WO2023089886A1 - Traveling map creating device, autonomous robot, method for creating traveling map, and program - Google Patents

Traveling map creating device, autonomous robot, method for creating traveling map, and program Download PDF

Info

Publication number
WO2023089886A1
WO2023089886A1 PCT/JP2022/031014 JP2022031014W WO2023089886A1 WO 2023089886 A1 WO2023089886 A1 WO 2023089886A1 JP 2022031014 W JP2022031014 W JP 2022031014W WO 2023089886 A1 WO2023089886 A1 WO 2023089886A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
map
unit
driving
area
Prior art date
Application number
PCT/JP2022/031014
Other languages
French (fr)
Japanese (ja)
Inventor
祐太 三浦
裕之 本山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023089886A1 publication Critical patent/WO2023089886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present disclosure relates to a travel map creation device, an autonomous travel robot, a travel map creation method, and a program.
  • Patent Document 1 discloses a method of recognizing a repeating shape on a travel route of an autonomous mobile device as a landmark that delimits a travel area, and setting an area surrounded by a pair of landmarks and a wall as the travel area. disclosed.
  • Patent Document 1 requires the user to set landmarks on the travel route of the autonomous mobile device in advance to partition the travel area, which is time-consuming.
  • the present disclosure provides a travel map creation device, a travel map creation method, and a program that can easily set a travel area on a travel map for an autonomous travel robot.
  • a travel map creation device is a travel map creation device that creates a travel map for an autonomous mobile robot that autonomously travels within a predetermined floor, and includes objects around itself a position sensor for acquiring the positional relationship of the object with respect to itself; a floor map creation unit for creating a floor map showing the predetermined floor based on the positional relationship acquired by the position sensor; a self-position estimation unit for estimating a self-position on the floor map based on the positional relationship acquired by the sensor and the floor map created by the floor map creation unit; a running area setting unit for setting a first rectangular region defined by the locus of movement of the self-position as a running area in which the autonomous mobile robot runs; and the running area set by the running area setting unit.
  • a driving map creating unit for creating a driving map.
  • an autonomous traveling robot that autonomously travels within a predetermined floor, comprising: a main body; a driving unit that acquires the driving map created by the driving map creation device; and a driving map acquisition unit that detects objects around the main body and acquires the positional relationship of the objects with respect to the main body.
  • a position sensor for estimating a position of the main body on the map for driving based on the map for driving and the positional relationship
  • a travel plan creation unit that creates a travel plan for the predetermined floor based on the self-position, and a travel control unit that controls the travel unit based on the travel plan.
  • a travel map creation method for creating a travel map for an autonomous mobile robot that autonomously travels within a predetermined floor. and a floor map creating step of creating a floor map indicating the predetermined floor based on the positional relationship acquired in the acquiring step.
  • a self-location estimation step of estimating a self-location on the floor map based on the positional relationship acquired in the acquisition step and the floor map created in the floor map creation step;
  • a travel area setting step of setting a first rectangular area defined by the movement trajectory of the self-position as a travel area in which the autonomous mobile robot travels, based on the self-position; and a driving map creating step of creating a driving map including the driving area.
  • the present disclosure may be implemented as a program for causing a computer to execute the map creation method for driving.
  • the present disclosure may also be implemented as a non-temporary recording medium such as a computer-readable CD-ROM (Compact Disc-Read Only Memory) recording the above program.
  • the present disclosure may be realized as information, data, or signals indicating the program. These programs, information, data and signals may then be distributed over a communication network such as the Internet.
  • the travel map creation device the travel map creation method, and the program of the present disclosure, it is possible to easily set the travel area on the travel map of the autonomous mobile robot.
  • FIG. 1 is a block diagram showing an example of the functional configuration of an autonomous mobile robot system according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the driving map creation device according to the embodiment as seen obliquely from above.
  • FIG. 3 is a perspective view showing the external appearance of the autonomous mobile robot according to the embodiment as viewed from the side.
  • FIG. 4 is a perspective view showing the appearance of the autonomous mobile robot according to the embodiment as viewed from the front.
  • FIG. 5 is a bottom view showing the appearance of the autonomous mobile robot according to the embodiment as seen from the bottom direction.
  • FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system according to the embodiment.
  • FIG. 7 is a diagram schematically showing an example of processing for setting a travel area.
  • FIG. 1 is a block diagram showing an example of the functional configuration of an autonomous mobile robot system according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the driving map creation device according to the embodiment as seen
  • FIG. 8 is a diagram showing an example of a reception screen of an information terminal.
  • FIG. 9 is a diagram schematically showing an example of the operation of the travel mapping device and the autonomous travel robot.
  • FIG. 10 is a diagram showing another example of the reception screen of the information terminal.
  • FIG. 11 is a flow chart showing a second example of the operation of the autonomous mobile robot system according to the embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • symbol is attached
  • substantially triangular means not only completely triangular, but also substantially triangular, ie, including, for example, triangles with rounded corners. The same applies to expressions using other "abbreviations”.
  • FIG. 1 is a block diagram showing an example of a functional configuration of an autonomous mobile robot system according to an embodiment.
  • the autonomous mobile robot system 400 creates a map for travel in which a plurality of travel areas in which the autonomous mobile robot 300 travels is set, and based on a travel plan generated based on the created map for travel. This is a system in which an autonomous mobile robot 300 runs on a predetermined floor.
  • a predetermined floor is, for example, a floor surrounded by walls in a building.
  • the building may be, for example, a facility such as a hotel, commercial facility, office building, hospital, nursing facility, museum, or library, or may be an apartment complex such as an apartment building.
  • the autonomous mobile robot system 400 includes, for example, a mobile mapping device 100, an information terminal 200, and an autonomous mobile robot 300. Each configuration will be described below.
  • FIG. 2 is a perspective view of the driving map creating apparatus 100 according to the present embodiment as seen obliquely from above.
  • the travel map creation device 100 is a device that creates a travel map for the autonomous travel robot 300 that autonomously travels on a predetermined floor.
  • the driving map creation device 100 creates a driving map while driving on a predetermined floor according to the user's operation. Specific operations will be described later.
  • the travel mapping device 100 is placed on a trolley 190, for example, and travels on a predetermined floor according to the user's operation.
  • the user pushes the carriage 190 to cause the travel mapping device 100 to travel.
  • a stand 192 for placing an information terminal 200 (see FIG. 1) on a handle 191 may be attached to the carriage 190, and a presentation unit (not shown in FIGS. 1 and 2) of the travel map creation device 100 may be attached. may be installed.
  • the presentation unit may be a so-called display panel.
  • the function of the traveling map creation device 100 may be installed in the autonomous traveling robot 300 and the autonomous traveling robot 300 may be caused to travel to create a traveling map.
  • the driving map creation device 100 includes, for example, a communication unit 110, a position sensor 102, a control unit 120, and a storage unit . Each configuration will be described below.
  • the position sensor 102 detects objects around itself and acquires the positional relationship of the object with respect to itself.
  • the position sensor 102 is arranged in the center of the upper surface of the main body 101, and includes the distance and direction between the driving mapping device 100 and objects, such as walls, existing around the driving mapping device 100. Get the positional relationship.
  • the position sensor 102 may be, for example, a LIDAR (Light Detection and Ranging) that emits light and detects the positional relationship based on the light that is reflected back by an obstacle, or a laser range finder.
  • the position sensor 102 may perform two-dimensional measurement or three-dimensional measurement of a predetermined area around the driving mapping device 100 by having one or two optical scanning axes.
  • the travel mapping device 100 may include other types of sensors.
  • the driving mapping device 100 may further include a camera, an obstacle sensor, a floor sensor, an encoder, an acceleration sensor, an angular velocity sensor, a contact sensor, an ultrasonic sensor, a distance measuring sensor, and the like.
  • the communication unit 110 is a communication circuit for the traveling map creation device 100 to communicate with the information terminal 200 and the autonomous traveling robot 300 via the network 10 .
  • the communication unit 110 may transmit a map for running to the autonomous running robot 300 .
  • the communication unit 110 may include a communication circuit (communication module) for communicating via a wide area communication network and a communication circuit (communication module) for communicating via a local communication network.
  • the communication unit 110 is, for example, a wireless communication circuit that performs wireless communication.
  • a communication standard for communication performed by the communication unit 110 is not particularly limited.
  • the control unit 120 acquires sensor data, such as the positional relationship between the main body 101 and objects around the main body 101, obtained by sensing the environment around the main body 101 of the driving map creating device 100 using the position sensor 102, Perform various calculations.
  • the controller 120 is specifically implemented by a processor, microcomputer, or dedicated circuit. Also, the controller 120 may be realized by a combination of two or more of a processor, a microcomputer, or a dedicated circuit.
  • control unit 120 includes self-position estimation unit 122 , floor map creation unit 121 , travel area setting unit 123 , boundary designator 124 , and travel map creation unit 125 .
  • the control unit 120 acquires the positional relationship between the main body 101 and objects around the main body 101 acquired by the position sensor 102, and the movement trajectory of the main body 101 (that is, the driving map creation device 100). If the map creating device for driving 100 is equipped with another type of sensor in addition to the position sensor 102, the control unit 120 may further acquire sensor data acquired by the other type of sensor.
  • the floor map creation unit 121 creates a floor map showing a predetermined floor based on the relative positional relationship between the object acquired by the position sensor 102 and the position sensor 102 .
  • the floor map creation unit 121 may create a floor map indicating a predetermined floor by map creation technology such as SLAM (Simultaneous Localization and Mapping), for example. , may be obtained via the network 10 . Further, the floor map may be stored in the storage unit 130 in advance, and in this case, the floor map creating unit 121 may read the floor map from the storage unit 130 and acquire it.
  • SLAM Simultaneous Localization and Mapping
  • the self-position estimation unit 122 uses the positional relationship acquired by the position sensor 102 and the floor map to estimate the self-position, which is the position of the driving map creation device 100 on the floor map. For example, the self-position estimation unit 122 estimates the self-position using SLAM technology.
  • the travel area setting unit 123 sets the first rectangular area defined by the movement locus of the self-position as the travel area in which the autonomous mobile robot 300 travels. For example, the travel area setting unit 123 may set the movement direction of the self-position to one of clockwise and counterclockwise directions (first direction) in the movement trajectory of the self-position.
  • the first rectangular region is established by determining the points to be the vertices of the first rectangular region.
  • the travel area setting unit 123 determines that there are two second points that rotate at a second predetermined angle in the other of the clockwise and counterclockwise directions (second direction) in the movement trajectory of the self-position.
  • the travel area including the first rectangular area and the second rectangular area is set by determining the two second points as the vertices of the second rectangular area.
  • the travel area setting unit 123 rotates at a first predetermined angle in one of the clockwise and counterclockwise directions (first direction) between the two second points in the movement trajectory of the self-position. If there are two points to match, set the second rectangular area by determining the two points as the vertices of the second rectangular area in addition to the two second points.
  • the travel area setting unit 123 does not include the third rectangular area, which is an area whose short side is shorter than a predetermined value, in the travel area.
  • the travel area setting unit 123 acquires an instruction output by the boundary instruction unit 124 to correct the setting of the boundary between the travel area and the non-travel area where the autonomous mobile robot 300 does not travel, , modify the travel area by modifying the boundary based on the instructions.
  • the boundary instruction unit 124 outputs to the running area setting unit 123 an instruction for setting the boundary between the running area and the non-running area where the autonomous running robot 300 does not run. For example, the boundary instruction unit 124 outputs an instruction to correct the boundary to the travel area setting unit 123 .
  • the driving map creation unit 125 creates a driving map including the driving area set by the driving area setting unit 123 . Further, for example, the driving map creation unit 125 creates a driving map including the driving area corrected by the driving area setting unit 123 . Note that the travel map creation unit 125 may further create a travel map that includes a no-entry area into which the autonomous robot 300 is prohibited from entering. For example, the travel map creation unit 125 outputs the created travel map to the information terminal 200 and the autonomous mobile robot 300 via the communication unit 110 .
  • the storage unit 130 stores the floor map created by the floor map creation unit 121, the positional relationship acquired by the position sensor 102, the driving map created by the driving map creation unit 125, and the like. is.
  • the storage unit 130 also stores computer programs and the like executed by the control unit 120 to perform the arithmetic processing described above.
  • the storage unit 130 is implemented by, for example, an HDD (Hard Disk Drive), flash memory, or the like.
  • the accepting unit 140 accepts a user's input operation.
  • the reception unit 140 may be implemented by, for example, a touch panel, a display panel, hardware buttons, or a microphone.
  • the touch panel may be, for example, a capacitive touch panel or a resistive touch panel.
  • the display panel has a function of displaying images and a function of accepting manual input from the user, and accepts input operations to ten-key images displayed on a display panel such as a liquid crystal panel or an organic EL (Electro Luminescence) panel.
  • a microphone accepts a user's voice input.
  • reception unit 140 is a component of the traveling map creation device 100
  • the reception unit 140 may be incorporated in the autonomous traveling robot 300, or may be a remote controller (non-remote controller). ), or may be incorporated in the information terminal 200 .
  • the information terminal 200 is, for example, a portable information terminal such as a smart phone or a tablet terminal used by a user, but may be a stationary information terminal such as a personal computer. Also, the information terminal 200 may be a dedicated terminal for the autonomous mobile robot system 400 .
  • Information terminal 200 includes communication unit 210 , control unit 220 , presentation unit 230 , reception unit 240 , and storage unit 250 . Each configuration will be described below.
  • the communication unit 210 is a communication circuit for the information terminal 200 to communicate with the travel mapping device 100 and the autonomous travel robot 300 via the network 10 .
  • the communication unit 210 includes a communication circuit (in other words, a communication module) for communicating via the wide area communication network, and a communication circuit (in other words, a communication module) for communicating via the local communication network.
  • the communication unit 210 is, for example, a wireless communication circuit that performs wireless communication.
  • a communication standard for communication performed by the communication unit 210 is not particularly limited.
  • the control unit 220 performs image display control on the reception unit 240, identification processing of an instruction input by the user (for example, voice recognition processing in the case of voice input), and the like.
  • the control unit 220 may be realized by a microcomputer or by a processor, for example.
  • the presentation unit 230 presents to the user the presentation information output by the travel map creation device 100 and the travel map.
  • the presentation unit 230 may be realized by, for example, a display panel, or may be realized by a display panel and a speaker.
  • the display panel is, for example, a liquid crystal panel or an organic EL panel.
