JPH04295323A - Vacuum cleaner - Google Patents

Vacuum cleaner

Info

Publication number
JPH04295323A
JPH04295323A JP5845191A JP5845191A JPH04295323A JP H04295323 A JPH04295323 A JP H04295323A JP 5845191 A JP5845191 A JP 5845191A JP 5845191 A JP5845191 A JP 5845191A JP H04295323 A JPH04295323 A JP H04295323A
Authority
JP
Japan
Prior art keywords
vacuum cleaner
angular velocity
remote control
velocity sensor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5845191A
Other languages
Japanese (ja)
Inventor
Toshihiko Ichise
俊彦 市瀬
Jiro Terada
二郎 寺田
Kazumitsu Ueda
上田 和光
Sumitake Yoshida
吉田 純威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5845191A priority Critical patent/JPH04295323A/en
Publication of JPH04295323A publication Critical patent/JPH04295323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

PURPOSE:To provide a vaccum cleaner with high operability by remote controlling the same by the use of a remote control having an angular velocity sensor built therein. CONSTITUTION:An angular velocity sensor 6 built in a remote controlled transmitter 1 detects the angular volocity in the movement of human's hands in the left, right and vertical directions and the rotation of a wrist. An angle obtained by a signal processor 4 is subjected to multiplex process and then sent out by an electric wave signal transmitting circuit 8. A signal received by an electric wave signal receiving circuit 10 in a vacuum cleaner body 2 is decoded by a signal processor 11 and an arm controlling motor 13 is driven through a cleaner controlling driver 12 so that a suction device 3 is moved left, right, back and forth or rotated. Also, a travelling motor 15 and steering motor 18 are controlled through a travelling system driver 14 so that the vacuum cleaner body follows the moving suction device 3 automatically in the position and direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電気掃除機の遠隔制御に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to remote control of vacuum cleaners.

【0002】0002

【従来の技術】従来の家庭用の電気掃除機に代わって人
間の手を介さずに無人で掃除ができる『掃除ロボット』
のアイデアが数多く考案されている。この『掃除ロボッ
ト』の一例を図6に示す。図6において19は『掃除ロ
ボット』の方位を検出するジャイロスコープ、20は壁
面や柱等の障害物を検出する超音波センサ、21は衝突
を検出するタッチセンサ、22はロボットコントローラ
、3は吸引装置、23は回転パッド、15は走行モータ
、24はバッテリーをそれぞれ示すものである。
[Prior technology] A "cleaning robot" that can replace conventional household vacuum cleaners and perform unmanned cleaning without human intervention.
Many ideas have been devised. An example of this "cleaning robot" is shown in FIG. In FIG. 6, 19 is a gyroscope that detects the direction of the "cleaning robot", 20 is an ultrasonic sensor that detects obstacles such as walls and pillars, 21 is a touch sensor that detects collisions, 22 is a robot controller, and 3 is a suction 23 is a rotating pad, 15 is a travel motor, and 24 is a battery.

【0003】この『掃除ロボット』のブロック図を図7
に示す。図7において14は走行系ドライバ、25は掃
除工具ドライバ、18は操舵モータ、26はパッド回転
モータ、17は吸引モータをそれぞれ示すものである。 また、上記ロボットコントローラ22はあらかじめ入力
された掃除パターンと部屋の形状データに従って自走し
ながら各種センサからの入力により障害物を迂回し自分
の位置を推測しながら掃除を行うように構成されたもの
であった。
A block diagram of this "cleaning robot" is shown in FIG.
Shown below. In FIG. 7, 14 is a traveling system driver, 25 is a cleaning tool driver, 18 is a steering motor, 26 is a pad rotation motor, and 17 is a suction motor. Further, the robot controller 22 is configured to perform cleaning while moving around on its own according to a cleaning pattern input in advance and room shape data, bypassing obstacles and estimating its own position based on input from various sensors. Met.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、人間の手を介さずに掃除ができるという
特徴はあるものの、汚れの多い部分や少ない部分を識別
する能力がないこと、すき間部分やイス,机の下などま
できめ細かな掃除ができないという課題を有していた。
[Problems to be Solved by the Invention] However, although the conventional configuration described above has the feature that it can be cleaned without human intervention, it does not have the ability to distinguish between areas with a lot of dirt and areas with a little dirt, However, the problem was that it was not possible to thoroughly clean under the chairs, desks, etc.

