption. The compounds and resins of the present invention can be produced, for example, as follows. That is, a dimethylol compound represented by formula [10] or [11] and formula [1]
2] and dihydroxynaphthalene in the presence of an acid catalyst. Formula [10
] As the dimethylol compound represented by 4,6-dimethylol-2-methylphenol, 2,6-dimethylol-4-methylphenol, 2,6-dimethylol-
4-ethylphenol, 2,6-dimethylol-4-n
-butylphenol, 2,6-dimethylol-4-se
c-butylphenol, 2,6-dimethylol-4-t
ert-butylphenol, 2,6-dimethylol-4
-Chlorophenol, 2,6-dimethylol-4-bromophenol, 2,6-dimethylol-4-phenylphenol, etc., especially 4,6-dimethylol-2-methylphenol, 2,6-dimethylol- 4
-Methylphenol is preferred. [0048] As the dimethylol compound represented by formula [11], a binuclear dimethylol compound of orthocresol, which is a compound represented by formula [14] [Chemical formula 33] used. formula[
12], the dihydroxynaphthalene represented by 1
, 2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5
-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6- dihydroxynaphthalene,
Examples include 2,7-dihydroxynaphthalene and 2,8-dihydroxynaphthalene, with 1,6-dihydroxynaphthalene and 1,4-dihydroxynaphthalene being particularly preferred. These may be used alone or in combination of two or more. As the acid catalyst, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, p-toluenesulfonic acid, etc. can be used. Preferably, 30% by weight is used. In addition, dihydroxynaphthalene has the formula [10] or [1
It is preferable to use 2 to 10 times the mole of the dimethylol compound represented by [1]. The reaction can be carried out without a solvent or in a solvent such as benzene, toluene, methyl isobutyl ketone, or the like. The reaction temperature is preferably in the range of 20 to 150°C. After the reaction is completed, the used catalyst is removed by washing with water, etc., unreacted substances are removed by solvent extraction, and the solvent is removed under reduced pressure to obtain the desired resin (formula [1]
(in which X represents H) is obtained. The resin thus obtained preferably contains 30% by weight or more, particularly preferably 35% by weight or more of the compound of formula [1] where X=H and n=0. Next, the formula [1] obtained in this way
By reacting the epihalohydrin compound represented by the formula [13] with the resin in which X=H in the presence of a basic compound, a resin in which X represents the formula [XE] in the formula [1] can be easily obtained. In the above formula [13], examples of the halogen atom represented by Y include Cl, Br, I, etc., and examples of the compound of formula [13] include epichlorohydrin, epibromohydrin, epiiodohydrin, etc. Phosphorus, etc. can be used, and mixtures thereof can also be used, but epichlorohydrin is preferably used industrially. In the formula [1], the reaction between the resin where X=H and the epihalohydrin compound can be carried out by a known method. For example, a resin of formula [1] where X=H and an excess molar amount of an epihalohydrin compound relative to its hydroxyl equivalent are mixed with tetramethylammonium chloride, tetramethylammonium bromide, triethylammonium chloride, etc. The reaction is carried out in the presence of a quaternary ammonium salt or an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. If a quaternary ammonium salt is used, the reaction will stop at the stage of the ring-opening addition reaction. Next, the above-mentioned alkali metal hydroxide is added to carry out the ring-closing reaction. In addition, when the alkali metal hydroxide is added from the beginning and the reaction is carried out, the ring-opening addition reaction and the ring-closing reaction are carried out at once. Usage ratio of the epihalohydrin compound is usually in the range of 1 to 50 mol, preferably 3 to 15 mol, per equivalent of the hydroxyl group of the resin where X=H in formula [1]. For this purpose, alcohols such as methanol, or aprotic polar solvents such as acetone, dioxane, dimethyl sulfoxide, dimethyl sulfone, dimethyl formamide, etc. can be used, and it is particularly preferable to use dimethyl sulfoxide. The amount of oxide used is determined by the formula [1
], usually 0 for 1 hydroxyl equivalent of the resin where X=H
.. The amount is in the range of 8 to 1.5 mol, preferably 0.9 to 1.3 mol, and when a quaternary ammonium salt is used, the amount used is 1
normally 0.001 to 1.0 mol, preferably 0.001 to 1.0 mol, preferably 0.001 to 1.0 mol.
The range is from 0.005 to 0.5 mol. The reaction temperature is usually 30
-130°C, preferably 40-120°C. Furthermore, the reaction can be allowed to proceed while removing water produced in the reaction from the reaction system. After the reaction is completed, the by-produced salt is removed by washing with water, filtration, etc., so that X in the formula [1] becomes the formula [
An epoxy resin exhibiting XE] is obtained. The epoxy resin obtained in this manner preferably contains 30% by weight or more, particularly preferably 35% or more of a compound in which n=0 and X represents the formula [XE] in formula [1]. The epoxy resin composition of the present invention will be explained below. In the epoxy resin composition of the above (12), the resin in which X in the formula [1] of the above (1) represents the formula [XE] or the resin of the above (11) (hereinafter referred to as the epoxy resin of the present invention) is singly Alternatively, it can be used in combination with other epoxy resins. When used together, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more. Other epoxy resins used in combination with the epoxy resin of the present invention include novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, and biphenyl type. Examples include epoxy resins, but novolak epoxy resins are particularly advantageous in terms of heat resistance. Specific examples include, but are not limited to, cresol novolak epoxy resins, phenol novolak epoxy resins, and brominated phenol novolac epoxy resins. These may be used alone or in combination of two or more. In the epoxy resin composition of the above (12), the resin in which X is H in the formula [1] of the above (1) or the resin of the above (10) (hereinafter referred to as the novolac type resin of the present invention) is used alone. It can be used alone or in combination with other curing agents. When used together, the proportion of the novolac type resin of the present invention in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more. Other curing agents used in combination with the novolac type resin of the present invention include, for example, polyamine curing agents such as aliphatic polyamines, aromatic polyamines, polyamide polyamines, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc. Acid anhydride curing agents such as, phenolic curing agents such as phenol novolac, cresol novolak, etc.
Examples include, but are not limited to, Lewis acids such as boron trifluoride or their salts, curing agents such as dicyandiamide, and the like. These may be used alone,
Two or more types may be used in combination. In the epoxy resin composition (12) above, when the epoxy resin of the present invention is used as the epoxy resin, the other curing agents mentioned above or the novolac type resin of the present invention can be used as the curing agent. [0064] Furthermore, in the above epoxy resin composition,
When using the novolac type resin of the present invention as a curing agent,
As the epoxy resin, other epoxy resins mentioned above or the epoxy resin of the present invention can be used. In the epoxy resin composition of the present invention, the amount of curing agent used is preferably 0.5 to 1.5 equivalents, particularly 0.6 to 1.2 equivalents per equivalent of epoxy groups in the epoxy resin.