  • a speaker outputs sound or voice.
  • Accepting unit 240 accepts a user's instruction. More specifically, the accepting unit 240 accepts an input operation for transmitting a user's instruction to the travel map creating device 100 .
  • the reception unit 240 may be implemented by, for example, a touch panel, display panel, hardware buttons, or a microphone.
  • the touch panel may be, for example, a capacitive touch panel or a resistive touch panel.
  • the display panel has a function of displaying images and a function of accepting manual input from the user, and accepts input operations to ten-key images displayed on the display panel such as a liquid crystal panel or an organic EL panel.
  • a microphone accepts a user's voice input.
  • Storage unit 250 is a storage device that stores a dedicated application program and the like to be executed by control unit 220 .
  • the storage unit 250 is implemented by, for example, a semiconductor memory.
  • the autonomous running robot 300 is a robot that runs autonomously.
  • the autonomous mobile robot 300 acquires a map for travel created by the map creating apparatus 100 for travel, and autonomously travels on a predetermined floor corresponding to the map for travel.
  • the autonomous running robot 300 is not particularly limited as long as it runs autonomously, but may be, for example, a transport robot that transports luggage, a monitoring robot that patrols, a disinfection robot that disinfects the floor, or a cleaning robot. may An example in which the autonomous mobile robot 300 is a cleaning robot will be described below.
  • FIG. 3 is a perspective view showing the appearance of the autonomous mobile robot 300 according to the embodiment as viewed from the side.
  • FIG. 4 is a perspective view showing the appearance of the autonomous mobile robot 300 according to the embodiment as viewed from the front.
  • FIG. 5 is a bottom view showing the appearance of the autonomous mobile robot 300 according to the embodiment as seen from the bottom direction.
  • the autonomous mobile robot 300 includes, for example, a main body 301 on which various components are mounted, a communication unit 310 (see FIG. 1), a position sensor 320, It includes an obstacle sensor 330 , a control section 340 (see FIG. 1), a storage section 350 (see FIG. 1), a running section 360 and a cleaning section 370 .
  • the traveling part 360 has, for example, wheels 361 for moving the main body 301 .
  • the cleaning unit 370 has, for example, a side brush 371 and a main brush 372 for cleaning dust existing on a predetermined floor.
  • the control unit 340 performs various information processing related to the operation of the autonomous mobile robot 300 .
  • Control unit 340 has a travel control unit 345 that controls travel unit 360 and a cleaning control unit 346 that controls cleaning unit 370 .
  • the main body 301 is a housing that houses the traveling section 360, the cleaning section 370, the control section 340, and the like.
  • the traveling unit 360 causes the autonomous traveling robot 300 to travel based on instructions from the traveling control unit 345 .
  • the traveling unit 360 has wheels 361 that travel on the floor, a traveling motor (not shown) that applies torque to the wheels 361, a housing (not shown) that accommodates the traveling motor, and the like.
  • the autonomous mobile robot 300 may be of an opposed two-wheel type equipped with casters (not shown) as auxiliary wheels. In this case, the traveling unit 360 independently controls the rotation of the wheels 361 of the pair of traveling units, so that the autonomous mobile robot 300 can freely travel forward, backward, left-handed, and right-handed. can.
  • Cleaning unit 370 sucks dust on the floor from suction port 373 (see FIG. 5) based on instructions from cleaning control unit 346 and stores the sucked dust inside main body 301 .
  • the cleaning unit 370 includes a brush rotation motor (not shown) that rotates the side brush 371 and the main brush 372, a suction motor (not shown) that sucks dust from the suction port 373, and a power transmission unit (not shown) that transmits power to these motors. (not shown), and a container (not shown) for containing the sucked dust.
  • the position sensor 320 is a sensor that detects an object around the body 301 of the autonomous mobile robot 300 and acquires the positional relationship of the object with respect to the body 301 .
  • the position sensor 320 is, for example, a LIDAR or a laser range finder that emits light and detects the positional relationship (for example, the distance and direction from the self to the object) based on the light that is reflected back by an obstacle. may
  • the position sensor 320 is arranged in the center of the upper surface of the main body 301, and the positional relationship including the distance and direction between the autonomous mobile robot 300 and objects including walls existing around the autonomous mobile robot 300 is detected.
  • the position sensor 320 may be, for example, a LIDAR or a laser range finder that emits light and detects the positional relationship based on the light that is reflected back by an obstacle.
  • the position sensor 320 may perform two-dimensional measurement or three-dimensional measurement of a predetermined area around the autonomous mobile robot 300 by having one or two optical scanning axes.
  • the obstacle sensor 330 is a sensor that detects obstacles such as surrounding walls and furniture that are present in front of the main body 301 (specifically, on the traveling direction side) and obstruct travel.
  • an ultrasonic sensor is used as the obstacle sensor 330 .
  • the obstacle sensor 330 has a transmitter 331 arranged in the center of the front side surface of the main body 301, and receivers 332 arranged on both sides of the transmitter 331.
  • the two receiving units 332 receive the reflected ultrasonic waves, respectively, so that the distance to the obstacle, the position of the obstacle, and the like can be detected.
  • An infrared sensor or the like may be used as the obstacle sensor 330 .
  • the autonomous mobile robot 300 may be equipped with sensors other than the sensors described above.
  • floor surface sensors may be arranged at a plurality of locations on the bottom surface of the main body 301 and detect whether or not there is a floor surface as a floor.
  • an encoder may be provided in the traveling section 360 to detect the rotation angle of each of the pair of wheels 361 rotated by the traveling motor.
  • an acceleration sensor that detects acceleration when the autonomous mobile robot 300 runs and an angular velocity sensor that detects angular velocity when the autonomous mobile robot 300 turns may be provided.
  • a dust amount sensor that measures the amount of dust deposited on the floor surface may also be provided.
  • a contact sensor may be provided to detect collision with an obstacle by detecting displacement of a bumper (not shown).
  • the communication unit 310 is a communication circuit for the autonomous mobile robot 300 to communicate with the travel mapping device 100 and the information terminal 200 via the network 10 .
  • the communication unit 310 includes a communication circuit (in other words, a communication module) for communicating via the wide area communication network, and a communication circuit (in other words, a communication module) for communicating via the local communication network.
  • the communication unit 310 is, for example, a wireless communication circuit that performs wireless communication.
  • a communication standard for communication performed by the communication unit 310 is not particularly limited.
  • the control unit 340 performs various calculations based on the sensor information obtained by sensing the environment around the autonomous mobile robot 300 with the position sensor 320 and the obstacle sensor 330 and the map for traveling.
  • the controller 340 is specifically implemented by a processor, microcomputer, or dedicated circuit. Also, the controller 340 may be implemented by a combination of two or more of a processor, microcomputer, or dedicated circuit.
  • the control unit 340 includes a travel map acquisition unit 341, a self-position estimation unit 342, an obstacle information acquisition unit 343, a travel plan creation unit 344, a travel control unit 345, and a cleaning control unit 346. .
  • the travel map acquisition unit 341 acquires the travel map created by the travel map creation device 100 .
  • the driving map acquisition unit 341 may acquire the driving map by reading the driving map stored in the storage unit 350, or may obtain the driving map output by the driving map generating device 100 by communication. may be obtained.
  • the self-position estimation unit 342 for example, based on the travel map acquired by the travel map acquisition unit 341 and the positional relationship of surrounding objects with respect to the main body 301 of the autonomous mobile robot 300 measured by the position sensor 320. Then, the self position, which is the position of the main body 301 of the autonomous mobile robot 300 on the map for traveling, is calculated.
  • the travel plan creation unit 344 creates a travel plan based on the map for travel and the self-position. For example, if the autonomous mobile robot 300 is a cleaning robot, the travel plan creation unit 344 may also create a cleaning plan.
  • the cleaning plan includes a cleaning order for cleaning a plurality of cleaning areas within a predetermined floor, a travel route in each cleaning area, a cleaning mode, and the like.
  • the cleaning mode is, for example, a combination of the travel speed of the autonomous mobile robot 300, the suction strength for sucking dust on the floor, and the rotational speed of the brush.
  • the travel plan creation unit 344 detects the obstacle calculated by the obstacle information acquisition unit 343.
  • the travel plan may be changed based on the location of the .
  • the travel plan creation unit 344 may also change the cleaning plan.
  • Obstacle information acquisition unit 343 acquires information about obstacles detected by obstacle sensor 330 (for example, the distance to the obstacle, the position, etc.), and the acquired information and self-position estimation unit 342 Based on the calculated self position, the position of the obstacle on the floor map is calculated.
  • the travel control unit 345 controls the travel unit 360 so that the autonomous mobile robot 300 travels according to the travel plan. More specifically, the travel control unit 345 performs information processing for controlling the operation of the travel unit 360 based on the travel plan. For example, the travel control unit 345 derives control conditions for the travel unit 360 based on information such as a travel map and self-position in addition to the travel plan, and controls the operation of the travel unit 360 based on the control conditions. Generate a control signal to Travel control unit 345 outputs the generated control signal to travel unit 360 . Details such as the derivation of the control conditions for the traveling unit 360 are the same as those of the conventional autonomous traveling robot, and thus the explanation is omitted.
  • the cleaning control unit 346 controls the cleaning unit 370 so that the autonomous mobile robot 300 cleans according to the cleaning plan. More specifically, cleaning control unit 346 performs information processing for controlling the operation of cleaning unit 370 based on the cleaning plan. For example, the cleaning control unit 346 derives control conditions for the cleaning unit 370 based on information such as a map for travel and self-location in addition to the cleaning plan, and controls the operation of the cleaning unit 370 based on the control conditions. Generate a control signal to Cleaning control unit 346 outputs the generated control signal to cleaning unit 370 . Details such as the derivation of the control conditions for the cleaning unit 370 are the same as those of the conventional autonomously traveling cleaning robot, so description thereof will be omitted.
  • the storage unit 350 is a storage device that stores a map for driving, sensor information sensed by the position sensor 320 and the obstacle sensor 330, computer programs executed by the control unit 340, and the like.
  • the storage unit 350 is implemented by, for example, a semiconductor memory.
  • FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system 400 according to this embodiment. Description will be made below with reference to FIGS. 1 and 6.
  • FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system 400 according to this embodiment. Description will be made below with reference to FIGS. 1 and 6.
  • FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system 400 according to this embodiment. Description will be made below with reference to FIGS. 1 and 6.
  • the driving map creation device 100 starts driving according to the user's operation.
  • the autonomous running robot system 400 performs, for example, the following operations.
  • the traveling map creating apparatus 100 may be operated by the user operating a steering wheel, or may be operated by operating a joystick or a remote controller.
  • the control unit 220 of the information terminal 200 When the reception unit 240 of the information terminal 200 receives an instruction to start creating a driving map, the control unit 220 of the information terminal 200 outputs the instruction to the driving map generation device 100 via the communication unit 210 .
  • control unit 120 of driving map creation device 100 acquires a driving map creation start instruction output from information terminal 200 (step S01), driving map creation device 100 including position sensor 102 Acquisition of sensing data is started by each of the plurality of sensors (step S02). More specifically, control unit 120 of driving map creation device 100 outputs a sensing data acquisition start command to each of a plurality of sensors including position sensor 102 .
  • the position sensor 102 detects objects around itself, acquires the positional relationship of the surrounding objects with respect to itself (step S03), and controls the acquired positional relationship. Output to the unit 120 (not shown).
  • the control unit 120 acquires the positional relationship of surrounding objects with respect to itself output from the position sensor 102 (not shown).
  • the floor map creating unit 121 creates a floor map indicating a predetermined floor based on the positional relationship acquired by the position sensor 102 in step S03 (step S04).
  • self-position estimating section 122 detects the position sensor on the floor map based on the positional relationship acquired by position sensor 102 in step S03 and the floor map created by floor map creating section 121 in step S04.
  • 102 in other words, the travel mapping device 100 equipped with the position sensor 102
  • the self-position estimating unit 122 uses the relative positional relationship between the object and the position sensor 102 acquired from the position sensor 102 and the floor map to create a map for driving on the floor map.
  • Estimate self-position which is 100 positions.
  • the self-position estimation unit 122 adds a time stamp to the calculated self-position and stores it in the storage unit 130 .
  • the traveling map creation device 100 may repeat steps S03 to S05 while traveling.
  • the floor map creating unit 121 and the self-location estimating unit 122 may create a floor map while estimating the self-location using SLAM technology, and update the self-location and the floor map sequentially.
  • the travel area setting unit 123 sets the travel area in which the autonomous mobile robot 300 travels on the floor map (step S06). More specifically, the travel area setting unit 123 sets the travel area of the autonomous mobile robot 300 to a first rectangular area defined by the movement trajectory of the self-location based on the floor map and the self-location. A specific travel area setting process will be described later.
  • the driving map creation unit 125 creates a driving map including the driving area set by the driving area setting unit 123 in step S06 (step S07).
  • FIG. 7 is a diagram schematically showing an example of processing for setting a travel area.
  • FIG. 7A is a diagram showing an example of a locus of movement of the self-position of the position sensor 102.
  • FIG. (b) of FIG. 7 is a diagram showing an example of a plurality of rectangular areas defined by the locus of movement of the self-position.
  • the travel area setting unit 123 sets a plurality of rectangular areas defined by the movement trajectory of the self-position (broken lines in (a) of FIG. 7) as the travel area.
  • the locus of movement of the self-position does not have to be closed in one rectangular shape.
  • the travel area setting unit 123 sets a travel area including a plurality of rectangular areas based on the locus of movement. More specifically, for example, the travel area setting unit 123 sets the movement direction of the self-position to one of clockwise and counterclockwise (first direction, example of (a) in FIG.
  • the first rectangular region R1 is set by determining the three first points rotated by a predetermined angle (eg, 90°) as the vertices of the first rectangular region R1 (counterclockwise).
  • a point P1 is the starting point of the locus of movement of the self-position. Assuming that the starting point P1 is the upper right vertex of the first rectangular region R1, the three first points are the upper left vertex, the lower left vertex, and the lower right vertex.
  • the travel area setting unit 123 sets a predetermined angle (for example, , 90°), the first rectangular region R1 and the second rectangular region R2 are formed by determining the two second points to be the vertices of the second rectangular region R2.
  • Set the driving area including A point P2 indicates the first second point in the movement trajectory of the self-position among the two second points.
  • the travel area setting unit 123 sets the movement trajectory of the self-position between the two second points P2 and P2′ in one of the clockwise and counterclockwise directions (the first direction, in FIG. 7A).