【0005】本発明は上記従来の課題を解決するもので
遠隔操作によりきめ細かな掃除を行うことができ、かつ
操作性に勝れた電気掃除機を提供することを目的とする
ものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a vacuum cleaner that can perform detailed cleaning by remote control and has excellent operability.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明の電気掃除機は、受信手段とこの受信手段で受
信した信号により制御される複数の駆動源を有しかつ自
走可能な電気掃除機本体と、この電気掃除機本体のそれ
ぞれの駆動源を制御するための信号を出力する送信手段
を内蔵した遠隔制御送信機から構成し、この遠隔制御送
信機内に角速度に対応して電気信号を出力する振動型角
速度センサと、この振動型角速度センサからの信号によ
り遠隔制御送信機の方向を検出する方位検出手段とを接
続し、上記遠隔制御送信機の方位に対応して前記電気掃
除機本体の走行方向の制御を行うように構成したもので
ある。
[Means for Solving the Problem] In order to solve this problem, the vacuum cleaner of the present invention has a receiving means and a plurality of drive sources controlled by the signals received by the receiving means, and is self-propellable. It consists of a vacuum cleaner body and a remote control transmitter with built-in transmitting means for outputting signals to control the respective drive sources of the vacuum cleaner body. A vibrating angular velocity sensor that outputs a signal is connected to an azimuth detecting means that detects the direction of the remote control transmitter based on the signal from the vibrating angular velocity sensor, and the vacuum cleaner is operated in accordance with the azimuth of the remote control transmitter. It is configured to control the traveling direction of the machine body.

【0007】[0007]

【作用】この構成により、電気掃除機本体に人間が直接
触れること無く、かつ遠隔制御送信機内に内蔵した角速
度センサにより操作性の良い電気掃除機を実現すること
ができる。
[Operation] With this configuration, a vacuum cleaner with good operability can be realized without the need for a person to directly touch the vacuum cleaner body, and with the angular velocity sensor built into the remote control transmitter.

【0008】[0008]

【実施例】以下、本発明の一実施例による電気掃除機の
一実施例を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a vacuum cleaner according to an embodiment of the present invention will be described below with reference to the drawings.

【0009】まず本発明の電気掃除機本体を操作するた
めの遠隔制御送信機内に接続する音叉構造振動型角速度
センサについて図3〜図5を用いてその構成と原理を説
明する。
First, the structure and principle of a tuning fork vibrating angular velocity sensor connected to a remote control transmitter for operating the vacuum cleaner main body of the present invention will be explained with reference to FIGS. 3 to 5.

【0010】図3は上記音叉構造振動型角速度センサの
構成を示す斜視図であり、駆動素子101、第2の駆動
素子であるモニター素子102、第1及び第2の検知素
子103,104の主に4つの圧電バイモルフから構成
され、駆動素子101と第1の検知素子103を接合部
105で直交接合した第1の振動ユニット109と、モ
ニター素子102と第2の検知素子104を接合部10
6で直交接合した第2の振動ユニット110とを連結板
107で連結し、この連結板107を支持棒108で一
点支持した音叉構造となっている。
FIG. 3 is a perspective view showing the configuration of the above-mentioned tuning fork structure vibration type angular velocity sensor. The first vibration unit 109 is composed of four piezoelectric bimorphs, and the driving element 101 and the first sensing element 103 are orthogonally joined at the joint 105, and the monitor element 102 and the second sensing element 104 are joined at the joint 10.
It has a tuning fork structure in which the second vibration unit 110 orthogonally connected at 6 is connected by a connecting plate 107, and this connecting plate 107 is supported at one point by a support rod 108.