Equivalent amounts are preferred. Examples of the curing accelerator include imidazole compounds such as 2-methylimidazole and 2-ethylimidazole, tertiary amine compounds such as 2-(dimethylaminomethyl)phenol, and triphenylphosphine compounds. Various known curing agent accelerators can be used and are not particularly limited. The amount of the curing accelerator used is preferably in the range of 0.01 to 15 parts by weight, particularly preferably in the range of 0.1 to 10 parts by weight, based on 100 parts by weight of the epoxy resin. [0067] The epoxy resin composition of the present invention may further contain known additives as required. Examples of additives include inorganic fillers such as silica, alumina, talc, and glass fiber; Examples include surface treatment agents for fillers such as silane coupling agents, mold release agents, and pigments. The epoxy resin composition of the present invention is obtained by uniformly mixing each component, and usually has a molecular weight of 130 to 170
By carrying out preliminary curing at a temperature of 150 to 200° C. for 30 to 300 seconds and further post-curing at a temperature of 150 to 200° C. for 2 to 8 hours, a sufficient curing reaction proceeds and the cured product of the present invention is obtained. The cured product thus obtained has excellent performance, having two properties: low water absorption while maintaining heat resistance. Therefore, the above compound or resin of the present invention can be used as an epoxy resin or as a curing agent in a wide range of fields where heat resistance and low water absorption are required. Specifically, it is useful as a compounding component of all electrical and electronic materials such as insulating materials, laminates, and sealing materials. It can also be used in fields such as molding materials and composite materials. By using the epoxy resin of the present invention and the novolak type resin of the present invention as both the epoxy resin component and the curing agent component, the effect is doubled. Furthermore, the resin of the present invention has a low softening point despite having a naphthol ring, so conventional techniques such as transfer molding can be used, and workability is good. [Example] The present invention will be specifically explained below with reference to Examples. Example 1.162 g of 4-methylphenol
(1.5 mol), paraformaldehyde 90 g and water 1
00 ml was placed in a flask equipped with a thermometer, condenser, dropping funnel, and stirrer, and stirred while blowing nitrogen. At room temperature, 120 g of a 15% aqueous sodium hydroxide solution (0.45 mol as sodium hydroxide) was slowly added dropwise to the mixture while being careful not to generate heat so that the temperature of the solution did not exceed 50°C. [0073] Thereafter, it was heated to 50°C in a water bath and heated to 10°C.
Allowed time to react. After the reaction was completed, 300 ml of water was added, the mixture was cooled to room temperature, and neutralized with a 10% aqueous hydrochloric acid solution while being careful not to generate heat, and then the precipitated crystals were collected by filtration. The pH of the filtrate is 6~
7 and dried at 50° C. under reduced pressure (10 mmHg) to obtain 202 g of 2,6-dimethylol-4-methylphenol (AM) as white crystals. White crystals (AM) 168 thus obtained
g was placed in a flask equipped with a thermometer, condenser, and stirrer, and 640 g of 1,6-dihydroxynaphthalene and 1000 ml of methyl isobutyl ketone were added thereto, followed by stirring at room temperature under a nitrogen atmosphere. Then, 1.7 g of p-toluenesulfonic acid was slowly added dropwise while paying attention to heat generation so that the liquid temperature did not exceed 50°C. After the addition, the mixture was heated to 50°C in a water bath and reacted for 2 hours, then transferred to a separatory funnel and washed with water. After washing with water until the washing water becomes neutral, unreacted dihydroxynaphthalene is extracted with a water/methanol solution (water/methanol = 60/40 (wt%)), and then the solvent and unreacted dihydroxynaphthalene are extracted from the organic layer. By removing the reactant under reduced pressure, 430 g of the resin (A-1) of the present invention was obtained. Softening temperature of product (A-1) (JIS K2425
ring and ball method), the hydroxyl equivalent (g/mol) was 88 at 115°C.
Met. Example 2. 438 g of product (A-2) was obtained in the same manner as in Example 1 except that the amount of 1,6-dihydroxynaphthalene used in Example 1 was changed to 400 g. The product (A-2) had a softening temperature of 118°C and a hydroxyl equivalent (g/mol) of 86. Example 3. 426 g of product (A-3) was obtained in the same manner as in Example 1 except that 640 g of 1,4-dihydroxynaphthalene was used instead of 1,6-dihydroxynaphthalene. Product (A
The softening temperature of -3) is 120℃ and the hydroxyl equivalent (g/mol
) was 89. Example 4.4-tert-butylphenol 22
5 g (1.5 moles) of paraformaldehyde, 90 g of paraformaldehyde, and 100 ml of water were placed in a 1-liter flask equipped with a thermometer, condenser, dropping funnel, and stirrer, and stirred while blowing nitrogen. At room temperature, 120 g of 15% aqueous sodium hydroxide solution (0.45 mol as sodium hydroxide)
was slowly added dropwise so that the liquid temperature did not exceed 50° C. while being careful not to generate heat. [0079] Thereafter, it was heated to 50°C in a water bath and heated to 10°C.
Allowed time to react. After the reaction was completed, 300 ml of water was added, the mixture was cooled to room temperature, and neutralized with a 10% aqueous hydrochloric acid solution while being careful not to generate heat. Add 500ml of chloroform to separate the oil layer.
After washing with a water/methanol solution (water/methanol = 80/20 (wt%)), anhydrous sodium sulfate was added to dry. Thereafter, chloroform was removed under reduced pressure to obtain 285 g (purity: 85%) of 2,6-dimethylol-4-t-butylphenol (AB) as a viscous liquid. 2,6-dimethylol 4 thus obtained
- 247 g of t-butylphenol (AB) was charged into a flask equipped with a thermometer, a cooling tube, and a stirrer, and 1,6-
640 g of dihydroxynaphthalene and 1000 ml of methyl isobutyl ketone were added, and the mixture was stirred at room temperature under a nitrogen atmosphere. Then, 1.7 g of p-toluenesulfonic acid was slowly added dropwise while paying attention to heat generation so that the liquid temperature did not exceed 50°C. After the addition, the mixture was heated to 50°C in a water bath and reacted for 2 hours, then transferred to a separatory funnel and washed with water. After washing with water until the washing water becomes neutral, unreacted dihydroxynaphthalene is extracted with a water/methanol solution (water/methanol = 60/40 (wt%)), and then the solvent and unreacted dihydroxynaphthalene are extracted from the organic layer. By removing the reactant under reduced pressure, 480 g of the resin (A-4) of the present invention was obtained. Softening temperature of product (A-4) (JIS K2425
ring and ball method), the hydroxyl equivalent (g/mol) is 10 at 105°C.
It was 1. Example 5. 476 g of product (A-5) was obtained in the same manner as in Example 4, except that 640 g of 1,4-dihydroxynaphthalene was used instead of 1,6-dihydroxynaphthalene. Product (A
-5) has a softening temperature of 102°C and a hydroxyl equivalent (g/mol