  • the second rectangular region R2 may be set by determining the vertices of .
  • the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the second point P2 on the locus of movement of the self-position, and then, for example, the main body 101 moves to the second direction.
  • a position moved outside one rectangular region R1 (that is, toward the second rectangular region R2) may be set as the vertex of the second rectangular region R2.
  • the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the second point P2′
  • the front position covered by the outer edge may be set as the vertex of the second rectangular region R2.
  • the travel area setting unit 123 follows the two second points P2 and P2' in the movement trajectory of the self-position, in the other of the clockwise and counterclockwise directions (second direction, (a) in FIG. 7).
  • a predetermined angle e.g. 90°
  • a travel area A1 including a first rectangular region R1, a second rectangular region R2, and a third rectangular region R3 may be set.
  • a point P3 indicates the first third point in the movement trajectory of the self-position among the two third points.
  • the travel area setting unit 123 moves between the two third points P3 and P3′ in the movement trajectory of the self-position in one of the clockwise and counterclockwise directions (the first direction, shown in FIG. 7A).
  • the third rectangular region R3 may be set by determining the vertices of .
  • the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the third point P3 on the locus of movement of the self-position, and then, for example, the main body 101 moves to the third direction.
  • a position moved to the outside of one rectangular region R1 (that is, to the side of the third rectangular region R3) may be set as the vertex of the third rectangular region R3.
  • the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the third point P3′, for example, the main body 101 moves to the third point P3′.
  • the front position covered by the outer end may be set as the vertex of the third rectangular region R3.
  • Modification 1 of the first example In the first example of the operation, as shown in FIGS. 7A and 7B, the travel map creation device 100 moves to the travel area A1 based on the movement trajectory traveled in the predetermined area. An example of setting was explained.
  • modification 1 of the first example of the operation hereinafter referred to as modification 1
  • the driving map creation device 100 acquires an instruction to set the boundary of the driving area. An example will be described.
  • FIG. 8 is a diagram showing an example of the reception screen of the information terminal 200.
  • FIG. FIG. 9 is a diagram schematically showing an example of the operation of the traveling map creation device 100 and the autonomous traveling robot 300. As shown in FIG. FIG. 9(a) is a diagram showing a running example of the traveling map creation device 100, and FIG. 9(b) is a diagram showing a running example of the autonomous mobile robot 300.
  • FIG. 9(a) is a diagram showing a running example of the traveling map creation device 100
  • FIG. 9(b) is a diagram showing a running example of the autonomous mobile robot 300.
  • the receiving unit 240 of the information terminal 200 is, for example, a touch panel, and includes an icon for instructing the traveling map creating device 100 to indicate the traveling direction, an icon for instructing to stop traveling, and a boundary. may be displayed to indicate whether or not to set the
  • the information terminal 200 outputs the user's instruction received by the reception unit 240 (for example, an instruction not to set a boundary) to the driving map creation device 100 .
  • the instruction may be given while the driving map creating device 100 is in operation (that is, while driving in a predetermined area) or after the operation (that is, after driving in a predetermined area).
  • the travel area setting unit 123 sets a rectangular area (hereinafter referred to as a recessed area) whose short side length is shorter than a predetermined value (for example, the radius of the main body 301 of the autonomous mobile robot 300 when viewed from above) as the travel area. not included in Such a recessed area is located, for example, in a direction intersecting the movement direction of the self-position on the movement trajectory of the self-position, and is defined by the position sensor 102 as an object (for example, wall, partition, pillar, etc.) that defines the contour of the area. ) is the area for which the positional relationship was obtained.
  • a recessed area whose short side length is shorter than a predetermined value (for example, the radius of the main body 301 of the autonomous mobile robot 300 when viewed from above) as the travel area. not included in Such a recessed area is located, for example, in a direction intersecting the movement direction of the self-position on the movement trajectory of the self-position, and is defined by the position sensor 102 as an
  • the boundary instruction unit 124 sends the driving area setting unit 123 to the driving area A1 and the recessed area.
  • An instruction not to set a boundary L1 with an area (for example, non-running area N1) is output. More specifically, for example, the boundary instruction unit 124 outputs an instruction to include the concave area in the rectangular area defined by the movement locus even if the locus of movement of the self-position is not included in the concave area.
  • the receiving unit 240 of the information terminal 200 receives an instruction not to set the border, and accepts The received instruction is output to the travel mapping device 100 .
  • Boundary instruction unit 124 of travel map creation device 100 outputs the above instruction (instruction not to set a boundary between travel area A1 and recessed area) to travel area setting unit 123 based on the received instruction.
  • the travel map creation device 100 does not travel through the recessed area (or does not enter the recessed area) as shown in (a) of FIG. 9, for example.
  • the recessed area (here, the non-running area N1) is included in the first rectangular area R1 (see (b) of FIG. 7) defined by the locus of movement of the self-position.
  • the autonomous mobile robot 300 Based on the map for travel including the travel area A1 set in this way, the autonomous mobile robot 300, for example, as shown in FIG. also run.
  • the recessed area is not limited to the above example.
  • the length of the short side of the recessed area may be equal to or less than the diameter of the main body 301 of the autonomous mobile robot 300 in top view, or may be appropriately set depending on the application of the autonomous mobile robot 300 .
  • Modification 2 of the first example In the modified example 1 of the operation, an operation example in which an instruction for setting a boundary is acquired during operation of the travel map creation device 100 (that is, while traveling in a predetermined area) has been described.
  • Modified Example 2 of the first example of operation hereinafter referred to as Modified Example 2
  • the instruction about the boundary is a so-called instruction to correct the set boundary.
  • FIG. 10 is a diagram showing another example of the reception screen on the information terminal.
  • the control unit 120 of the travel map creation device 100 transmits the travel map to the information terminal 200 .
  • the control unit 220 of the information terminal 200 causes the presentation unit 230 to present the map for driving as shown in FIG. 10 .
  • the reception unit 240 sets the boundary L1. Accepts instructions to modify to delete.
  • the boundary L1 on the map for driving is touched, the display of the boundary L1 disappears and the area after correction including the non-running area N1 and the first rectangular area R1 is displayed.
  • the control unit 220 of the information terminal 200 outputs the instruction accepted by the accepting unit 240 to the driving map creating device 100 .
  • the boundary instruction unit 124 of the driving map creation device 100 Upon acquiring the instruction, deletes the boundary L1 to the driving area setting unit 123, and sets the first rectangular area R1 to include the non-driving area N1 and the first rectangular area R1. Outputs instructions to modify the region.
  • the travel area setting unit 123 Upon receiving the instruction from the boundary instruction unit 124, the travel area setting unit 123 corrects the boundary L1 based on the instruction to change the first rectangular region R1 in the travel area A1 to the non-travel area N1. and the first rectangular region R1. Accordingly, the travel area setting unit 123 corrects the travel area A1.
  • the travel map creation unit 125 creates a travel map including the travel area A1 corrected by the travel area setting unit 123 (not shown).
  • boundary modification is not limited to this example.
  • the driving area setting unit 123 may shift the position of the boundary L2 in the vertical direction on the map for driving based on the instruction to correct the boundary, or between adjacent rectangular areas in the driving area (
  • the second rectangular region R2 may be changed to a non-running area by setting a boundary between the first rectangular region R1 and the second rectangular region R2.
  • FIG. 11 is a flow chart showing a second example of the operation of the autonomous mobile robot system 400 according to the embodiment. In the following description, the travel area is replaced with the cleaning area.
  • the control unit 220 of the information terminal 200 outputs the instruction to the autonomous mobile robot 300 (not shown).
  • the travel map acquisition unit 341 acquires a travel map (step S12).
  • the driving map acquisition unit 341 may request a driving map of a predetermined floor from the driving map generating device 100 and acquire the driving map via the network 10 , or may acquire the driving map stored in the storage unit 350 . You may read the map of
  • control unit 340 of the autonomous traveling robot 300 outputs a sensing start instruction to various sensors provided in the autonomous traveling robot 300, such as the position sensor 320 and the obstacle sensor 330, and acquires sensing data from these sensors. (step S13).
  • the self-position estimation unit 342 determines the positional relationship between the driving map (driving map) acquired in step S12 and the objects around the main body 301 of the autonomous mobile robot 300 acquired by the position sensor 320. , the self-position of the main body 301 of the autonomous mobile robot 300 on the map for travel is estimated (step S14).
  • the travel plan creation unit 344 searches for a cleaning area close to the self-position among a plurality of cleaning areas included in the map for travel. (Step S15).
  • the travel plan creation unit 344 determines the start position (more specifically, the position where cleaning is to start) within the cleaning area searched in step S15 (step S16).
  • the travel plan creation unit 344 creates a travel plan within the cleaning area (step S17).
  • the travel plan creation unit 344 may determine the travel speed, the manner of cleaning, etc. in addition to the travel route in the cleaning area.
  • the cleaning aspect includes, for example, at least one of sweeping, wiping, and dust suction, and cleaning intensity such as brush rotation speed or suction intensity.
  • the travel plan creation unit 344 determines the order of cleaning areas (step S18).
  • the travel plan creation unit 344 refers to history information such as the frequency of cleaning of the cleaning area or the priority of the cleaning area from a history information database (not shown) stored in the storage unit 350. may be used to determine the order of cleaning the cleaning area.
  • the travel plan creation unit 344 determines whether or not the travel plan for all the cleaning areas included in the travel map has been completed (step S19). No), the process of step S16 is performed for other cleaning areas. Then, when the processing of steps S16 to S18 is completed for the other cleaning areas, the travel plan creating unit 344 determines whether or not the travel plans for all the cleaning areas have been completed (step S19). Then, when it is determined that the travel plans for all the cleaning areas have been completed (Yes in step S19), the travel plan creation unit 344 outputs the created travel plan and a control start instruction to the travel control unit 345 and the cleaning control unit 346. (not shown).
  • step S20 When the travel control unit 345 and the cleaning control unit 346 acquire the travel plan and the control start instruction from the travel plan creation unit 344, they control the travel unit 360 and the cleaning unit 370 according to the travel plan to perform cleaning (step S20).
  • the control unit 340 of the autonomous mobile robot 300 finishes cleaning after cleaning all areas according to the travel plan.
  • the travel map creation device 100 is a travel map creation device that creates a travel map for the autonomous mobile robot 300 that autonomously travels within a predetermined floor.
  • a position sensor 102 that detects an object and acquires the positional relationship of the object with respect to itself; a floor map creation unit 121 that creates a floor map indicating a predetermined floor based on the positional relationship acquired by the position sensor 102; a self-position estimation unit 122 for estimating the self-position on the floor map based on the positional relationship acquired by 102 and the floor map created by the floor map creation unit 121;
  • a travel area setting unit 123 that sets a first rectangular region R1 defined by the movement locus of , as a travel area in which the autonomous mobile robot 300 travels, and a travel map that includes the travel area set by the travel area setting unit 123 and a travel map creation unit 125 that creates a map.
  • the traveling map creation device 100 can set the first rectangular region R1 defined by the movement trajectory of the self-position as the traveling area A1 of the autonomous traveling robot 300.
  • the travel area A1 can be easily set on the map for use.
  • the travel area setting unit 123 sets the travel direction of the self-position to one of clockwise and counterclockwise (first direction, leftward in FIG. 7A) in the travel locus.
  • the first rectangular region R1 may be set by determining three first points rotated by a predetermined angle (for example, 90°) as the vertices of the first rectangular region R1.
  • the travel map creation device 100 determines the vertex of the first rectangular region R1 as the point where the travel map creation device 100 turns at a predetermined angle in a predetermined direction. , the first rectangular region R1 can be easily set.
  • the travel area setting unit 123 sets a predetermined angle ( For example, if there are two second points rotated by 90°, the first rectangular area R1 and the second rectangular area R2 are determined by determining the two second points to be the vertices of the second rectangular area R2. You may set driving
  • the map creating apparatus for driving 100 divides these two points into a second rectangular area different from the first rectangular area R1. Since the vertex of R2 is determined, it is possible to easily set a plurality of rectangular areas included in the driving area A1 based on changes in movement (turning direction and angle) of the driving mapping device 100.
  • the travel area setting unit 123 creates clockwise and counterclockwise directions between the two second points P2 and P2′ (see FIG. 7A) on the movement trajectory.
  • a predetermined angle for example, 90°
  • two second points P2 and P2′ may be set by determining two points as vertices of the second rectangular region R2.
  • the travel map creation device 100 generates the second rectangular region R1 facing the boundary between the second rectangular region R2 and the first rectangular region R1 based on the change in the motion (curving direction and angle) of the travel map creation device 100. Since the two vertices forming one side of the rectangular region R2 are determined, the second rectangular region R2 can be set more accurately.
  • the travel area setting unit 123 selects a third rectangular region in which the length of the short side is shorter than a predetermined value (for example, the radius of the main body 301 of the autonomous travel robot 300 when viewed from above). It does not have to be included in the running area.
  • a predetermined value for example, the radius of the main body 301 of the autonomous travel robot 300 when viewed from above. It does not have to be included in the running area.
  • the travel map creation device 100 does not include in the travel area A1 a rectangular area (so-called recessed area) whose short side length is shorter than a predetermined value, so that the autonomous mobile robot 300 moves within the predetermined area. can run efficiently.
  • the driving map creation device 100 further includes a boundary instruction unit 124 that outputs an instruction for setting the boundary of the driving area A1 to the driving area setting unit 123.
  • a boundary instruction unit 124 that outputs an instruction for setting the boundary of the driving area A1 to the driving area setting unit 123.
  • the boundary is corrected based on the instruction to correct the driving area A1, and the driving map creation unit 125 includes the driving area corrected by the driving area setting unit 123. You may create a map for driving.
  • the driving map creation device 100 can, for example, correct the boundary according to the user's request, so that it is possible to set the area more in line with the user's request.
  • the autonomous traveling robot 300 is an autonomous traveling robot that autonomously travels within a predetermined floor, and includes a main body 301, a traveling section 360 arranged in the main body 301 and enabling the main body 301 to travel, and a position for detecting an object around the main body 301 and obtaining the positional relationship of the object with respect to the main body 301.
  • a sensor 320 a self-position estimating unit 342 for estimating the self-position, which is the position of the main body 301 on the map for driving, based on the map for driving and the positional relationship, and a map for driving and the self-position , a travel plan creation unit 344 that creates a travel plan for a predetermined floor, and a travel control unit 345 that controls the travel unit 360 based on the travel plan.