【0011】このように構成された駆動素子101に正
弦波電圧信号を与えると、逆圧電効果により第1の振動
ユニット109が振動を始め、音叉振動により第2の振
動ユニット110も振動を開始する。したがってモニタ
ー素子102の圧電効果によってモニター素子102の
表面に発生する電荷は駆動素子101へ印加している正
弦波電圧信号に比例する。このモニター素子102に発
生する電荷を検出し、これが一定振幅になるように駆動
素子101へ印加する正弦波電圧信号をコントロールす
ることにより安定した音叉振動を得ることができる。
When a sinusoidal voltage signal is applied to the drive element 101 configured as described above, the first vibration unit 109 starts to vibrate due to the inverse piezoelectric effect, and the second vibration unit 110 also starts to vibrate due to the tuning fork vibration. . Therefore, the charge generated on the surface of the monitor element 102 due to the piezoelectric effect of the monitor element 102 is proportional to the sinusoidal voltage signal applied to the drive element 101. By detecting the charge generated in the monitor element 102 and controlling the sinusoidal voltage signal applied to the drive element 101 so that the charge has a constant amplitude, stable tuning fork vibration can be obtained.

【0012】このように構成される音叉構造振動型角速
度センサが角速度に比例した出力を発生させるメカニズ
ムを図4及び図5を用いて以下に説明する。
The mechanism by which the tuning fork vibrating angular velocity sensor constructed as described above generates an output proportional to the angular velocity will be explained below with reference to FIGS. 4 and 5.

【0013】図4は前記図3に示した音叉構造振動型角
速度センサを上からみた状態を示す平面図で、速度υで
振動している第1の検知素子103に角速度ωの回転が
加わると、第1の検知素子103には『コリオリの力』
が生じる。この『コリオリの力』は速度υに垂直で大き
さは2mυωである。(mは第1の検知素子103の先
端の等価質量である)また、第1の検知素子103は音
叉振動をしているので、ある時点で速度υで振動してい
るとすれば、第2の検知素子104は速度−υで振動し
ており『コリオリの力』は−2mυωである。よって第
1,第2の検知素子103,104は図5のように互い
に『コリオリの力』が働く方向に変形し、第1,第2の
検知素子103,104の表面には圧電効果によって電
荷が生じる。ここでυは音叉振動によって生じる運動で
あり、音叉振動が υ=a・sinω0t        a:音叉振動の
振幅ω0:音叉振動の周期 であるとすれば、『コリオリの力』は Fc=a・ω・sinω0t となり、角速度ωおよび音叉振幅aに比例しており、第
1,第2の検知素子103,104を面方向に変形させ
る力となる。
FIG. 4 is a plan view showing the tuning fork structure vibration type angular velocity sensor shown in FIG. , the first detection element 103 has "Coriolis force"
occurs. This "Coriolis force" is perpendicular to the speed υ and has a magnitude of 2mυω. (m is the equivalent mass of the tip of the first sensing element 103) Also, since the first sensing element 103 is vibrating like a tuning fork, if it is vibrating at a speed υ at a certain point, then the second sensing element 103 is vibrating at a speed υ. The sensing element 104 vibrates at a speed of -υ, and the "Coriolis force" is -2 mυω. Therefore, the first and second sensing elements 103 and 104 deform each other in the direction in which the "Coriolis force" acts as shown in FIG. occurs. Here, υ is the motion caused by tuning fork vibration, and if the tuning fork vibration is υ = a・sinω0t a: amplitude of tuning fork vibration ω0: period of tuning fork vibration, then "Coriolis force" is Fc = a・ω・sinω0t, which is proportional to the angular velocity ω and the tuning fork amplitude a, and becomes a force that deforms the first and second sensing elements 103 and 104 in the planar direction.