) was 99. Example 6. Product (A-6) was produced in the same manner as in Example 1, except that 189 g of 2,6-dimethylol-4-chlorophenol (AC) was used instead of 2,6-dimethylol-4-methylphenol in Example 1. 46
Obtained 0g. Softening temperature of product (A-6) (JIS
K2425 ring and ball method) is the hydroxyl equivalent (g/
mol) was 93. Example 7. 472 g of product 1 (A-7) was obtained in the same manner as in Example 6 except that 640 g of 1,4-dihydroxynaphthalene was used instead of 1,6-dihydroxynaphthalene. Product (A
-7) has a softening temperature of 117°C and a hydroxyl equivalent (g/mol
) was 95. Example 8. The product ( A-8) 508g was obtained. The softening temperature (JIS K2425 ring and ball method) of the product (A-8) was 125°C, and the hydroxyl equivalent (g/mol) was 104. Example 9. 472 g of product 1 (A-9) was obtained in the same manner as in Example 8 except that 640 g of 1,4-dihydroxynaphthalene was used in place of 1,6-dihydroxynaphthalene. Product (A
-9) has a softening temperature of 128°C and a hydroxyl equivalent (g/mol
) was 105. Example 10. Orthocresol 162g (
1.5 mol), 90 g of paraformaldehyde and 10 g of water
0 ml was placed in a 1 liter flask equipped with a thermometer, condenser, dropping funnel and stirrer, and stirred while blowing nitrogen. At room temperature, 15% sodium hydroxide aqueous solution 5
0 g (0.19 mol as sodium hydroxide) was slowly added dropwise to the solution while paying attention to heat generation so that the temperature of the solution did not exceed 50°C. Thereafter, the mixture was heated to 50° C. in a water bath and reacted for 10 hours. After the reaction is complete, add 300 ml of water, cool to room temperature, and neutralize with 10% aqueous hydrochloric acid solution while being careful not to generate heat.
Thereafter, the precipitated crystals were collected by filtration. The filtrate was washed until the pH became 6 to 7 and dried at 50°C under reduced pressure (10 mmHg) to give 197 g of white crystals (compound of formula [14]) (AO).
I got it. White crystals (AO) 197 thus obtained
1,6-dihydroxynaphthalene and 500 ml of methyl isobutyl ketone were added thereto, and the mixture was stirred at room temperature under a nitrogen atmosphere. and p-toluenesulfonic acid 2
g was slowly added dropwise to the solution while being careful not to generate heat so that the liquid temperature did not exceed 50°C. After the addition, the mixture was heated to 50°C in a water bath and reacted for 2 hours, and then transferred to a separatory funnel and washed with water. The cleaning water
After washing with water until it becomes neutral, add water/methanol solution (water/
After extracting unreacted dihydroxynaphthalene with methanol = 60/40 (wt%), 388 g of the resin (A-10) of the present invention was obtained by removing the solvent and unreacted substances from the organic layer under reduced pressure. Ta. The softening temperature (JIS K2425 ring and ball method) of the product (A-10) is 96°C
The hydroxyl equivalent (g/mol) was 99. Example 11. In Example 10, 1,6-
Product (A-11) 3 was prepared in the same manner as in Example 10 except that the amount of dihydroxynaphthalene used was 281 g.
93g was obtained. The softening temperature of product (A-11) is 108
The hydroxyl equivalent (g/mol) was 97 at °C. Example 12. In Example 10, 1,6-
385 g of product (A-12) was obtained in the same manner as in Example 10, except that 450 g of 1,4-dihydroxynaphthalene was used instead of dihydroxynaphthalene. The softening temperature of the product (A-12) was 107°C and the hydroxyl equivalent (g
/mol) was 96. Example 13. In Example 12, 1,4-
Product (A-13) 3 was prepared in the same manner as in Example 12 except that the amount of dihydroxynaphthalene used was 281 g.
79g was obtained. The softening temperature of product (A-13) is 110
The hydroxyl equivalent (g/mol) was 99 at °C. Analysis example 1. Regarding products (A-1) to (A-9), which are resins of the present invention obtained in Examples 1 to 9, G
PC analysis was performed, and a peak believed to be that of the compound represented by formula [2] was fractionated, and the mass spectrum (FAB-MS
) was analyzed. As a result, products (A-1) to (
M+ 452 for A-3), product (A-4),
M+ 494 for (A-5), product (A-6)
, M+ 472 and 474 were obtained for (A-7), and M+ 514 was obtained for products (A-8) and (A-9). Similarly, for the products (A-10) to (A-13) obtained in Examples 10 to 13, formula [5]
When a peak believed to be the compound was collected and analyzed by mass spectrometry, M+ 572 was obtained. Therefore, the products (A-1) to (A-13 obtained in Examples 1 to 13)
) contains the formula [2
] or the compound represented by formula [5] was confirmed to be included. [0095] The GPC analysis conditions are as follows. GPC device: Shimadzu Corporation (Column: TSK
-G-3000XL (1 piece) +TSK-G-2000X
L (2 bottles)) Solvent: Tetrahydrofuran 1ml
/min detection: UV (254nm) 0096
Table 1
Compound product represented by usage [2] contained in the product Structural formula
(molecular weight) Content (weight%)
)(A-1) The following formula [15]
(452) 55 (A-2)
The following formula [15] (452)
45(A-3) The following formula [16] (452)
53(A-4) The following formula [17]
(494) 52(A
-5) The following formula [18] (
494) 50 (A-6)
The following formula [19] (472.5)
56(A-7) The following formula [20]
(472.5) 53(A
-8) The following formula [21] (
514) 54(A-9)
The following formula [22] (514)
52 [Formula 34] [Formula 34] [Formula 35] [Formula 36] [Formula 36] [Formula 37] [Formula 38] [Formula 38] [Formula 40] [0104]
Table 2
Compound product represented by formula [5] contained in the product Structural formula
(Molecular weight) Content (weight%) (A
-10) The following formula [23] (5
72) 52 (A-11)
The following formula [23] (572)
43(A-12) The following formula [24]
(572) 53(
A-13) The following formula [24] (
572) 42 embedded image Example 14. The product (A-1) obtained in Example 1 (hydroxyl group equivalent (g/mo
l) 176 g of 88) and 920 g of epichlorohydrin were charged and the mixture was purged with nitrogen, and then 170 g of a 48% aqueous sodium hydroxide solution was added dropwise over 5 hours. During the dropwise addition, the produced water and the water in the aqueous sodium hydroxide solution were continuously removed from the reaction system by azeotropy with epichlorohydrin under conditions of a reaction temperature of 60° C. and a pressure of 100 to 150 mmHg, and epichlorohydrin was returned to the system. [0109] After recovering excess unreacted epichlorohydrin under reduced pressure, 1000 ml of methyl isobutyl ketone was recovered.
ml was added and washed with water until the aqueous layer became neutral. Methyl isobutyl ketone was removed from the organic layer under reduced pressure, and then 400 g of methyl isobutyl ketone was added again and redissolved. 40 g of a 20% aqueous sodium hydroxide solution was added to the obtained methyl isobutyl ketone solution, and the mixture was reacted at a reaction temperature of 70° C. for 2 hours. After the reaction was completed, the aqueous layer was washed with water until it became neutral, and methyl isobutyl ketone was removed from the oil layer under reduced pressure to obtain 285 g of a pale yellow solid (B-1). Softening temperature (JI
S K2425) has an epoxy equivalent (g/mo
l) was 149. Example 15. The product obtained in Example 1 (A-1) was placed in a reactor equipped with a thermometer, a stirrer and a dropping funnel.
(Hydroxy group equivalent (g/mol) 88) 176 g, epichlorohydrin 920 g and dimethyl sulfoxide 460 g
After charging and purging with nitrogen, 80 g of sodium hydroxide was gradually added in a 30°C water bath. At 30°C for 5 hours, then at 50°C for 2 hours, then at 70°C, being careful not to generate heat.