  • the autonomous mobile robot 300 can create a travel plan based on the travel map in which the travel area is set. You can run in the area.
  • the autonomous mobile robot 300 further includes a cleaning unit 370 that cleans the floor surface by executing at least one of sweeping, wiping, and sucking dust, and a cleaning unit that controls the cleaning unit 370. and a control unit 346, the travel plan creation unit 344 may further create a cleaning plan, and the cleaning control unit 346 may control the cleaning unit 370 based on the cleaning plan.
  • the autonomous mobile robot 300 can create a cleaning plan in addition to the travel plan based on the map for travel, so that it can clean while appropriately traveling in a predetermined area.
  • the travel map creation method is a travel map creation method for creating a travel map for the autonomous travel robot 300 that autonomously travels within a predetermined floor.
  • a floor map creation step that creates a floor map showing a given floor, and a self-position (autonomous mobile robot) on the floor map based on the positional relationship acquired in the acquisition step and the floor map created in the floor map creation step.
  • the first rectangular region R1 defined by the locus of movement of the self-position can be set as the travel area A1 of the autonomous mobile robot 300.
  • the travel area A1 can be easily set on the map.
  • the autonomous mobile robot system 400 includes the mobile map creation device 100, the information terminal 200, and the autonomous mobile robot 300.
  • the autonomous mobile robot 300 and an information terminal having a travel map creation function may be provided.
  • an autonomous mobile robot equipped with a map creation function for travel can create a map for travel on a given floor and create a travel plan in parallel.
  • the autonomous mobile robot since the autonomous mobile robot does not need to acquire a map for running via the network 10, it is less likely to be affected by communication failures, etc., and can be processed more smoothly than when information is acquired by communication. It is possible to do
  • an information terminal equipped with a driving map creation function allows a user to carry a portable computer device such as a tablet terminal equipped with LiDar SLAM and move around a predetermined area to create a driving map. Correction of the map for running can be performed in parallel. Therefore, it is not necessary for the user to place the traveling map creating apparatus 100 on the trolley 190 and move the predetermined floor, thereby improving the convenience.
  • the travel map creation device 100 includes the position sensor 102 , but the travel map creation device 100 does not have to include the position sensor 102 .
  • the driving map creation device 100 may be an information processing device having a configuration other than the position sensor 102 .
  • a sensor including the position sensor 102 may be placed on a carriage 190 and data acquired by the sensor may be output to the information processing device while moving on a predetermined floor.
  • the travel map generated by the travel map creation device 100 is transmitted to the autonomous mobile robot 300 via the network 10 .
  • the mode of acquisition is not limited to this.
  • the travel map creation device 100 transmits a travel map to the information terminal 200 via the network 10, and the travel map acquired by the information terminal 200 is transmitted to the autonomous travel robot 300 via the network 10.
  • the network 10 is a wide area communication network such as the Internet, but may be a local communication network such as Wi-Fi (registered trademark).
  • the autonomous mobile robot 300 can acquire a map for travel via a USB (Universal Serial Bus) memory in which the map for travel generated by the map creation device 100 is stored. good.
  • USB Universal Serial Bus
  • traveling map creation device 100 and the autonomous mobile robot 300 are separate units. It may be embodied as a device.
  • the autonomous mobile robot system 400 is implemented by a plurality of devices in the above embodiment, it may be implemented as a single device. Moreover, when the system is realized by a plurality of devices, the constituent elements of the autonomous mobile robot system 400 may be distributed among the plurality of devices in any way. Also, for example, a server device capable of communicating with the autonomous mobile robot system 400 is included in the control unit 120 of the mobile map creation device 100, the control unit 220 of the information terminal 200, and the control unit 340 of the autonomous mobile robot 300. It may comprise multiple components.
  • the communication method between devices in the above embodiment is not particularly limited.
  • a relay device (not shown) may intervene in communication between devices.
  • processing executed by a specific processing unit in the above embodiment may be executed by another processing unit.
  • the order of multiple processes may be changed, and multiple processes may be executed in parallel.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be implemented by a program execution unit such as a CPU (Central Processing Unit) or processor reading and executing a software program recorded in a recording medium such as a hard disk or semiconductor memory.
  • a program execution unit such as a CPU (Central Processing Unit) or processor reading and executing a software program recorded in a recording medium such as a hard disk or semiconductor memory.
  • each component may be realized by hardware.
  • each component may be a circuit (or integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
  • the present disclosure may be implemented as a travel control method executed by a computer such as the autonomous mobile robot system 400, or may be implemented as a program for causing a computer to execute such a map creation method for travel. good. Further, the present disclosure may be implemented as a program for causing a general-purpose computer to operate as driving map creation device 100 of the above embodiment. The present disclosure may be implemented as a computer-readable non-temporary recording medium on which these programs are recorded.
  • the present disclosure can be widely used for robots that run autonomously.

Abstract

A traveling map creating device (100) comprises: a position sensor (102) that detects an object around the device and acquires the positional relationship between the object and the device around the device; a floor map creating unit (121) that creates a floor map indicating a predetermined floor on the basis of the positional relationship acquired by the position sensor (102); a self-position estimating unit (122) that estimates the position of the device on the floor map on the basis of the positional relationship acquired by the position sensor (102) and the floor map created by the floor map creating unit (121); a traveling area setting unit (123) that sets a first rectangular region, which is determined by the moving path of the position of the device, as a traveling area for the travel of an autonomous robot (300) on the basis of the floor map and the position of the device; and a traveling map creating unit (125) that creates a traveling map including the traveling area set by the traveling area setting unit (123).

Description

走行用地図作成装置、自律走行型ロボット、走行用地図作成方法、及び、プログラムTraveling mapping device, autonomous traveling robot, traveling mapping method, and program
 本開示は、走行用地図作成装置、自律走行型ロボット、走行用地図作成方法、及び、プログラムに関する。 The present disclosure relates to a travel map creation device, an autonomous travel robot, a travel map creation method, and a program.
 例えば、特許文献1には、自律走行装置の走行経路上の繰り返し形状を、走行エリアを区切るランドマークとして認識し、一対のランドマークと壁面とで囲まれたエリアを走行エリアに設定する方法が開示されている。 For example, Patent Document 1 discloses a method of recognizing a repeating shape on a travel route of an autonomous mobile device as a landmark that delimits a travel area, and setting an area surrounded by a pair of landmarks and a wall as the travel area. disclosed.
特開2018-18146号公報JP 2018-18146 A
 しかしながら、特許文献1に記載の技術では、予め、ユーザが自律走行装置の走行経路上にランドマークを設置して走行エリアを区画する必要があり、手間がかかる。 However, the technology described in Patent Document 1 requires the user to set landmarks on the travel route of the autonomous mobile device in advance to partition the travel area, which is time-consuming.
 そこで、本開示は、自律走行型ロボットの走行用の地図に走行エリアを容易に設定することができる走行用地図作成装置、走行用地図作成方法、及びプログラムを提供する。 Therefore, the present disclosure provides a travel map creation device, a travel map creation method, and a program that can easily set a travel area on a travel map for an autonomous travel robot.
 本開示の一態様に係る走行用地図作成装置は、所定のフロア内を自律的に走行する自律走行型ロボットの走行用の地図を作成する走行用地図作成装置であって、自己の周囲の物体を検知し、自己に対する前記物体の位置関係を取得する位置センサと、前記位置センサにより取得された前記位置関係に基づいて前記所定のフロアを示すフロアマップを作成するフロアマップ作成部と、前記位置センサにより取得された前記位置関係と前記フロアマップ作成部により作成された前記フロアマップに基づいて前記フロアマップ上での自己位置を推定する自己位置推定部と、前記フロアマップ及び前記自己位置に基づいて、前記自己位置の移動軌跡で規定される第1矩形領域を前記自律走行型ロボットが走行する走行エリアに設定する走行エリア設定部と、前記走行エリア設定部により設定された前記走行エリアを含む走行用の地図を作成する走行用地図作成部と、を備える。 A travel map creation device according to an aspect of the present disclosure is a travel map creation device that creates a travel map for an autonomous mobile robot that autonomously travels within a predetermined floor, and includes objects around itself a position sensor for acquiring the positional relationship of the object with respect to itself; a floor map creation unit for creating a floor map showing the predetermined floor based on the positional relationship acquired by the position sensor; a self-position estimation unit for estimating a self-position on the floor map based on the positional relationship acquired by the sensor and the floor map created by the floor map creation unit; a running area setting unit for setting a first rectangular region defined by the locus of movement of the self-position as a running area in which the autonomous mobile robot runs; and the running area set by the running area setting unit. a driving map creating unit for creating a driving map.
 また、本開示の他の一態様に係る自律走行型ロボットは、所定のフロア内を自律的に走行する自律走行型ロボットであって、本体と、前記本体に配置され、前記本体を走行可能とする走行部と、前記走行用地図作成装置で作成された前記走行用の地図を取得する走行用地図取得部と、前記本体の周囲の物体を検知し、前記本体に対する前記物体の位置関係を取得する位置センサと、前記走行用の地図及び前記位置関係に基づいて、前記走行用の地図上での前記本体の位置である自己位置を推定する自己位置推定部と、前記走行用の地図及び前記自己位置に基づいて、前記所定のフロアにおける走行計画を作成する走行計画作成部と、前記走行計画に基づいて前記走行部を制御する走行制御部と、を備える。 Further, an autonomous traveling robot according to another aspect of the present disclosure is an autonomous traveling robot that autonomously travels within a predetermined floor, comprising: a main body; a driving unit that acquires the driving map created by the driving map creation device; and a driving map acquisition unit that detects objects around the main body and acquires the positional relationship of the objects with respect to the main body. a position sensor for estimating a position of the main body on the map for driving based on the map for driving and the positional relationship; A travel plan creation unit that creates a travel plan for the predetermined floor based on the self-position, and a travel control unit that controls the travel unit based on the travel plan.
 また、本開示の他の一態様に係る走行用地図作成方法は、所定のフロア内を自律的に走行する自律走行型ロボットの走行用の地図を作成する走行用地図作成方法であって、自己の周囲の物体を検知し、自己に対する前記物体の位置関係を取得する取得ステップと、前記取得ステップで取得された前記位置関係に基づいて前記所定のフロアを示すフロアマップを作成するフロアマップ作成ステップと、前記取得ステップで取得された前記位置関係と前記フロアマップ作成ステップで作成された前記フロアマップに基づいて前記フロアマップ上での自己位置を推定する自己位置推定ステップと、前記フロアマップ及び前記自己位置に基づいて、前記自己位置の移動軌跡で規定される第1矩形領域を前記自律走行型ロボットが走行する走行エリアに設定する走行エリア設定ステップと、前記走行エリア設定ステップで設定された前記走行エリアを含む走行用の地図を作成する走行用地図作成ステップと、を含む。 Further, a travel map creation method according to another aspect of the present disclosure is a travel map creation method for creating a travel map for an autonomous mobile robot that autonomously travels within a predetermined floor. and a floor map creating step of creating a floor map indicating the predetermined floor based on the positional relationship acquired in the acquiring step. a self-location estimation step of estimating a self-location on the floor map based on the positional relationship acquired in the acquisition step and the floor map created in the floor map creation step; a travel area setting step of setting a first rectangular area defined by the movement trajectory of the self-position as a travel area in which the autonomous mobile robot travels, based on the self-position; and a driving map creating step of creating a driving map including the driving area.
 なお、本開示は、上記走行用地図作成方法をコンピュータに実行させるためのプログラムとして実現されてもよい。また、本開示は、上記プログラムを記録したコンピュータによって読み取り可能なCD-ROM(Compact Disc-Read Only Memory)等の非一時的な記録媒体として実現されてもよい。また、本開示は、そのプログラムを示す情報、データ又は信号として実現されてもよい。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信されてもよい。 Note that the present disclosure may be implemented as a program for causing a computer to execute the map creation method for driving. The present disclosure may also be implemented as a non-temporary recording medium such as a computer-readable CD-ROM (Compact Disc-Read Only Memory) recording the above program. Also, the present disclosure may be realized as information, data, or signals indicating the program. These programs, information, data and signals may then be distributed over a communication network such as the Internet.
 本開示の走行用地図作成装置、走行用地図作成方法、及びプログラムによれば、自律走行型ロボットの走行用の地図に走行エリアを容易に設定することができる。 According to the travel map creation device, the travel map creation method, and the program of the present disclosure, it is possible to easily set the travel area on the travel map of the autonomous mobile robot.
図1は、本開示の実施の形態における自律走行型ロボットシステムの機能構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the functional configuration of an autonomous mobile robot system according to an embodiment of the present disclosure. 図2は、実施の形態に係る走行用地図作成装置を斜め上方側から見た斜視図である。FIG. 2 is a perspective view of the driving map creation device according to the embodiment as seen obliquely from above. 図3は、実施の形態に係る自律走行型ロボットを側方向から見た外観を示す斜視図である。FIG. 3 is a perspective view showing the external appearance of the autonomous mobile robot according to the embodiment as viewed from the side. 図4は、実施の形態に係る自律走行型ロボットを正面方向から見た外観を示す斜視図である。FIG. 4 is a perspective view showing the appearance of the autonomous mobile robot according to the embodiment as viewed from the front. 図5は、実施の形態に係る自律走行型ロボットを底面方向から見た外観を示す底面図である。FIG. 5 is a bottom view showing the appearance of the autonomous mobile robot according to the embodiment as seen from the bottom direction. 図6は、実施の形態における自律走行型ロボットシステムの動作の第1の例を示すフローチャートである。FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system according to the embodiment. 図7は、走行エリアの設定処理の一例を模式的に示す図である。FIG. 7 is a diagram schematically showing an example of processing for setting a travel area. 図8は、情報端末の受付画面の一例を示す図である。FIG. 8 is a diagram showing an example of a reception screen of an information terminal. 図9は、走行用地図作成装置及び自律走行型ロボットの動作の一例を模式的に示す図である。FIG. 9 is a diagram schematically showing an example of the operation of the travel mapping device and the autonomous travel robot. 図10は、情報端末の受付画面の他の例を示す図である。FIG. 10 is a diagram showing another example of the reception screen of the information terminal. 図11は、実施の形態における自律走行型ロボットシステムの動作の第2の例を示すフローチャートである。FIG. 11 is a flow chart showing a second example of the operation of the autonomous mobile robot system according to the embodiment.