【0014】したがって第1,第2の検知素子103,
104の表面電荷量Qは Q∝a・ω・sinω0t となり音叉振幅aが一定にコントロールされているとす
れば、 Q∝ω・sinω0t となり第1,第2の検知素子103,104に発生する
表面電荷量Qは角速度ωに比例した出力として得られ、
この信号をω0tで同期検波すれば角速度ωに比例した
直流信号が得られる。
[0014] Therefore, the first and second sensing elements 103,
The surface charge Q of the sensor 104 is Q∝a・ω・sinω0t, and if the tuning fork amplitude a is controlled to be constant, then the surface charge Q generated on the first and second sensing elements 103 and 104 becomes Q∝ω・sinω0t. The amount of charge Q is obtained as an output proportional to the angular velocity ω,
If this signal is synchronously detected at ω0t, a DC signal proportional to the angular velocity ω can be obtained.

【0015】なお、このセンサに角速度以外の並進運動
を与えても第1の検知素子103と第2の検知素子10
4のお互いの表面には同極性の電荷が生ずるため、直流
信号に変換時、互いに打ち消しあって出力は出ないよう
になっている以上、圧電バイモルフ素子で説明したが、
一般の圧電素子でも同様の機能を有することは言うまで
もない。
Note that even if a translational motion other than angular velocity is applied to this sensor, the first sensing element 103 and the second sensing element 10
Since charges of the same polarity are generated on the surfaces of both the 4 and 4, when converted to a DC signal, they cancel each other out and no output is produced.As explained above using piezoelectric bimorph elements,
It goes without saying that general piezoelectric elements have similar functions.

【0016】図1は本発明による電気掃除機を示す斜視
図であり、図2はその構成を示すブロック図で(a)は
送信系を、(b)は受信系を示すものである。なお、従
来例と同一機能を有するものには同一符号を付し説明を
省略する。
FIG. 1 is a perspective view showing a vacuum cleaner according to the present invention, and FIG. 2 is a block diagram showing its configuration, in which (a) shows a transmitting system and (b) shows a receiving system. Components having the same functions as those of the conventional example are designated by the same reference numerals, and description thereof will be omitted.

【0017】図1,図2において1は遠隔制御送信機、
2は電気掃除機本体、3は吸引装置、4は信号処理装置
、5はスイッチ入力装置、6は角速度センサ、7は加速
度センサ、8は電波信号送信回路、9はアンテナ、10
は電波信号受信回路、11は信号処理装置、12は掃除
機アーム制御用ドライバ、13はアーム制御用モータ、
14は走行系ドライバ、15は走行モータ、16は吸引
モータドライバ、17は吸引モータ、18は操舵モータ
をそれぞれ示すものである。
In FIGS. 1 and 2, 1 is a remote control transmitter;
2 is a vacuum cleaner body, 3 is a suction device, 4 is a signal processing device, 5 is a switch input device, 6 is an angular velocity sensor, 7 is an acceleration sensor, 8 is a radio wave signal transmission circuit, 9 is an antenna, 10
11 is a signal processing device; 12 is a vacuum cleaner arm control driver; 13 is an arm control motor;
14 is a travel system driver, 15 is a travel motor, 16 is a suction motor driver, 17 is a suction motor, and 18 is a steering motor.

【0018】図2において遠隔制御送信機1に内蔵され
た角速度センサ6は人間の手の左右方向,上下方向、及
び手くびの回転に伴なう角速度を検出し信号処理装置4
でセンサのドリフト補正,ノイズカット、あるいは角速
度を積分し角度を求める処理がなされ、更にシリアルの
信号として多重化処理された後、電波信号送信回路8に
よって送出される。また、電気掃除機本体2では先ず、
電波信号受信回路10によって受信された信号が信号処
理装置11によって解読され前記図1に示すように吸引
装置3が前後,左右あるいは回転するように掃除機アー
ム制御用ドライバ12を介してアーム制御用モータ13
が駆動される。
In FIG. 2, the angular velocity sensor 6 built into the remote control transmitter 1 detects the angular velocity of the human hand in the left-right direction, the up-down direction, and the rotation of the wrist of the hand.
The signal is subjected to sensor drift correction, noise reduction, or processing to obtain the angle by integrating the angular velocity, and is further multiplexed as a serial signal, and then sent out by the radio wave signal transmission circuit 8. In addition, in the vacuum cleaner main body 2, first,
The signal received by the radio wave signal receiving circuit 10 is decoded by the signal processing device 11 and is sent to the vacuum cleaner arm control driver 12 to control the arm so that the suction device 3 can be rotated back and forth, left or right, or rotated as shown in FIG. Motor 13
is driven.