The reaction was carried out for 1 hour. Then, water was added to wash the mixture until the aqueous layer became neutral. Thereafter, epichlorohydrin and dimethyl sulfoxide were removed from the oil layer under reduced pressure. Next, 400 g of methyl isobutyl ketone was added and redissolved. 40 g of 20% aqueous sodium hydroxide solution was added to the obtained methyl isobutyl ketone solution, and the mixture was reacted at a reaction temperature of 70° C. for 2 hours. After the reaction was completed, the aqueous layer was washed with water until it became neutral, and methyl isobutyl ketone was removed from the oil layer under reduced pressure to obtain 280 g of a pale yellow solid (B-2). The softening temperature of the product (B-2), which is the epoxy resin of the present invention, is 90°C and the epoxy equivalent (g/mol) is 148
Met. Example 16. Product (A-2) obtained in Example 2 instead of product (A-1) (hydroxyl equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 172 g of mol) 86) was used to obtain 307 g of product (B-3). The product (B-3), which is the epoxy resin of the present invention, had a softening temperature of 86°C and an epoxy equivalent (g/mol) of 149. Example 17. Product (A-3) obtained in Example 3 instead of product (A-1) (hydroxyl equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 178 g of the product (mol) 89) was used to obtain 298 g of product (B-4). The product (B-4), which is the epoxy resin of the present invention, had a softening temperature of 91° C. and an epoxy equivalent (g/mol) of 150. Example 18. Product (A-4) obtained in Example 4 instead of product (A-1) (hydroxyl equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 202 g of mol) 101) was used to obtain 305 g of product (B-5). The product (B-5), which is the epoxy resin of the present invention, had a softening temperature of 92°C and an epoxy equivalent (g/mol) of 157. Example 19. Product (A-5) obtained in Example 5 instead of product (A-1) (hydroxyl group equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 198 g of mol)99) was used to obtain 303 g of product (B-6). The product (B-6), which is the epoxy resin of the present invention, had a softening temperature of 90°C and an epoxy equivalent (g/mol) of 156. Example 20. Product (A-6) obtained in Example 6 instead of product (A-1) (hydroxyl group equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 186 g of mol)93) was used to obtain 280 g of product (B-7). Product (B-7), which is an epoxy resin of the present invention, had a softening temperature of 97°C and an epoxy equivalent (g/mol) of 155. Example 21. Product (A-7) obtained in Example 7 instead of product (A-1) (hydroxyl equivalent: ■ (g/
The reaction was carried out in the same manner as in Example 14 except that 190 g of mol)95) was used to obtain 277 g of product (B-8). The softening temperature of the product (B-8), which is the epoxy resin of the present invention, was 96°C and the epoxy equivalent (g/mol) was 158. Example 22. Product (A-8) obtained in Example 8 instead of product (A-1) (hydroxyl group equivalent
The reaction was carried out in the same manner as in Example 14 except that 208 g of mol) 104) was used to obtain 308 g of product (B-9). Product (B-9), which is an epoxy resin of the present invention, had a softening temperature of 99°C and an epoxy equivalent (g/mol) of 163. Example 23. Product (A-9) obtained in Example 9 instead of product (A-1) (hydroxyl group equivalent (g/m
The reaction was carried out in the same manner as in Example 14 except that 210 g of ol) 105) was used to obtain 299 g of product (B-10). The product (B-10), which is the epoxy resin of the present invention, has a softening temperature of 101°C and an epoxy equivalent (g/mol) of 16
It was 4. Example 24. Instead of product (A-1), the product (A-10) obtained in Example 10 (hydroxyl group equivalent (g
The reaction was carried out in the same manner as in Example 14, except that 192 g of the product (B-11) was used, and 294 g of the product (B-11) was obtained. The softening temperature of the product (B-11), which is the epoxy resin of the present invention, is 89°C and the epoxy equivalent (g/mol) is 15.
It was 7. Example 25. Product (A-11) obtained in Example 11 instead of product (A-1) (hydroxyl group equivalent (g
The reaction was carried out in the same manner as in Example 14 except that 194 g of the product (B-12) was used to obtain 290 g of product (B-12). The product (B-12), which is the epoxy resin of the present invention, has a softening temperature of 88°C and an epoxy equivalent (g/mol) of 15
It was 5. Example 26. Product (A-12) obtained in Example 12 instead of product (A-1) (hydroxyl group equivalent (g
The reaction was carried out in the same manner as in Example 14, except that 192 g of the product (B-13) was used, and 292 g of product (B-13) was obtained. The softening temperature of the product (B-13), which is the epoxy resin of the present invention, is 90°C and the epoxy equivalent (g/mol) is 15.
It was 6. Example 27. Product (A-13) obtained in Example 13 instead of product (A-1) (hydroxyl group equivalent (g
The reaction was carried out in the same manner as in Example 14, except that 198 g of the product (B-14) was used, and 294 g of the product (B-14) was obtained. The product (B-14), which is the epoxy resin of the present invention, has a softening temperature of 91°C and an epoxy equivalent (g/mol) of 15
It was 4. Analysis example 2. Products (B-1) to (B-14) obtained in Examples 14 to 27 were subjected to GPC analysis in the same manner as in Analysis Example 1, and the compounds represented by formula [6] or formula [9] were obtained. A peak believed to be was collected and analyzed by mass spectrometry (FAB-MS). the result,
M+ 732 for products (B-1) to (B-4)
, M+774 for products (B-5), (B-6)
, M+ 75 for products (B-7), (B-8)
2 and 754, and M+ 794 for products (B-9) and (B-10), and products (B-11) to (B-1
For 4), M+ 908 was obtained. Therefore, the products (B-1) to (B-14) obtained in Examples 14 to 27
), the formula [6
] or the compound represented by formula [9] was confirmed to be included. [0126]
Table 3
Compound product represented by formula [6] contained in the product Structural formula (molecular weight) Content (
Weight%) (B-1) The following formula [25]
(732) 49(
B-2) The following formula [25]
(732) 48 (B-3)
The following formula [25] (73
2) 38 (B-4)
The following formula [26] (732)
47(B-5) The following formula [27] (774)
45(B-6) The following formula [28]
(774) 44(
B-7) The following formula [29]
(752.5) 48 (B-8)
The following formula [30] (752.5)
46(B-9) The following formula [31] (794)
45(B-10) The following formula [32]
(794) 42 [
embedded image embedded image embedded image embedded image embedded image embedded image embedded image embedded image embedded image embedded image embedded image ] [Chemical formula 51]
Table 4
Compound represented by formula [9] contained in the product Product Structural formula
(Molecular weight) Content (weight%) (B-11) Following formula [33]
(908) 46 (B
-12) The following formula [33]
(908) 38 (B-13)
The following formula [34] (908
) 47 (B-14)
The following formula [34] (908)
36 [Chemical formula 52] [Chemical formula 53] [Chemical formula 53] The value (average value) of n (in formula [1]) for the products (A-1) to (B-14) is as follows. It is as follows. Product n value
Product n value
(A-1) 0.5
(B-1) 0.5 (A-2
) 0.8 (
B-2) 0.5 (A-3)
0.6 (B-3)
0.8 (A-4) 0
.. 7 (B-4)
0.6 (A-5) 0.9
(B-5) 0.
7 (A-6) 0.7
(B-6) 0.9
(A-7) 0.8
(B-7) 0.7 (A-
8) 0.6
(B-8) 0.8 (A-9)
0.9 (B-9
) 0.6 (A-10) 0
.. 9 (B-10)
0.9 (A-11) 1.1
(B-11) 0.9
(A-12) 1.0
(B-12) 1.1 (A-1
3) 1.2 (B
-13) 1.0