 以下では、本開示に係る走行用地図作成装置等の実施の形態について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 In the following, embodiments of the driving map creation device and the like according to the present disclosure will be described in detail using the drawings. It should be noted that each of the embodiments described below is a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement and connection of components, steps, order of steps, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements.
 なお、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 The accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、他の図と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected to the substantially same structure as another figure, and the overlapping description may be abbreviate|omitted or simplified.
 また、以下の実施の形態においては、略三角形等の「略」を用いた表現が用いられている。例えば、略三角形とは、完全に三角形であることを意味するだけでなく、実質的に三角形である、すなわち、例えば角丸な三角形等も含むことも意味する。他の「略」を用いた表現についても同様である。 Also, in the following embodiments, expressions using "substantially" such as substantially triangular are used. For example, substantially triangular means not only completely triangular, but also substantially triangular, ie, including, for example, triangles with rounded corners. The same applies to expressions using other "abbreviations".
 また、以下の実施の形態においては、所定のフロアの床面を走行する自律走行型ロボットを鉛直上方側から見た場合を上面視とし、鉛直下方側から見た場合を底面視として記載する場合がある。 Further, in the following embodiments, when an autonomous mobile robot traveling on the floor surface of a predetermined floor is viewed from the vertically upward side, it is described as a top view, and when viewed from the vertically downward side, it is described as a bottom view. There is
 (実施の形態)
 [自律走行型ロボットシステム]
 [1.構成]
 まず、本実施の形態における自律走行型ロボットシステムの概要について説明する。図1は、実施の形態における自律走行型ロボットシステムの機能構成の一例を示すブロック図である。
(Embodiment)
[Autonomous mobile robot system]
[1. composition]
First, an outline of an autonomous mobile robot system according to the present embodiment will be described. FIG. 1 is a block diagram showing an example of a functional configuration of an autonomous mobile robot system according to an embodiment.
 自律走行型ロボットシステム400は、自律走行型ロボット300が走行する複数の走行エリアが設定された走行用の地図を作成し、作成された走行用の地図に基づいて生成された走行計画に基づいて自律走行型ロボット300が所定のフロアを走行するシステムである。 The autonomous mobile robot system 400 creates a map for travel in which a plurality of travel areas in which the autonomous mobile robot 300 travels is set, and based on a travel plan generated based on the created map for travel. This is a system in which an autonomous mobile robot 300 runs on a predetermined floor.
 所定のフロアは、例えば、建物内の壁などに囲まれたフロアである。建物は、例えば、ホテル、商業施設、オフィスビル、病院、介護施設、美術館、又は、図書館などの施設であってもよく、マンションなどの集合住宅であってもよい。 A predetermined floor is, for example, a floor surrounded by walls in a building. The building may be, for example, a facility such as a hotel, commercial facility, office building, hospital, nursing facility, museum, or library, or may be an apartment complex such as an apartment building.
 図1に示されるように、自律走行型ロボットシステム400は、例えば、走行用地図作成装置100と、情報端末200と、自律走行型ロボット300とを備えている。以下、各構成について説明する。 As shown in FIG. 1, the autonomous mobile robot system 400 includes, for example, a mobile mapping device 100, an information terminal 200, and an autonomous mobile robot 300. Each configuration will be described below.
 [1-1.走行用地図作成装置]
 まず、走行用地図作成装置100について図1及び図2を参照しながら説明する。図2は、本実施の形態に係る走行用地図作成装置100を斜め上方側から見た斜視図である。
[1-1. Driving map creation device]
First, the travel mapping device 100 will be described with reference to FIGS. 1 and 2. FIG. FIG. 2 is a perspective view of the driving map creating apparatus 100 according to the present embodiment as seen obliquely from above.
 走行用地図作成装置100は、所定のフロアを自律的に走行する自律走行型ロボット300の走行用の地図を作成する装置である。例えば、走行用地図作成装置100は、ユーザの操作により所定のフロアを走行しながら、走行用の地図を作成する。具体的な動作については、後述する。 The travel map creation device 100 is a device that creates a travel map for the autonomous travel robot 300 that autonomously travels on a predetermined floor. For example, the driving map creation device 100 creates a driving map while driving on a predetermined floor according to the user's operation. Specific operations will be described later.
 図2に示されるように、走行用地図作成装置100は、例えば、台車190に載せられ、ユーザの操作により所定のフロアを走行する。ここでは、ユーザが台車190を押すことにより走行用地図作成装置100を走行させる。台車190には、例えば、ハンドル191に情報端末200(図1参照)を載せるスタンド192が取り付けられてもよいし、走行用地図作成装置100の提示部(図1及び図2に不図示)が設置されてもよい。提示部は、いわゆる表示パネルであってもよい。 As shown in FIG. 2, the travel mapping device 100 is placed on a trolley 190, for example, and travels on a predetermined floor according to the user's operation. Here, the user pushes the carriage 190 to cause the travel mapping device 100 to travel. For example, a stand 192 for placing an information terminal 200 (see FIG. 1) on a handle 191 may be attached to the carriage 190, and a presentation unit (not shown in FIGS. 1 and 2) of the travel map creation device 100 may be attached. may be installed. The presentation unit may be a so-called display panel.
 なお、走行用地図作成装置100の機能を自律走行型ロボット300に搭載し、自律走行型ロボット300を走行させることにより、走行用の地図を作成させてもよい。 It should be noted that the function of the traveling map creation device 100 may be installed in the autonomous traveling robot 300 and the autonomous traveling robot 300 may be caused to travel to create a traveling map.
 また、図1に示されるように、走行用地図作成装置100は、例えば、通信部110と、位置センサ102と、制御部120と、記憶部130と、を備える。以下、各構成について説明する。 Further, as shown in FIG. 1, the driving map creation device 100 includes, for example, a communication unit 110, a position sensor 102, a control unit 120, and a storage unit . Each configuration will be described below.
 [位置センサ]
 位置センサ102は、自己の周囲の物体を検知し、自己に対する物体の位置関係を取得する。例えば、位置センサ102は、本体101の上面の中央に配置されており、走行用地図作成装置100と、走行用地図作成装置100の周囲に存在する壁などを含む物体との距離及び方向を含む位置関係を取得する。位置センサ102は、例えば、光を放射し障害物により反射して返ってきた光に基づいて位置関係を検出するLIDAR(Light Detection and Ranging)、又は、レーザレンジファインダであってもよい。位置センサ102は、光の走査軸を1軸又は2軸有することにより、走行用地図作成装置100の周囲の所定の領域の二次元計測、又は、三次元計測を行ってもよい。
[Position sensor]
The position sensor 102 detects objects around itself and acquires the positional relationship of the object with respect to itself. For example, the position sensor 102 is arranged in the center of the upper surface of the main body 101, and includes the distance and direction between the driving mapping device 100 and objects, such as walls, existing around the driving mapping device 100. Get the positional relationship. The position sensor 102 may be, for example, a LIDAR (Light Detection and Ranging) that emits light and detects the positional relationship based on the light that is reflected back by an obstacle, or a laser range finder. The position sensor 102 may perform two-dimensional measurement or three-dimensional measurement of a predetermined area around the driving mapping device 100 by having one or two optical scanning axes.
 なお、走行用地図作成装置100は、位置センサ102に加えて、他の種類のセンサを備えてもよい。例えば、走行用地図作成装置100は、さらに、カメラ、障害物センサ、床面センサ、エンコーダ、加速度センサ、角速度センサ、接触センサ、超音波センサ、測距センサなどを備えてもよい。 In addition to the position sensor 102, the travel mapping device 100 may include other types of sensors. For example, the driving mapping device 100 may further include a camera, an obstacle sensor, a floor sensor, an encoder, an acceleration sensor, an angular velocity sensor, a contact sensor, an ultrasonic sensor, a distance measuring sensor, and the like.
 [通信部]
 通信部110は、走行用地図作成装置100がネットワーク10を介して情報端末200及び自律走行型ロボット300と通信を行うための通信回路である。例えば、通信部110は、走行用の地図を自律走行型ロボット300に送信してもよい。通信部110は、広域通信ネットワークを介して通信を行うための通信回路(通信モジュール)と、局所通信ネットワークを介して通信を行うための通信回路(通信モジュール)とを備えてもよい。通信部110は、例えば、無線通信を行う無線通信回路である。通信部110が行う通信の通信規格については特に限定されない。
[Communication]
The communication unit 110 is a communication circuit for the traveling map creation device 100 to communicate with the information terminal 200 and the autonomous traveling robot 300 via the network 10 . For example, the communication unit 110 may transmit a map for running to the autonomous running robot 300 . The communication unit 110 may include a communication circuit (communication module) for communicating via a wide area communication network and a communication circuit (communication module) for communicating via a local communication network. The communication unit 110 is, for example, a wireless communication circuit that performs wireless communication. A communication standard for communication performed by the communication unit 110 is not particularly limited.
 [制御部]
 制御部120は、位置センサ102により走行用地図作成装置100の本体101の周囲の環境をセンシングして得られた本体101と本体101の周囲の物体との位置関係などのセンサデータを取得し、各種演算を行う。制御部120は、具体的には、プロセッサ、マイクロコンピュータ、又は、専用回路によって実現される。また、制御部120は、プロセッサ、マイクロコンピュータ、又は、専用回路のうちの2つ以上の組み合わせによって実現されてもよい。例えば、制御部120は、自己位置推定部122と、フロアマップ作成部121と、走行エリア設定部123と、境界指示部124と、走行用地図作成部125とを含む。
[Control part]
The control unit 120 acquires sensor data, such as the positional relationship between the main body 101 and objects around the main body 101, obtained by sensing the environment around the main body 101 of the driving map creating device 100 using the position sensor 102, Perform various calculations. The controller 120 is specifically implemented by a processor, microcomputer, or dedicated circuit. Also, the controller 120 may be realized by a combination of two or more of a processor, a microcomputer, or a dedicated circuit. For example, control unit 120 includes self-position estimation unit 122 , floor map creation unit 121 , travel area setting unit 123 , boundary designator 124 , and travel map creation unit 125 .
 制御部120は、位置センサ102により取得された本体101と本体101の周囲の物体との位置関係、及び、本体101(つまり、走行用地図作成装置100)の移動軌跡を取得する。走行用地図作成装置100は、位置センサ102に加えて、他の種類のセンサを備える場合、制御部120は、さらに、他の種類のセンサにより取得されたセンサデータを取得してもよい。 The control unit 120 acquires the positional relationship between the main body 101 and objects around the main body 101 acquired by the position sensor 102, and the movement trajectory of the main body 101 (that is, the driving map creation device 100). If the map creating device for driving 100 is equipped with another type of sensor in addition to the position sensor 102, the control unit 120 may further acquire sensor data acquired by the other type of sensor.
 フロアマップ作成部121は、位置センサ102により取得された物体と位置センサ102との相対的な位置関係に基づいて、所定のフロアを示すフロアマップを作成する。フロアマップ作成部121は、例えば、SLAM(Simultaneous Localization and Mapping)などの地図作成技術によって所定のフロアを示すフロアマップを作成してもよく、外部の装置(不図示)から入力されたフロアマップを、ネットワーク10を介して取得してもよい。また、フロアマップは、予め記憶部130に格納されていてもよく、この場合、フロアマップ作成部121は、記憶部130からフロアマップを読み出して取得してもよい。 The floor map creation unit 121 creates a floor map showing a predetermined floor based on the relative positional relationship between the object acquired by the position sensor 102 and the position sensor 102 . The floor map creation unit 121 may create a floor map indicating a predetermined floor by map creation technology such as SLAM (Simultaneous Localization and Mapping), for example. , may be obtained via the network 10 . Further, the floor map may be stored in the storage unit 130 in advance, and in this case, the floor map creating unit 121 may read the floor map from the storage unit 130 and acquire it.
 自己位置推定部122は、位置センサ102により取得された位置関係と、フロアマップとを用いて、フロアマップ上での走行用地図作成装置100の位置である自己位置を推定する。例えば、自己位置推定部122は、SLAM技術を利用して自己位置を推定する。 The self-position estimation unit 122 uses the positional relationship acquired by the position sensor 102 and the floor map to estimate the self-position, which is the position of the driving map creation device 100 on the floor map. For example, the self-position estimation unit 122 estimates the self-position using SLAM technology.
 走行エリア設定部123は、フロアマップ及び自己位置に基づいて、自己位置の移動軌跡で規定される第1矩形領域を自律走行型ロボット300が走行する走行エリアに設定する。例えば、走行エリア設定部123は、自己位置の移動軌跡において、自己位置の移動方向が右回り及び左回りの一方(第1の方向)に第1の所定の角度で回転する3つの第1の点を第1矩形領域の頂点に決定することにより、前記第1矩形領域を設定する。 Based on the floor map and the self-position, the travel area setting unit 123 sets the first rectangular area defined by the movement locus of the self-position as the travel area in which the autonomous mobile robot 300 travels. For example, the travel area setting unit 123 may set the movement direction of the self-position to one of clockwise and counterclockwise directions (first direction) in the movement trajectory of the self-position. The first rectangular region is established by determining the points to be the vertices of the first rectangular region.
 また、例えば、走行エリア設定部123は、自己位置の移動軌跡において、右回り及び左回りの他方(第2の方向)に第2の所定の角度で回転する2つの第2の点が存在する場合、2つの第2の点を第2矩形領域の頂点に決定することにより、第1矩形領域と第2矩形領域とを含む走行エリアを設定する。また、例えば、走行エリア設定部123は、自己位置の移動軌跡において、2つの第2の点の間に、右回り及び左回りの一方(第1の方向)に第1の所定の角度で回転する2つの点が存在する場合、2つの第2の点に加え、2つの点を第2矩形領域の頂点に決定することにより、第2矩形領域を設定する。 Further, for example, the travel area setting unit 123 determines that there are two second points that rotate at a second predetermined angle in the other of the clockwise and counterclockwise directions (second direction) in the movement trajectory of the self-position. In this case, the travel area including the first rectangular area and the second rectangular area is set by determining the two second points as the vertices of the second rectangular area. Also, for example, the travel area setting unit 123 rotates at a first predetermined angle in one of the clockwise and counterclockwise directions (first direction) between the two second points in the movement trajectory of the self-position. If there are two points to match, set the second rectangular area by determining the two points as the vertices of the second rectangular area in addition to the two second points.
 また、例えば、走行エリア設定部123は、短辺の長さが所定値よりも短い領域である第3矩形領域を走行エリアに含めない。 Also, for example, the travel area setting unit 123 does not include the third rectangular area, which is an area whose short side is shorter than a predetermined value, in the travel area.