【0019】また、電気掃除機本体2は吸引装置3の移
動に伴なって自動的に位置及び方向が追従するように走
行系ドライバ14を介して走行モータ15、及び操舵モ
ータ18がコントロールされる。また、吸引装置3は操
作感覚上、遠隔制御送信機1の信号により機敏な動作が
要求されるものであるために、電気掃除機本体2は吸引
装置3の位置をアーム制御によって移動しつつ、常に吸
引装置3の制御が最適にできる位置に自己の位置を移動
させるためのアルゴリズムを信号処理装置11に内蔵し
ている。
Further, a travel motor 15 and a steering motor 18 are controlled via a travel system driver 14 so that the position and direction of the vacuum cleaner main body 2 automatically follow the movement of the suction device 3. . In addition, since the suction device 3 is required to operate quickly based on the signal from the remote control transmitter 1, the vacuum cleaner main body 2 moves the position of the suction device 3 by arm control. The signal processing device 11 contains an algorithm for always moving its own position to a position where the suction device 3 can be optimally controlled.

【0020】また、遠隔制御送信機1に内蔵されるスイ
ッチ入力装置5は吸引モータ17の制御及び角速度セン
サ6では制御できない範囲で掃除機本体2の位置を移動
させる場合の入力装置である。
A switch input device 5 built into the remote control transmitter 1 is an input device for controlling the suction motor 17 and moving the position of the cleaner body 2 within a range that cannot be controlled by the angular velocity sensor 6.

【0021】また、加速度センサ7は遠隔制御送信機1
を動かす人間の手の動きの角速度成分だけでなく左右方
向,上下方向への平行移動量をも検出するためのもので
ある。
Furthermore, the acceleration sensor 7 is connected to the remote control transmitter 1.
This is to detect not only the angular velocity component of the human hand movement, but also the amount of parallel movement in the horizontal and vertical directions.

【0022】[0022]

【発明の効果】このように本発明による電気掃除機は、
狭い部分まできめ細かな掃除ができ、掃除機を動かすた
めの人間の労力がわずかですむこと、ならびに人間の意
思を掃除機本体に伝える手段として角速度センサを使用
したことにより、操作に習熟の必要がなく扱いやすいな
どの効果を得ることが可能となる。
[Effect of the invention] As described above, the vacuum cleaner according to the present invention has
It can perform detailed cleaning even in small areas, requires little human effort to move the vacuum cleaner, and uses an angular velocity sensor as a means of transmitting human intentions to the vacuum cleaner itself, so there is no need to become familiar with the operation. This makes it possible to obtain effects such as ease of handling.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における電気掃除機の斜視図
FIG. 1 is a perspective view of a vacuum cleaner according to an embodiment of the present invention.

【図2】(a)同実施例における送信系の回路構成を示
すブロック図 (b)同実施例における受信系の回路構成を示すブロッ
ク図
[Figure 2] (a) Block diagram showing the circuit configuration of the transmitting system in the same embodiment (b) Block diagram showing the circuit configuration of the receiving system in the same embodiment

【図3】本発明による音叉構造振動型角速度センサの構
成を示す斜視図
FIG. 3 is a perspective view showing the configuration of a tuning fork structure vibration type angular velocity sensor according to the present invention.

【図4】図3の平面図[Figure 4] Plan view of Figure 3

【図5】図3の音叉構造振動型角速度センサの主要部を
示す斜視図
[Figure 5] A perspective view showing the main parts of the tuning fork structure vibration type angular velocity sensor in Figure 3.