(B-14) 1.2 Application Examples 1 to 13. Products (A-1) to (A-13) obtained in Examples 1 to 13 were used as curing agents, and cresol novolac type epoxy resin EOCN-10 was used as epoxy resin.
20 and 2-methylimidazole (2MZ) as a curing accelerator, a composition prepared by blending these in the proportions shown in Table 5 was roll-kneaded at 70 to 80°C for 15 minutes. After cooling, this was crushed, made into tablets, molded using a transfer molding machine, and precured at 160°C for 2 hours.
Post-curing was performed at 0° C. for 8 hours to obtain a cured product (test piece). The glass transition temperature (Tg) and water absorption rate of this cured product were measured. The evaluation results of the cured products are shown in Table 5. Application Examples 14-26. A commercially available phenol novolac resin (PN(H-1)) was used as a curing agent, and the products obtained in Examples 14 to 27 (B
Using -1) to (B-14) and 2-methylimidazole (2MZ) as a curing accelerator, these were mixed in the proportions shown in Table 6, and the following tests were carried out in the same manner as in Application Examples 1 to 13. went. The evaluation results of the cured products are shown in Table 6. Application Examples 27-35. The products obtained in Examples 1 to 13 were used as the curing agent, the products obtained in Examples 14 to 27 were used as the epoxy resin, and 2-methylimidazole (2MZ) was used as the curing accelerator.
They were blended in the proportions shown in the table and tested in the same manner as in Application Examples 1 to 13 below. Table 7 shows the evaluation results of the cured products. Application Comparative Examples 1 to 3. Phenol novolac resin (PN■(
H-1)) was cured using a cresol novolak type epoxy resin (EOCN1020), a polyphenol polyepoxy compound obtained by condensing aromatic aldehyde and phenol (EPPN502), and a bisphenol type epoxy resin (Epomic R301) as an epoxy resin. An accelerator was added, and the cured products were evaluated in the same manner as in Application Examples 1 to 13. The evaluation results are shown in Table 8. [0143] The equipment and conditions for measuring the glass transition temperature and water absorption are as follows. Glass transition temperature (℃): Thermomechanical measuring device (
TMA) Shinku Riko Co., Ltd.
TM-7000 Heating rate 2℃/min Water absorption rate (%)
: Test piece diameter
50
(cured product) thickness
3 Disk
condition
20 hours in 100℃ water