 また、例えば、走行エリア設定部123は、境界指示部124により出力された指示であって、走行エリアと自律走行型ロボット300が走行しない非走行エリアとの境界の設定を修正する指示を取得すると、当該指示に基づいて境界を修正することにより、走行エリアを修正する。 Further, for example, when the travel area setting unit 123 acquires an instruction output by the boundary instruction unit 124 to correct the setting of the boundary between the travel area and the non-travel area where the autonomous mobile robot 300 does not travel, , modify the travel area by modifying the boundary based on the instructions.
 境界指示部124は、走行エリア設定部123に走行エリアと自律走行型ロボット300が走行しない非走行エリアとの境界の設定についての指示を出力する。例えば、境界指示部124は、上記境界を修正する指示を走行エリア設定部123へ出力する。 The boundary instruction unit 124 outputs to the running area setting unit 123 an instruction for setting the boundary between the running area and the non-running area where the autonomous running robot 300 does not run. For example, the boundary instruction unit 124 outputs an instruction to correct the boundary to the travel area setting unit 123 .
 走行用地図作成部125は、走行エリア設定部123により設定された走行エリアを含む、走行用の地図を作成する。また、例えば、走行用地図作成部125は、走行エリア設定部123により修正された走行エリアを含む走行用の地図を作成する。なお、走行用地図作成部125は、さらに、自律走行型ロボット300の進入を禁止する進入禁止エリアを含む走行用の地図を作成してもよい。例えば、走行用地図作成部125は、作成した走行用の地図を、通信部110を介して情報端末200及び自律走行型ロボット300に出力する。 The driving map creation unit 125 creates a driving map including the driving area set by the driving area setting unit 123 . Further, for example, the driving map creation unit 125 creates a driving map including the driving area corrected by the driving area setting unit 123 . Note that the travel map creation unit 125 may further create a travel map that includes a no-entry area into which the autonomous robot 300 is prohibited from entering. For example, the travel map creation unit 125 outputs the created travel map to the information terminal 200 and the autonomous mobile robot 300 via the communication unit 110 .
 [記憶部]
 記憶部130は、フロアマップ作成部121により作成されたフロアマップ、位置センサ102により取得された位置関係、及び、走行用地図作成部125により作成された走行用の地図などが記憶される記憶装置である。記憶部130には、制御部120が上記の演算処理を行うために実行するコンピュータプログラムなども記憶される。記憶部130は、例えば、HDD(Hard Disk Drive)、又は、フラッシュメモリ等により実現される。
[Memory part]
The storage unit 130 stores the floor map created by the floor map creation unit 121, the positional relationship acquired by the position sensor 102, the driving map created by the driving map creation unit 125, and the like. is. The storage unit 130 also stores computer programs and the like executed by the control unit 120 to perform the arithmetic processing described above. The storage unit 130 is implemented by, for example, an HDD (Hard Disk Drive), flash memory, or the like.
 [受付部]
 受付部140は、ユーザの入力操作を受け付ける。受付部140は、例えば、タッチパネル、表示パネル、ハードウェアボタン、又は、マイクロフォンなどによって実現されてもよい。タッチパネルは、例えば、静電容量方式のタッチパネルであってもよく、抵抗膜方式のタッチパネルであってもよい。表示パネルは、画像の表示機能、及び、ユーザの手動入力を受け付ける機能を有し、液晶パネル又は有機EL(Electro Luminescence)パネルなどの表示パネルに表示されるテンキー画像などへの入力操作を受け付ける。マイクロフォンは、ユーザの音声入力を受け付ける。
[Reception Department]
The accepting unit 140 accepts a user's input operation. The reception unit 140 may be implemented by, for example, a touch panel, a display panel, hardware buttons, or a microphone. The touch panel may be, for example, a capacitive touch panel or a resistive touch panel. The display panel has a function of displaying images and a function of accepting manual input from the user, and accepts input operations to ten-key images displayed on a display panel such as a liquid crystal panel or an organic EL (Electro Luminescence) panel. A microphone accepts a user's voice input.
 なお、ここでは、受付部140は、走行用地図作成装置100の構成要素である例を示しているが、受付部140は、自律走行型ロボット300に組み込まれてもよいし、リモートコントローラ(不図示)に組み込まれてもよいし、情報端末200に組み込まれてもよい。 Here, an example in which the reception unit 140 is a component of the traveling map creation device 100 is shown, but the reception unit 140 may be incorporated in the autonomous traveling robot 300, or may be a remote controller (non-remote controller). ), or may be incorporated in the information terminal 200 .
 [1-2.情報端末]
 続いて、情報端末200について説明する。情報端末200は、例えば、ユーザが使用するスマートフォン又はタブレット端末などの携帯型の情報端末であるが、パーソナルコンピュータなどの据え置き型の情報端末であってもよい。また、情報端末200は、自律走行型ロボットシステム400の専用端末であってもよい。情報端末200は、通信部210と、制御部220と、提示部230と、受付部240と、記憶部250とを備える。以下、各構成について説明する。
[1-2. Information terminal]
Next, the information terminal 200 will be described. The information terminal 200 is, for example, a portable information terminal such as a smart phone or a tablet terminal used by a user, but may be a stationary information terminal such as a personal computer. Also, the information terminal 200 may be a dedicated terminal for the autonomous mobile robot system 400 . Information terminal 200 includes communication unit 210 , control unit 220 , presentation unit 230 , reception unit 240 , and storage unit 250 . Each configuration will be described below.
 [通信部]
 通信部210は、情報端末200がネットワーク10を介して走行用地図作成装置100及び自律走行型ロボット300と通信を行うための通信回路である。通信部210は、広域通信ネットワークを介して通信を行うための通信回路(言い換えると、通信モジュール)と、局所通信ネットワークを介して通信を行うための通信回路(言い換えると、通信モジュール)とを備えてもよい。通信部210は、例えば、無線通信を行う無線通信回路である。通信部210が行う通信の通信規格については特に限定されない。
[Communication]
The communication unit 210 is a communication circuit for the information terminal 200 to communicate with the travel mapping device 100 and the autonomous travel robot 300 via the network 10 . The communication unit 210 includes a communication circuit (in other words, a communication module) for communicating via the wide area communication network, and a communication circuit (in other words, a communication module) for communicating via the local communication network. may The communication unit 210 is, for example, a wireless communication circuit that performs wireless communication. A communication standard for communication performed by the communication unit 210 is not particularly limited.
 [制御部]
 制御部220は、受付部240への画像の表示制御、及び、ユーザにより入力された指示の識別処理(例えば、音声による入力であれば、音声の認識処理)などを行う。制御部220は、例えば、マイクロコンピュータによって実現されてもよく、プロセッサによって実現されてもよい。
[Control part]
The control unit 220 performs image display control on the reception unit 240, identification processing of an instruction input by the user (for example, voice recognition processing in the case of voice input), and the like. The control unit 220 may be realized by a microcomputer or by a processor, for example.
 [提示部]
 提示部230は、走行用地図作成装置100により出力された提示情報、及び、走行用の地図をユーザに提示する。提示部230は、例えば、表示パネルで実現されてもよく、表示パネル及びスピーカで実現されてもよい。表示パネルは、例えば、液晶パネル又は有機ELパネルなどである。スピーカは、音又は音声を出力する。
[Presentation part]
The presentation unit 230 presents to the user the presentation information output by the travel map creation device 100 and the travel map. The presentation unit 230 may be realized by, for example, a display panel, or may be realized by a display panel and a speaker. The display panel is, for example, a liquid crystal panel or an organic EL panel. A speaker outputs sound or voice.
 [受付部]
 受付部240は、ユーザの指示を受け付ける。より具体的には、受付部240は、ユーザの指示を走行用地図作成装置100に送信するために行う入力操作を受け付ける。受付部240は、例えば、タッチパネル、表示パネル、ハードウェアボタン、又は、マイクロフォンなどによって実現されてもよい。タッチパネルは、例えば、静電容量方式のタッチパネルであってもよく、抵抗膜方式のタッチパネルであってもよい。表示パネルは、画像の表示機能、及び、ユーザの手動入力を受け付ける機能を有し、液晶パネル又は有機ELパネルなどの表示パネルに表示されるテンキー画像などへの入力操作を受け付ける。マイクロフォンは、ユーザの音声入力を受け付ける。
[Reception Department]
Accepting unit 240 accepts a user's instruction. More specifically, the accepting unit 240 accepts an input operation for transmitting a user's instruction to the travel map creating device 100 . The reception unit 240 may be implemented by, for example, a touch panel, display panel, hardware buttons, or a microphone. The touch panel may be, for example, a capacitive touch panel or a resistive touch panel. The display panel has a function of displaying images and a function of accepting manual input from the user, and accepts input operations to ten-key images displayed on the display panel such as a liquid crystal panel or an organic EL panel. A microphone accepts a user's voice input.
 [記憶部]
 記憶部250は、制御部220が実行するための専用のアプリケーションプログラムなどが記憶される記憶装置である。記憶部250は、例えば、半導体メモリなどによって実現される。
[Memory part]
Storage unit 250 is a storage device that stores a dedicated application program and the like to be executed by control unit 220 . The storage unit 250 is implemented by, for example, a semiconductor memory.
 [1-3.自律走行型ロボット]
 続いて、自律走行型ロボット300について説明する。自律走行型ロボット300は、自律的に走行するロボットである。例えば、自律走行型ロボット300は、走行用地図作成装置100により作成された走行用の地図を取得し、走行用の地図に対応する所定のフロアを自律的に走行する。自律走行型ロボット300は、自律的に走行するロボットであれば、特に限定されないが、例えば、荷物などを運搬する運搬ロボット、パトロールをする監視ロボット、フロアの消毒を行う消毒ロボット又は掃除ロボットであってもよい。以下では、自律走行型ロボット300が掃除ロボットである例を説明する。
[1-3. Autonomous running robot]
Next, the autonomous mobile robot 300 will be described. The autonomous running robot 300 is a robot that runs autonomously. For example, the autonomous mobile robot 300 acquires a map for travel created by the map creating apparatus 100 for travel, and autonomously travels on a predetermined floor corresponding to the map for travel. The autonomous running robot 300 is not particularly limited as long as it runs autonomously, but may be, for example, a transport robot that transports luggage, a monitoring robot that patrols, a disinfection robot that disinfects the floor, or a cleaning robot. may An example in which the autonomous mobile robot 300 is a cleaning robot will be described below.
 図3は、実施の形態に係る自律走行型ロボット300を側方向から見た外観を示す斜視図である。図4は、実施の形態に係る自律走行型ロボット300を正面方向から見た外観を示す斜視図である。図5は、実施の形態に係る自律走行型ロボット300を底面方向から見た外観を示す底面図である。 FIG. 3 is a perspective view showing the appearance of the autonomous mobile robot 300 according to the embodiment as viewed from the side. FIG. 4 is a perspective view showing the appearance of the autonomous mobile robot 300 according to the embodiment as viewed from the front. FIG. 5 is a bottom view showing the appearance of the autonomous mobile robot 300 according to the embodiment as seen from the bottom direction.
 図1及び図3~図5に示されるように、自律走行型ロボット300は、例えば、各種の構成要素が搭載される本体301と、通信部310(図1参照)と、位置センサ320と、障害物センサ330と、制御部340(図1参照)と、記憶部350(図1参照)と、走行部360と、掃除部370とを備える。走行部360は、例えば、本体301を移動させる車輪361を有する。掃除部370は、例えば、所定のフロアに存在するごみを掃除するサイドブラシ371及びメインブラシ372を有する。制御部340は、自律走行型ロボット300の動作に関する各種情報処理を行う。制御部340は、走行部360を制御する走行制御部345と、掃除部370を制御する掃除制御部346とを有する。本体301は、走行部360、掃除部370、及び、制御部340などを収容する筐体である。 As shown in FIGS. 1 and 3 to 5, the autonomous mobile robot 300 includes, for example, a main body 301 on which various components are mounted, a communication unit 310 (see FIG. 1), a position sensor 320, It includes an obstacle sensor 330 , a control section 340 (see FIG. 1), a storage section 350 (see FIG. 1), a running section 360 and a cleaning section 370 . The traveling part 360 has, for example, wheels 361 for moving the main body 301 . The cleaning unit 370 has, for example, a side brush 371 and a main brush 372 for cleaning dust existing on a predetermined floor. The control unit 340 performs various information processing related to the operation of the autonomous mobile robot 300 . Control unit 340 has a travel control unit 345 that controls travel unit 360 and a cleaning control unit 346 that controls cleaning unit 370 . The main body 301 is a housing that houses the traveling section 360, the cleaning section 370, the control section 340, and the like.
 [走行部]
 走行部360は、走行制御部345からの指示に基づき自律走行型ロボット300を走行させる。走行部360は、フロア上を走行する車輪361、車輪361にトルクを与える走行用モータ(不図示)及び走行用モータを収容するハウジング(不図示)などを有する。また、自律走行型ロボット300は、キャスター(不図示)を補助輪として備えた対向二輪型であってもよい。この場合、走行部360は、一対の走行ユニットのそれぞれの車輪361の回転を独立して制御することで、前進、後退、左回転及び右回転など自律走行型ロボット300を自在に走行させることができる。
[Running part]
The traveling unit 360 causes the autonomous traveling robot 300 to travel based on instructions from the traveling control unit 345 . The traveling unit 360 has wheels 361 that travel on the floor, a traveling motor (not shown) that applies torque to the wheels 361, a housing (not shown) that accommodates the traveling motor, and the like. Also, the autonomous mobile robot 300 may be of an opposed two-wheel type equipped with casters (not shown) as auxiliary wheels. In this case, the traveling unit 360 independently controls the rotation of the wheels 361 of the pair of traveling units, so that the autonomous mobile robot 300 can freely travel forward, backward, left-handed, and right-handed. can.
 [掃除部]
 掃除部370は、掃除制御部346からの指示に基づき、フロア上の塵埃を吸引口373(図5参照)から吸引し、本体301の内部に吸引した塵埃を本体301内に収容する。掃除部370は、サイドブラシ371及びメインブラシ372を回転させるブラシ回転モータ(不図示)、吸引口373からごみを吸引する吸引モータ(不図示)、これらのモータに電力を伝達する動力伝達部(不図示)、及び、吸引したごみを収容する収容部(不図示)などを備えている。
[Cleaning Department]
Cleaning unit 370 sucks dust on the floor from suction port 373 (see FIG. 5) based on instructions from cleaning control unit 346 and stores the sucked dust inside main body 301 . The cleaning unit 370 includes a brush rotation motor (not shown) that rotates the side brush 371 and the main brush 372, a suction motor (not shown) that sucks dust from the suction port 373, and a power transmission unit (not shown) that transmits power to these motors. (not shown), and a container (not shown) for containing the sucked dust.