【図6】従来の掃除ロボットを示す斜視図[Figure 6] A perspective view showing a conventional cleaning robot

【図7】同掃
除ロボットの回路構成を示すブロック図
[Figure 7] Block diagram showing the circuit configuration of the cleaning robot

【符号の説明】[Explanation of symbols]

1  遠隔制御送信機 2  電気掃除機本体 3  吸引装置 4  信号処理装置 5  スイッチ入力装置 6  角速度センサ 7  加速度センサ 8  電波信号送信回路 9  アンテナ 10  電波信号受信回路 11  信号処理装置 12  アーム制御用ドライバ 13  アーム制御用モータ 14  走行系ドライバ 15  走行モータ 16  吸引モータドライバ 17  吸引モータ 18  操舵モータ 1 Remote control transmitter 2 Vacuum cleaner body 3 Suction device 4 Signal processing device 5 Switch input device 6 Angular velocity sensor 7 Acceleration sensor 8 Radio signal transmission circuit 9 Antenna 10 Radio signal receiving circuit 11 Signal processing device 12 Arm control driver 13 Arm control motor 14 Driving system driver 15 Travel motor 16 Suction motor driver 17 Suction motor 18 Steering motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】受信手段と、この受信手段で受信した信号
により制御される複数の駆動源を有する電気掃除機本体
と、この電気掃除機本体のそれぞれの駆動源を制御する
ための信号を出力する送信手段を内蔵した遠隔制御送信
機から構成し、この遠隔制御送信機内に、角速度に対応
して電気信号を出力する振動型角速度センサと、この角
速度センサからの信号により遠隔制御送信機の方位を検
出する方位検出手段とを接続し、上記遠隔制御送信機の
方位に対応して電気掃除機本体の走行方向を制御するよ
うに構成した電気掃除機。
Claims: 1. A vacuum cleaner main body having a receiving means, a plurality of drive sources controlled by signals received by the receiving means, and outputting a signal for controlling each drive source of the vacuum cleaner main body. The device consists of a remote control transmitter with a built-in transmitting means, and within this remote control transmitter is a vibration type angular velocity sensor that outputs an electrical signal in accordance with the angular velocity, and the direction of the remote control transmitter is determined by the signal from this angular velocity sensor. A vacuum cleaner configured to be connected to an azimuth detecting means for detecting the direction of the vacuum cleaner, and to control the running direction of the vacuum cleaner main body in accordance with the azimuth of the remote control transmitter.
JP5845191A 1991-03-22 1991-03-22 Vacuum cleaner Pending JPH04295323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5845191A JPH04295323A (en) 1991-03-22 1991-03-22 Vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5845191A JPH04295323A (en) 1991-03-22 1991-03-22 Vacuum cleaner

Publications (1)

Publication Number Publication Date
JPH04295323A true JPH04295323A (en) 1992-10-20

Family

ID=13084788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5845191A Pending JPH04295323A (en) 1991-03-22 1991-03-22 Vacuum cleaner

Country Status (1)