Weight gain after boiling

(weight%)
[0144]
Table 5 (1)
Application examples
1 2
3 4
Product (A-1) 88
Product (A-2)
86 Curing agent product (A-3
)
89 Product (A-4)

101
Product (A-5) Product (A-6) Product (A-
7) Epoxy resin EOCN-1020 20
0 200 200 200 Curing accelerator (2MZ) 2.0
2.0 2.0 2.0 Glass transition temperature (℃) 190
188 187 181 Water absorption rate
(%) 0.8
0.9 0.8 0.9 01
45]
Table 5 (2)
Application examples
5 6
7 Product (
A-1) Product (A-2
) Curing agent Product (A-3)
Product (A-4)
Product (A-5) 99
Product (A-6)
93 Product (A-7)
95 epoxy resin EOCN-1020
200 200 200 Curing accelerator (
2MZ) 2.0 2.
0 2.0 Glass transition temperature (℃)
180 183 181 Water absorption rate (%) 0.
9 0.8 0.9 0146]
Table 5 (3)

Application examples
8
9 10
Product (A-8)
104 Product (A-9)
105 hardening agent
Product (A-10)
96
Product (A-11)
Product (A-12)
Product (A-13) Epoxy resin
EOCN-1020 200
200 200 curing accelerator (2MZ)
2.0 2.
0 2.0 Glass transition temperature (℃)
192 188
188 Water absorption rate (%)
0.8 0.8
0.8 0147
Table 5 (4)

Application examples
11
12 13
Product (A-8)
Product (A-9) Curing agent
Product (A-10) Product (A-11) 97
Product (A-12)
96 Product (A-13)
99 epoxy resin EO
CN-1020 200 2
00 200 curing accelerator (2MZ)
2.0 2.
0 2.0 Glass transition temperature (℃)
186 187
186 Water absorption rate (%)
0.9
0.9 0.9 0148]
Table 6 (1)

Application examples
14
15 16 17
Product (B-1)
148
Product (B-3) 149
Product (B-4
)
150 epoxy resin product (B-5)

157
Product (B-6)
Product (B-7)
Product (B-8) Curing agent
PN (H-1) 106 106
106 106 Curing accelerator (2MZ)
1.5 1.5
1.5 1.6 Glass transition temperature (℃)
188 186
182 179 Water absorption rate (%)
0.8
0.8 0.9 0.9 0149]
Table 6 (2)

Application examples
18
19 20
Product (B-1)
Product (B-3)
Product (B-4) Epoxy resin Product (B-5)
Product (B-6) 15
6 Product (B-
7) 155
Product (B-8)

158 Curing agent PN (H-
1) 106 106 1
06 Curing accelerator (2MZ)
1.6 1.6 1.
6 Glass transition temperature (℃)
180 184 182
Water absorption rate (%)
0.9 0.8
0.8 0150
Table 6 (3)

Application examples

21 22 23
Product (B-9)
163
Product (B-10) 16
4 Product (B-
11)
157 Epoxy resin product (B-
12) Product (
B-13) Product (B-14) Curing agent PN
(H-1) 106 106
106 curing accelerator (2MZ)
1.6 1.6
1.6 Glass transition temperature (℃)
186 185
188 Water absorption rate (%)
0.9 0.9
0.8 0151
Table 6 (4)
Application examples
24
25 26
Product (B-9)
Product (B-10)
Product (B-11) Epoxy resin Product (B-12) 155
Product (B-13)
156
Product (B-14)
155 hardening agent
PN (H-1) 10
6 106 106 Curing accelerator (
2MZ) 1.6
1.6 1.6 Glass transition temperature (℃) 187
183 182 Water absorption rate (%)
0
.. 9 0.9 0.9 0152
]
Table 7 (1)