 [位置センサ]
 位置センサ320は、自律走行型ロボット300の本体301の周囲の物体を検知し、本体301に対する当該物体の位置関係を取得するセンサである。位置センサ320は、例えば、光を放射し障害物により反射して返ってきた光に基づいて位置関係(例えば、自己から物体までの距離及び方向)を検出するLIDAR、又は、レーザレンジファインダであってもよい。
[Position sensor]
The position sensor 320 is a sensor that detects an object around the body 301 of the autonomous mobile robot 300 and acquires the positional relationship of the object with respect to the body 301 . The position sensor 320 is, for example, a LIDAR or a laser range finder that emits light and detects the positional relationship (for example, the distance and direction from the self to the object) based on the light that is reflected back by an obstacle. may
 例えば、位置センサ320は、本体301の上面の中央に配置されており、自律走行型ロボット300と、自律走行型ロボット300の周囲に存在する壁などを含む物体との距離及び方向を含む位置関係を取得する。位置センサ320は、例えば、光を放射し障害物により反射して返ってきた光に基づいて位置関係を検出するLIDAR、又は、レーザレンジファインダであってもよい。位置センサ320は、光の走査軸を1軸又は2軸有することにより、自律走行型ロボット300の周囲の所定の領域の二次元計測、又は、三次元計測を行ってもよい。 For example, the position sensor 320 is arranged in the center of the upper surface of the main body 301, and the positional relationship including the distance and direction between the autonomous mobile robot 300 and objects including walls existing around the autonomous mobile robot 300 is detected. to get The position sensor 320 may be, for example, a LIDAR or a laser range finder that emits light and detects the positional relationship based on the light that is reflected back by an obstacle. The position sensor 320 may perform two-dimensional measurement or three-dimensional measurement of a predetermined area around the autonomous mobile robot 300 by having one or two optical scanning axes.
 [障害物センサ]
 障害物センサ330は、本体301の前方に(具体的には、進行方向側に)存在する周囲の壁、及び、家具等の走行の障害となる障害物を検出するセンサである。本実施の形態では、障害物センサ330には、例えば、超音波センサが用いられる。障害物センサ330は、本体301の前側面の中央に配置される発信部331、及び、発信部331の両側にそれぞれ配置される受信部332を有し、発信部331から発信されて障害物によって反射して返ってきた超音波を2つの受信部332がそれぞれ受信することで、障害物までの距離、及び、障害物の位置等を検出することができる。なお、障害物センサ330として赤外線センサ等を用いてもよい。
[Obstacle sensor]
The obstacle sensor 330 is a sensor that detects obstacles such as surrounding walls and furniture that are present in front of the main body 301 (specifically, on the traveling direction side) and obstruct travel. In this embodiment, for example, an ultrasonic sensor is used as the obstacle sensor 330 . The obstacle sensor 330 has a transmitter 331 arranged in the center of the front side surface of the main body 301, and receivers 332 arranged on both sides of the transmitter 331. The two receiving units 332 receive the reflected ultrasonic waves, respectively, so that the distance to the obstacle, the position of the obstacle, and the like can be detected. An infrared sensor or the like may be used as the obstacle sensor 330 .
 なお、自律走行型ロボット300は、上記のセンサ以外のセンサを備えていてもよい。例えば、本体301の底面の複数箇所に配置され、フロアとしての床面が存在するか否かを検出する床面センサを備えてもよい。また、走行部360に備えられ、走行用モータによって回転する一対の車輪361のそれぞれの回転角を検出するエンコーダを備えてもよい。また、自律走行型ロボット300が走行する際の加速度を検出する加速度センサ、自律走行型ロボット300が旋回する際の角速度を検出する角速度センサを備えてもよい。また、床面に堆積している塵埃の量を測定する塵埃量センサを備えてもよい。バンパ(不図示)の変位を検出して障害物が衝突したことを検出する接触センサを備えてもよい。 Note that the autonomous mobile robot 300 may be equipped with sensors other than the sensors described above. For example, floor surface sensors may be arranged at a plurality of locations on the bottom surface of the main body 301 and detect whether or not there is a floor surface as a floor. Further, an encoder may be provided in the traveling section 360 to detect the rotation angle of each of the pair of wheels 361 rotated by the traveling motor. Further, an acceleration sensor that detects acceleration when the autonomous mobile robot 300 runs and an angular velocity sensor that detects angular velocity when the autonomous mobile robot 300 turns may be provided. A dust amount sensor that measures the amount of dust deposited on the floor surface may also be provided. A contact sensor may be provided to detect collision with an obstacle by detecting displacement of a bumper (not shown).
 [通信部]
 通信部310は、自律走行型ロボット300がネットワーク10を介して走行用地図作成装置100及び情報端末200と通信を行うための通信回路である。通信部310は、広域通信ネットワークを介して通信を行うための通信回路(言い換えると、通信モジュール)と、局所通信ネットワークを介して通信を行うための通信回路(言い換えると、通信モジュール)とを備えてもよい。通信部310は、例えば、無線通信を行う無線通信回路である。通信部310が行う通信の通信規格については特に限定されない。
[Communication]
The communication unit 310 is a communication circuit for the autonomous mobile robot 300 to communicate with the travel mapping device 100 and the information terminal 200 via the network 10 . The communication unit 310 includes a communication circuit (in other words, a communication module) for communicating via the wide area communication network, and a communication circuit (in other words, a communication module) for communicating via the local communication network. may The communication unit 310 is, for example, a wireless communication circuit that performs wireless communication. A communication standard for communication performed by the communication unit 310 is not particularly limited.
 [制御部]
 制御部340は、位置センサ320及び障害物センサ330により自律走行型ロボット300の周囲の環境をセンシングして得られたセンサ情報と走行用の地図とに基づいて各種演算を行う。制御部340は、具体的には、プロセッサ、マイクロコンピュータ、又は、専用回路によって実現される。また、制御部340は、プロセッサ、マイクロコンピュータ、又は、専用回路のうちの2つ以上の組み合わせによって実現されてもよい。例えば、制御部340は、走行用地図取得部341と、自己位置推定部342と、障害物情報取得部343と、走行計画作成部344と、走行制御部345と、掃除制御部346とを含む。
[Control part]
The control unit 340 performs various calculations based on the sensor information obtained by sensing the environment around the autonomous mobile robot 300 with the position sensor 320 and the obstacle sensor 330 and the map for traveling. The controller 340 is specifically implemented by a processor, microcomputer, or dedicated circuit. Also, the controller 340 may be implemented by a combination of two or more of a processor, microcomputer, or dedicated circuit. For example, the control unit 340 includes a travel map acquisition unit 341, a self-position estimation unit 342, an obstacle information acquisition unit 343, a travel plan creation unit 344, a travel control unit 345, and a cleaning control unit 346. .
 走行用地図取得部341は、走行用地図作成装置100により作成された走行用の地図を取得する。例えば、走行用地図取得部341は、記憶部350に格納されている走行用の地図を読み出すことにより取得してもよいし、走行用地図作成装置100により出力された走行用の地図を通信により取得してもよい。 The travel map acquisition unit 341 acquires the travel map created by the travel map creation device 100 . For example, the driving map acquisition unit 341 may acquire the driving map by reading the driving map stored in the storage unit 350, or may obtain the driving map output by the driving map generating device 100 by communication. may be obtained.
 自己位置推定部342は、例えば、走行用地図取得部341により取得された走行用の地図、及び、位置センサ320により計測された自律走行型ロボット300の本体301に対する周囲の物体の位置関係に基づいて、走行用の地図上での自律走行型ロボット300の本体301の位置である自己位置を算出する。 The self-position estimation unit 342, for example, based on the travel map acquired by the travel map acquisition unit 341 and the positional relationship of surrounding objects with respect to the main body 301 of the autonomous mobile robot 300 measured by the position sensor 320. Then, the self position, which is the position of the main body 301 of the autonomous mobile robot 300 on the map for traveling, is calculated.
 走行計画作成部344は、走行用の地図及び自己位置に基づいて、走行計画を作成する。例えば、自律走行型ロボット300が掃除ロボットである場合、走行計画作成部344は、さらに、掃除計画を作成してもよい。掃除計画には、所定のフロア内の複数の掃除エリアを掃除する掃除順序、各掃除エリアにおける走行経路及び掃除態様などが含まれる。掃除態様は、例えば、自律走行型ロボット300の走行速度、床面上のごみを吸引する吸引強度、及び、ブラシの回転速度などの組み合わせである。 The travel plan creation unit 344 creates a travel plan based on the map for travel and the self-position. For example, if the autonomous mobile robot 300 is a cleaning robot, the travel plan creation unit 344 may also create a cleaning plan. The cleaning plan includes a cleaning order for cleaning a plurality of cleaning areas within a predetermined floor, a travel route in each cleaning area, a cleaning mode, and the like. The cleaning mode is, for example, a combination of the travel speed of the autonomous mobile robot 300, the suction strength for sucking dust on the floor, and the rotational speed of the brush.
 なお、走行計画作成部344は、自律走行型ロボット300が走行計画に従って走行しているときに、障害物センサ330により障害物が検出されると、障害物情報取得部343により算出された障害物の位置に基づいて走行計画を変更してもよい。このとき、走行計画作成部344は、掃除計画も変更してもよい。 When the obstacle sensor 330 detects an obstacle while the autonomous mobile robot 300 is traveling according to the travel plan, the travel plan creation unit 344 detects the obstacle calculated by the obstacle information acquisition unit 343. The travel plan may be changed based on the location of the . At this time, the travel plan creation unit 344 may also change the cleaning plan.
 障害物情報取得部343は、障害物センサ330により検知された障害物に関する情報(例えば、障害物までの距離、及び、位置等)を取得し、取得された情報と、自己位置推定部342により算出された自己位置とに基づいて、フロアマップ上での障害物の位置を算出する。 Obstacle information acquisition unit 343 acquires information about obstacles detected by obstacle sensor 330 (for example, the distance to the obstacle, the position, etc.), and the acquired information and self-position estimation unit 342 Based on the calculated self position, the position of the obstacle on the floor map is calculated.
 走行制御部345は、自律走行型ロボット300が走行計画に従って走行するように、走行部360を制御する。より具体的には、走行制御部345は、走行計画に基づいて、走行部360の動作を制御するための情報処理を行う。例えば、走行制御部345は、走行計画に加え、走行用の地図及び自己位置などの情報に基づいて、走行部360の制御条件を導出し、制御条件に基づいて、走行部360の動作を制御するための制御信号を生成する。走行制御部345は、生成した制御信号を走行部360に出力する。なお、走行部360の制御条件の導出などの詳細については、従来の自律走行型ロボットと同様であるため、説明を省略する。 The travel control unit 345 controls the travel unit 360 so that the autonomous mobile robot 300 travels according to the travel plan. More specifically, the travel control unit 345 performs information processing for controlling the operation of the travel unit 360 based on the travel plan. For example, the travel control unit 345 derives control conditions for the travel unit 360 based on information such as a travel map and self-position in addition to the travel plan, and controls the operation of the travel unit 360 based on the control conditions. Generate a control signal to Travel control unit 345 outputs the generated control signal to travel unit 360 . Details such as the derivation of the control conditions for the traveling unit 360 are the same as those of the conventional autonomous traveling robot, and thus the explanation is omitted.
 掃除制御部346は、自律走行型ロボット300が掃除計画に従って掃除を行うように、掃除部370を制御する。より具体的には、掃除制御部346は、掃除計画に基づいて、掃除部370の動作を制御するための情報処理を行う。例えば、掃除制御部346は、掃除計画に加え、走行用の地図及び自己位置などの情報に基づいて、掃除部370の制御条件を導出し、制御条件に基づいて、掃除部370の動作を制御するための制御信号を生成する。掃除制御部346は、生成した制御信号を掃除部370に出力する。なお、掃除部370の制御条件の導出などの詳細については、従来の自律走行型掃除ロボットと同様であるため、説明を省略する。 The cleaning control unit 346 controls the cleaning unit 370 so that the autonomous mobile robot 300 cleans according to the cleaning plan. More specifically, cleaning control unit 346 performs information processing for controlling the operation of cleaning unit 370 based on the cleaning plan. For example, the cleaning control unit 346 derives control conditions for the cleaning unit 370 based on information such as a map for travel and self-location in addition to the cleaning plan, and controls the operation of the cleaning unit 370 based on the control conditions. Generate a control signal to Cleaning control unit 346 outputs the generated control signal to cleaning unit 370 . Details such as the derivation of the control conditions for the cleaning unit 370 are the same as those of the conventional autonomously traveling cleaning robot, so description thereof will be omitted.
 [記憶部]
 記憶部350は、走行用の地図、位置センサ320及び障害物センサ330によりセンシングされたセンサ情報、及び、制御部340が実行するコンピュータプログラムなどが記憶される記憶装置である。記憶部350は、例えば、半導体メモリなどによって実現される。
[Memory part]
The storage unit 350 is a storage device that stores a map for driving, sensor information sensed by the position sensor 320 and the obstacle sensor 330, computer programs executed by the control unit 340, and the like. The storage unit 350 is implemented by, for example, a semiconductor memory.
 [2.動作]
 続いて、本実施の形態における自律走行型ロボットシステム400の動作について図面を参照しながら説明する。
[2. motion]
Next, the operation of the autonomous mobile robot system 400 according to this embodiment will be described with reference to the drawings.
 [第1の例]
 まず、本実施の形態における自律走行型ロボットシステム400の動作の第1の例について説明する。図6は、本実施の形態における自律走行型ロボットシステム400の動作の第1の例を示すフローチャートである。以下、図1及び図6を参照しながら説明する。
[First example]
First, a first example of the operation of autonomous mobile robot system 400 according to the present embodiment will be described. FIG. 6 is a flow chart showing a first example of the operation of the autonomous mobile robot system 400 according to this embodiment. Description will be made below with reference to FIGS. 1 and 6. FIG.