Country Link
JP (1) JPH04295323A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635236A1 (en) * 1993-07-20 1995-01-25 Anna Maria Boesi An electrical apparatus for cleaning surfaces by suction
US5926909A (en) * 1996-08-28 1999-07-27 Mcgee; Daniel Remote control vacuum cleaner and charging system
US7079923B2 (en) 2001-09-26 2006-07-18 F Robotics Acquisitions Ltd. Robotic vacuum cleaner
US7167775B2 (en) * 2001-09-26 2007-01-23 F Robotics Acquisitions, Ltd. Robotic vacuum cleaner
WO2010016210A1 (en) 2008-08-08 2010-02-11 パナソニック株式会社 Control device and control method for cleaner, cleaner, control program for cleaner, and integrated electronic circuit
JP2010092343A (en) * 2008-10-09 2010-04-22 Sharp Corp Control system of self-propelled vehicle
US8369449B2 (en) 2005-09-20 2013-02-05 Koninklijke Philips Electronics N.V. Method and system of diversity transmission of data employing M-point QAM modulation
GB2600735A (en) * 2020-11-06 2022-05-11 Dyson Technology Ltd Robotic surface treating system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635236A1 (en) * 1993-07-20 1995-01-25 Anna Maria Boesi An electrical apparatus for cleaning surfaces by suction
US5926909A (en) * 1996-08-28 1999-07-27 Mcgee; Daniel Remote control vacuum cleaner and charging system
US7769490B2 (en) 2001-09-26 2010-08-03 F Robotics Acquisitions Ltd. Robotic vacuum cleaner
US7079923B2 (en) 2001-09-26 2006-07-18 F Robotics Acquisitions Ltd. Robotic vacuum cleaner
US7167775B2 (en) * 2001-09-26 2007-01-23 F Robotics Acquisitions, Ltd. Robotic vacuum cleaner
US7444206B2 (en) 2001-09-26 2008-10-28 F Robotics Acquisitions Ltd. Robotic vacuum cleaner
US8311674B2 (en) 2001-09-26 2012-11-13 F Robotics Acquisitions Ltd. Robotic vacuum cleaner
US8369449B2 (en) 2005-09-20 2013-02-05 Koninklijke Philips Electronics N.V. Method and system of diversity transmission of data employing M-point QAM modulation
JPWO2010016210A1 (en) * 2008-08-08 2012-01-12 パナソニック株式会社 Vacuum cleaner control device and method, vacuum cleaner, vacuum cleaner control program, and integrated electronic circuit
JP4512672B2 (en) * 2008-08-08 2010-07-28 パナソニック株式会社 Vacuum cleaner control device and method, vacuum cleaner, vacuum cleaner control program, and integrated electronic circuit
WO2010016210A1 (en) 2008-08-08 2010-02-11 パナソニック株式会社 Control device and control method for cleaner, cleaner, control program for cleaner, and integrated electronic circuit
JP2010092343A (en) * 2008-10-09 2010-04-22 Sharp Corp Control system of self-propelled vehicle
GB2600735A (en) * 2020-11-06 2022-05-11 Dyson Technology Ltd Robotic surface treating system
GB2600735B (en) * 2020-11-06 2023-07-19 Dyson Technology Ltd Robotic surface treating system

Similar Documents

Publication Publication Date Title
KR100641113B1 (en) Mobile robot and his moving control method
JP5247182B2 (en) Angular velocity sensor
JPH05149966A (en) Control unit
JP2002355204A (en) Traveling vacuum cleaner
JPH04295323A (en) Vacuum cleaner
JPH03226620A (en) Driving apparatus of angular velocity sensor
JP7342985B2 (en) Autonomous driving system, autonomous driving method, and autonomous driving program
JP4449128B2 (en) Angular velocity sensor
WO2007108374A1 (en) Composite sensor
Fujishima et al. Piezoelectric vibratory gyroscope using flexural vibration of a triangular bar
CN102419174B (en) Two-dimensional/three-dimensional angular velocity detection devices as well as angular velocity detection methods and attitude sensing devices of detection devices
JP2003256041A (en) Self-contained travel device, its monitoring method and remote control method
US9020618B2 (en) Accelerometer based controller and/or controlled device
JPH04297874A (en) Angular velocity sensor driver
JP3756663B2 (en) Data input device
JP6982765B2 (en) Operation terminal, remote control cleaning system and remote control method
JP2003116757A (en) Vacuum cleaner
JP7078192B2 (en) Autonomous driving system, autonomous driving method, and autonomous driving program
JP5166584B2 (en) Electric vacuum cleaner
WO2023089886A1 (en) Traveling map creating device, autonomous robot, method for creating traveling map, and program
JPH0522252B2 (en)
JP3019322B2 (en) Vehicle suspension control device
JP3446354B2 (en) Self-propelled vacuum cleaner
KR102483396B1 (en) Vacuum cleaner
JPH0584813U (en) Vibrating gyro