Application examples
27
28 29
Product (B-1)
148 Product (
B-3) 149
Product (B-4)

150 epoxy resin product (B-6)
Product (B-8
)────────────────────────
────────────
Product (A-1) 88
Product (A-2)
86
Product (A-3)
89
Curing agent product (A-5)
Product (A-7)
Product (A-11
) Curing accelerator (2MZ)
1.5 1.5 1.5
Glass transition temperature (℃)
192 193 189 Water absorption rate (%)
0.7 0.7 0
.. 8 0153]
Table 7 (2)

Application examples
30
31 32
Product (B-1)
Product (B-3)
Product (B-4) Epoxy resin Product (B-6) 156
Product (B-8
) 158────────
──────────────────────────
──── Product (A-1) Product (A-2) Product (A-3) Curing agent Product (A-5) 99
Product (A-7)
95
Product (A-11)
97 curing accelerator (2MZ)
1.6
1.6 1.6 Glass transition temperature (℃)
186
188 184 Water absorption rate (%)
0.8
0.9 0.8 0154
Table 7 (3)

Application examples
33
34 35
Product (B-9)
148 Epoxy resin product (B-11)
149
Product (B-13)
150─────
──────────────────────────
────── Product (A-8) 88 Curing agent
Product (A-10)
86 Product (
A-12)
89 Curing accelerator (2MZ)
1.5 1.5
1.5 Glass transition temperature (℃)
194 192
188 Water absorption rate (%)
0.8 0
.. 7 0.7 0155
Table 8

Application comparison example
1
2 3
EOCN-1020
200 epoxy resin EPPN-502
168
Epomic R-301
470 Curing Agent PN- (H-1)
106 106 106 Curing accelerator (2MZ) 2
.. 0 1.7 4.7 Glass transition temperature (℃) 16
2 177 125 Water absorption rate (
%)
1.4 2.0 1.2 [0156] The commercially available resins blended are as follows. PN (H-1): (Nippon Kayaku) Phenol novolak resin Hydroxyl group equivalent (g/mol) 106
Softening temperature 85℃
EOCN-1020: (Nippon Kayaku) Cresol novolac type epoxy resin
Epoxy equivalent (g/mol) 200
Softening temperature
65°C 0157 Efomic R-301: (Mitsui Petrochemical Epoxy) Bisphenol A epoxy resin Epoxy equivalent (g/mol) 470
Softening temperature 68℃EPPN502: (Nippon Kayaku) Polyepoxy compound
Epoxy equivalent (g/mol) 168
Softening temperature
70°C [0158] Effects of the Invention The resin of the present invention has a low softening temperature and is excellent in workability. Moreover, the cured product obtained using this resin has a high glass transition temperature and a high heat distortion temperature, which are indicators of heat resistance, and can have a lower water absorption rate than conventional resins. Therefore, the resin of the present invention can fully meet the recent demands for high heat resistance and low water absorption, and can be used in a wide range of fields, specifically as encapsulating materials for electronic components, molding materials, etc. Extremely useful as a material for lamination.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】式[1] 【化1】 (式中、Aは、式[A1] 【化2】 又は式[A2] 【化3】 を、Rは炭素数1〜4のアルキル基、アリール基又はハ
ロゲン原子を、XはH又は式[XE] 【化4】 を示し、nは0〜10の値をとる。)で表される樹脂。
Claim 1: Formula [1] [Chemical 1] (wherein A is the formula [A1] [Chemical 2] or formula [A2] [Chemical 3], R is an alkyl group having 1 to 4 carbon atoms, A resin represented by an aryl group or a halogen atom;
【請求項2】式[2] 【化5】 (式中、Rは炭素数1〜4のアルキル基、アリール基又
はハロゲン原子を示す。)で表される化合物。
2. A compound represented by the formula [2] embedded image (wherein R represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or a halogen atom).
【請求項3】式[3] 【化6】 で表される化合物。[Claim 3] Formula [3] [C6] A compound represented by 【請求項4】式[4] 【化7】 で表される化合物。[Claim 4] Formula [4] [Chemical 7] A compound represented by 【請求項5】式[5] 【化8】 で表される化合物。[Claim 5] Formula [5] [Chemical formula 8] A compound represented by 【請求項6】式[6] 【化9】 (式中、Rは炭素数1〜4のアルキル基、アリール基又
はハロゲン原子を示す。)で表されるエポキシ化合物。
6. An epoxy compound represented by the formula [6] embedded image (wherein R represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or a halogen atom).
【請求項7】式[7] 【化10】 で表されるエポキシ化合物。[Claim 7] Formula [7] [Chemical formula 10] An epoxy compound represented by 【請求項8】式[8] 【化11】 で表されるエポキシ化合物。[Claim 8] Formula [8] [Chemical formula 11] An epoxy compound represented by 【請求項9】式[9] 【化12】 で表されるエポキシ化合物。[Claim 9] Formula [9] [Chemical formula 12] An epoxy compound represented by 【請求項10】式[10] 【化13】 (式中、Rは炭素数1〜4のアルキル基、アリール基又
はハロゲン原子を示す。又は式[11]【化14】 (式中、Rは前記と同じ意味ヲ示す)で表されるジメチ
ロール化合物と式[12] 【化15】 で表されるジヒドロキシナフタレンとを反応させて得ら
れ、請求項1の式[1]においてn=OでX=Hの化合
物を30重量%以上含む、請求項1の式[1]において
XがHである樹脂。
[Claim 10] Formula [10] [Chemical 13] (wherein, R represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or a halogen atom; or formula [11] [Chemical 14] (wherein, R has the same meaning as above) and dihydroxynaphthalene represented by the formula [12] [Chemical 15], and in the formula [1] of claim 1, where n=O A resin in which X is H in formula [1] according to claim 1, which contains 30% by weight or more of a compound where X=H.
【請求項11】請求項10の樹脂を、式[13]【化1
6】 (式中、Yはハロゲン原子を示す)で表されるエピハロ
ヒドリン化合物と反応させて得られ、請求項1の式[1
]においてn=OでXが請求項1の式[XE]を示す化
合物を30重量%以上含む、請求項1の式[1]におい
てXが請求項1の式[XE]を示す樹脂。
Claim 11: The resin of Claim 10 is prepared by formula [13] [Chemical formula 1
6] (In the formula, Y represents a halogen atom) obtained by reacting with an epihalohydrin compound represented by the formula [1
] wherein n=O and X contains 30% by weight or more of a compound representing the formula [XE] of claim 1, wherein in formula [1] of claim 1, X represents the formula [XE] of claim 1.
【請求項12】エポキシ樹脂、硬化剤及び硬化促進剤を
含むエポキシ樹脂組成物において、(A)エポキシ樹脂
として、請求項1の式[1]においてXが請求項1の式
[XE]を示す樹脂又は請求項11の樹脂を用い、及び
/又は(B)硬化剤として、請求項1の式[1]におい
てXがHである樹脂又は請求項10の樹脂を用いる、エ
ポキシ樹脂組成物。
12. In an epoxy resin composition containing an epoxy resin, a curing agent, and a curing accelerator, (A) as the epoxy resin, in the formula [1] of claim 1, X represents the formula [XE] of claim 1; An epoxy resin composition using a resin or a resin according to claim 11 and/or a resin in which X is H in formula [1] according to claim 1 or a resin according to claim 10 as (B) a curing agent.
【請求項13】請求項12のエポキシ樹脂組成物の硬化
物。
13. A cured product of the epoxy resin composition according to claim 12.
JP9266391A 1991-04-01 1991-04-01 Resin manufacturing method Expired - Lifetime JP2856565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266391A JP2856565B2 (en) 1991-04-01 1991-04-01 Resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266391A JP2856565B2 (en) 1991-04-01 1991-04-01 Resin manufacturing method

Publications (2)

Publication Number Publication Date
JPH04304225A true JPH04304225A (en) 1992-10-27
JP2856565B2 JP2856565B2 (en) 1999-02-10

Family

ID=14060719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266391A Expired - Lifetime JP2856565B2 (en) 1991-04-01 1991-04-01 Resin manufacturing method

Country Status (1)

Country Link
JP (1) JP2856565B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260802A (en) * 2009-04-30 2010-11-18 Air Water Inc Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JP2016003244A (en) * 2014-06-13 2016-01-12 Dic株式会社 Epoxy compound, phenolic hydroxyl group-containing compound, curable composition and cured product thereof, semiconductor sealant, semiconductor device, prepreg, circuit board, build-up film, build-up substrate, fiber-reinforced composite material, and fiber-reinforced resin molding
WO2020003824A1 (en) * 2018-06-27 2020-01-02 Dic株式会社 Epoxy resin composition and cured product thereof
CN113227193A (en) * 2019-01-07 2021-08-06 日东新兴有限公司 Resin composition, method for producing the same, and thermally conductive sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260802A (en) * 2009-04-30 2010-11-18 Air Water Inc Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JP2016003244A (en) * 2014-06-13 2016-01-12 Dic株式会社 Epoxy compound, phenolic hydroxyl group-containing compound, curable composition and cured product thereof, semiconductor sealant, semiconductor device, prepreg, circuit board, build-up film, build-up substrate, fiber-reinforced composite material, and fiber-reinforced resin molding
WO2020003824A1 (en) * 2018-06-27 2020-01-02 Dic株式会社 Epoxy resin composition and cured product thereof
JPWO2020003824A1 (en) * 2018-06-27 2021-05-20 Dic株式会社 Epoxy resin composition and its cured product
CN113227193A (en) * 2019-01-07 2021-08-06 日东新兴有限公司 Resin composition, method for producing the same, and thermally conductive sheet

Also Published As

Publication number Publication date
JP2856565B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
GB2316407A (en) Epoxy resins and compositions containing them
JP3206778B2 (en) Cyclic phosphazene compound, resin composition and cured product thereof
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP3132610B2 (en) Naphthalene ring-containing resin, resin composition and cured product thereof
JP3074013B2 (en) Epoxy resin composition and cured product thereof
JP2631560B2 (en) Novolak epoxy resins with phenols and their production
JP2856565B2 (en) Resin manufacturing method
JP3944765B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2870709B2 (en) New compounds, resins, resin compositions and cured products
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP2865439B2 (en) Epoxy resin and its cured product
JP2741075B2 (en) Epoxy resin composition
JP2732126B2 (en) High heat resistance, low water absorption resin composition
JP2870710B2 (en) New compounds, resins, resin compositions and cured products
JP3080448B2 (en) Manufacturing method of novolak type resin
JP2845410B2 (en) New epoxy resin, resin composition and cured product thereof
JP2848545B2 (en) Epoxy resin, resin composition and cured product thereof
JPH04220413A (en) Compound, resin, resin composition, and cured article of phenol novolac type
JPH0920819A (en) Modified phenol novlak resin, epoxy resin, epoxy resin composition and its cured product
JPH07330645A (en) Compound of polyphenols, epoxy resin, epoxy resin composition and cured material thereof
JPH04359919A (en) Epoxy resin, and its production and composition
JP2776924B2 (en) New epoxy resin composition and cured product thereof
JP3192471B2 (en) Epoxy resin, resin composition and cured product
JPH04264117A (en) New high-performance resin, epoxy resin composition, and its cured article