 走行用地図作成装置100は、ユーザの操作により走行を開始する。走行が開始すると、自律走行型ロボットシステム400は、例えば、以下の動作を行う。なお、走行用地図作成装置100は、ユーザによりハンドルを操作されることにより走行してもよく、ジョイスティック又はリモコンなどの操作により走行してもよい。 The driving map creation device 100 starts driving according to the user's operation. When running starts, the autonomous running robot system 400 performs, for example, the following operations. It should be noted that the traveling map creating apparatus 100 may be operated by the user operating a steering wheel, or may be operated by operating a joystick or a remote controller.
 情報端末200の受付部240が走行用地図作成開始の指示を受け付けると、情報端末200の制御部220は、通信部210を介して当該指示を走行用地図作成装置100へ出力する。 When the reception unit 240 of the information terminal 200 receives an instruction to start creating a driving map, the control unit 220 of the information terminal 200 outputs the instruction to the driving map generation device 100 via the communication unit 210 .
 次に、走行用地図作成装置100の制御部120は、情報端末200から出力された走行用地図作成開始の指示を取得すると(ステップS01)、位置センサ102を含む走行用地図作成装置100が備える複数のセンサのそれぞれにセンシングデータの取得を開始させる(ステップS02)。より詳細には、走行用地図作成装置100の制御部120は、位置センサ102を含む複数のセンサのそれぞれに、センシングデータの取得開始指令を出力する。 Next, when control unit 120 of driving map creation device 100 acquires a driving map creation start instruction output from information terminal 200 (step S01), driving map creation device 100 including position sensor 102 Acquisition of sensing data is started by each of the plurality of sensors (step S02). More specifically, control unit 120 of driving map creation device 100 outputs a sensing data acquisition start command to each of a plurality of sensors including position sensor 102 .
 次に、位置センサ102は、センシングデータの取得開始指令を受信すると、自己の周囲の物体を検知し、自己に対する周囲の物体の位置関係を取得し(ステップS03)、取得された位置関係を制御部120へ出力する(不図示)。制御部120は、位置センサ102から出力された自己に対する周囲の物体の位置関係を取得する(不図示)。 Next, when the position sensor 102 receives the sensing data acquisition start command, the position sensor 102 detects objects around itself, acquires the positional relationship of the surrounding objects with respect to itself (step S03), and controls the acquired positional relationship. Output to the unit 120 (not shown). The control unit 120 acquires the positional relationship of surrounding objects with respect to itself output from the position sensor 102 (not shown).
 次に、フロアマップ作成部121は、ステップS03で位置センサ102により取得された位置関係に基づいて所定のフロアを示すフロアマップを作成する(ステップS04)。 Next, the floor map creating unit 121 creates a floor map indicating a predetermined floor based on the positional relationship acquired by the position sensor 102 in step S03 (step S04).
 次に、自己位置推定部122は、ステップS03で位置センサ102により取得された位置関係と、ステップS04でフロアマップ作成部121により作成されたフロアマップとに基づいて、フロアマップ上での位置センサ102(言い換えると、位置センサ102を搭載した走行用地図作成装置100)の位置である自己位置を推定する(ステップS05)。より具体的には、自己位置推定部122は、位置センサ102から取得した物体と位置センサ102との相対的な位置関係と、フロアマップとを用いて、フロアマップ上での走行用地図作成装置100の位置である自己位置を推定する。図示していないが、自己位置推定部122は、算出した自己位置にタイムスタンプを付して記憶部130に格納する。 Next, self-position estimating section 122 detects the position sensor on the floor map based on the positional relationship acquired by position sensor 102 in step S03 and the floor map created by floor map creating section 121 in step S04. 102 (in other words, the travel mapping device 100 equipped with the position sensor 102) is estimated (step S05). More specifically, the self-position estimating unit 122 uses the relative positional relationship between the object and the position sensor 102 acquired from the position sensor 102 and the floor map to create a map for driving on the floor map. Estimate self-position, which is 100 positions. Although not shown, the self-position estimation unit 122 adds a time stamp to the calculated self-position and stores it in the storage unit 130 .
 なお、走行用地図作成装置100は走行しながらステップS03~ステップS05を繰り返してもよい。例えば、フロアマップ作成部121及び自己位置推定部122は、SLAM技術により、自己位置を推定しながらフロアマップを作成し、自己位置及びフロアマップを逐次更新してもよい。 It should be noted that the traveling map creation device 100 may repeat steps S03 to S05 while traveling. For example, the floor map creating unit 121 and the self-location estimating unit 122 may create a floor map while estimating the self-location using SLAM technology, and update the self-location and the floor map sequentially.
 次に、走行エリア設定部123は、フロアマップにおける自律走行型ロボット300が走行する走行エリアを設定する(ステップS06)。より具体的には、走行エリア設定部123は、フロアマップ及び自己位置に基づいて、自己位置の移動軌跡で規定される第1矩形領域を自律走行型ロボット300の走行エリアに設定する。なお、具体的な走行エリアの設定処理については、後述する。 Next, the travel area setting unit 123 sets the travel area in which the autonomous mobile robot 300 travels on the floor map (step S06). More specifically, the travel area setting unit 123 sets the travel area of the autonomous mobile robot 300 to a first rectangular area defined by the movement trajectory of the self-location based on the floor map and the self-location. A specific travel area setting process will be described later.
 次に、走行用地図作成部125は、ステップS06で走行エリア設定部123により設定された走行エリアを含む走行用の地図を作成する(ステップS07)。 Next, the driving map creation unit 125 creates a driving map including the driving area set by the driving area setting unit 123 in step S06 (step S07).
 [走行エリアの設定処理の具体例]
 以下、走行エリアの設定処理について図7を参照しながらより具体的に説明する。図7は、走行エリアの設定処理の一例を模式的に示す図である。図7の(a)は、位置センサ102の自己位置の移動軌跡の例を示す図である。図7の(b)は、自己位置の移動軌跡で規定される複数の矩形領域の例を示す図である。
[Specific example of travel area setting process]
Hereinafter, the travel area setting process will be described more specifically with reference to FIG. FIG. 7 is a diagram schematically showing an example of processing for setting a travel area. FIG. 7A is a diagram showing an example of a locus of movement of the self-position of the position sensor 102. FIG. (b) of FIG. 7 is a diagram showing an example of a plurality of rectangular areas defined by the locus of movement of the self-position.
 走行エリア設定部123は、フロアマップ及び自己位置に基づいて、自己位置の移動軌跡(図7の(a)の破線)で規定される複数の矩形領域を走行エリアに設定する。なお、図7の(a)に示されるように、自己位置の移動軌跡は1つの矩形形状に閉じていなくてもよい。例えば、自己位置の移動軌跡が複数の矩形形状を組み合わせた外形になる場合、走行エリア設定部123は、当該移動軌跡に基づいて複数の矩形領域を含む走行エリアを設定する。より具体的には、例えば、走行エリア設定部123は、自己位置の移動軌跡において、自己位置の移動方向が右回り及び左回りの一方に(第1の方向、図7の(a)の例では、左回りに)所定の角度(例えば、90°)で回転する3つの第1の点を第1矩形領域R1の頂点に決定することにより、第1矩形領域R1を設定する。点P1は、自己位置の移動軌跡の開始点である。3つの第1の点は、開始点である点P1を第1矩形領域R1の右上の頂点とすると、図7の(b)に示される第1矩形領域R1の左上の頂点、左下の頂点、及び、右下の頂点である。 Based on the floor map and the self-position, the travel area setting unit 123 sets a plurality of rectangular areas defined by the movement trajectory of the self-position (broken lines in (a) of FIG. 7) as the travel area. In addition, as shown in (a) of FIG. 7, the locus of movement of the self-position does not have to be closed in one rectangular shape. For example, when the locus of movement of the self-position has an outer shape obtained by combining a plurality of rectangular shapes, the travel area setting unit 123 sets a travel area including a plurality of rectangular areas based on the locus of movement. More specifically, for example, the travel area setting unit 123 sets the movement direction of the self-position to one of clockwise and counterclockwise (first direction, example of (a) in FIG. 7) in the movement trajectory of the self-position. Then, the first rectangular region R1 is set by determining the three first points rotated by a predetermined angle (eg, 90°) as the vertices of the first rectangular region R1 (counterclockwise). A point P1 is the starting point of the locus of movement of the self-position. Assuming that the starting point P1 is the upper right vertex of the first rectangular region R1, the three first points are the upper left vertex, the lower left vertex, and the lower right vertex.
 次に、走行エリア設定部123は、自己位置の移動軌跡において、右回り及び左回りの他方に(第2の方向、図7の(a)の例では、右回りに)所定の角度(例えば、90°)で回転する2つの第2の点が存在する場合、2つの第2の点を第2矩形領域R2の頂点に決定することにより、第1矩形領域R1と第2矩形領域R2とを含む走行エリアを設定する。点P2は、2つの第2の点のうち、自己位置の移動軌跡において、1つめの第2の点を示している。さらに、走行エリア設定部123は、自己位置の移動軌跡において、2つの第2の点P2、P2’の間に右回り及び左回りの一方で(第1の方向、図7の(a)の例では、左回りに)所定の角度(例えば、90°)で回転する2つの点が存在する場合、2つの第2の点P2、P2’に加え、当該2つの点を第2矩形領域R2の頂点に決定することにより、第2矩形領域R2を設定してもよい。 Next, the travel area setting unit 123 sets a predetermined angle (for example, , 90°), the first rectangular region R1 and the second rectangular region R2 are formed by determining the two second points to be the vertices of the second rectangular region R2. Set the driving area including A point P2 indicates the first second point in the movement trajectory of the self-position among the two second points. Furthermore, the travel area setting unit 123 sets the movement trajectory of the self-position between the two second points P2 and P2′ in one of the clockwise and counterclockwise directions (the first direction, in FIG. 7A). In the example, if there are two points rotated by a predetermined angle (eg, 90°) (counterclockwise), then in addition to the two second points P2, P2′, the two points are added to the second rectangular region R2 The second rectangular region R2 may be set by determining the vertices of .
 なお、走行エリア設定部123は、自己位置の移動軌跡において、第2の点P2で右回り及び左回りの他方(第2の方向)に所定の角度で回転した後、例えば、本体101が第1矩形領域R1より外側に(つまり、第2矩形領域R2側に)移動した位置を第2矩形領域R2の頂点としてもよい。また、走行エリア設定部123は、第2の点P2’で右回り及び左回りの他方(第2の方向)に所定の角度で回転したとき、例えば、第2の点P2’に本体101の外端が被る手前の位置を第2矩形領域R2の頂点としてもよい。 Note that the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the second point P2 on the locus of movement of the self-position, and then, for example, the main body 101 moves to the second direction. A position moved outside one rectangular region R1 (that is, toward the second rectangular region R2) may be set as the vertex of the second rectangular region R2. Further, when the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the second point P2′, the main body 101 moves to the second point P2′, for example. The front position covered by the outer edge may be set as the vertex of the second rectangular region R2.
 次に、走行エリア設定部123は、自己位置の移動軌跡において、2つの第2の点P2、P2’に続き、右回り及び左回りの他方に(第2の方向、図7の(a)の例では、右回りに)所定の角度(例えば、90°)で回転する2つの第3の点が存在する場合、2つの第3の点を第3矩形領域R3の頂点に決定することにより、第1矩形領域R1と第2矩形領域R2と第3矩形領域R3とを含む走行エリアA1を設定してもよい。点P3は、2つの第3の点のうち、自己位置の移動軌跡において、1つめの第3の点を示している。さらに、走行エリア設定部123は、自己位置の移動軌跡において、2つの第3の点P3、P3’の間に右回り及び左回りの一方に(第1の方向、図7の(a)の例では、左回りに)所定の角度(例えば、90°)で回転する2つの点が存在する場合、2つの第3の点P3、P3’に加え、当該2つの点を第3矩形領域R3の頂点に決定することにより、第3矩形領域R3を設定してもよい。 Next, the travel area setting unit 123 follows the two second points P2 and P2' in the movement trajectory of the self-position, in the other of the clockwise and counterclockwise directions (second direction, (a) in FIG. 7). In the example of , if there are two third points rotated by a predetermined angle (e.g., 90°) clockwise, then by determining the two third points to be the vertices of the third rectangular region R3 , a travel area A1 including a first rectangular region R1, a second rectangular region R2, and a third rectangular region R3 may be set. A point P3 indicates the first third point in the movement trajectory of the self-position among the two third points. Furthermore, the travel area setting unit 123 moves between the two third points P3 and P3′ in the movement trajectory of the self-position in one of the clockwise and counterclockwise directions (the first direction, shown in FIG. 7A). In the example, if there are two points rotated by a predetermined angle (e.g., 90°) counterclockwise, then in addition to the two third points P3, P3', the two points are added to the third rectangular region R3 , the third rectangular region R3 may be set by determining the vertices of .
 なお、走行エリア設定部123は、自己位置の移動軌跡において、第3の点P3で右回り及び左回りの他方(第2の方向)に所定の角度で回転した後、例えば、本体101が第1矩形領域R1より外側に(つまり、第3矩形領域R3側に)移動した位置を第3矩形領域R3の頂点としてもよい。また、走行エリア設定部123は、第3の点P3’で右回り及び左回りの他方(第2の方向)に所定の角度で回転したとき、例えば、第3の点P3’に本体101の外端が被る手前の位置を第3矩形領域R3の頂点としてもよい。 Note that the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the third point P3 on the locus of movement of the self-position, and then, for example, the main body 101 moves to the third direction. A position moved to the outside of one rectangular region R1 (that is, to the side of the third rectangular region R3) may be set as the vertex of the third rectangular region R3. Further, when the travel area setting unit 123 rotates at a predetermined angle in the other of the clockwise and counterclockwise directions (second direction) at the third point P3′, for example, the main body 101 moves to the third point P3′. The front position covered by the outer end may be set as the vertex of the third rectangular region R3.
 以上のように、走行エリア設定部123が走行エリアA1を設定することにより、自律走行型ロボット300が走行する走行エリアA1と自律走行型ロボット300が走行しない非走行エリアN1、N2、N3との境界L0、L1、L2がそれぞれ設定される。 As described above, by setting the travel area A1 by the travel area setting unit 123, the travel area A1 in which the autonomous travel robot 300 travels and the non-travel areas N1, N2, and N3 in which the autonomous travel robot 300 does not travel. Boundaries L0, L1 and L2 are set respectively.
 [第1の例の変形例1]
 動作の第1の例では、図7の(a)及び図7の(b)に示されるように、走行用地図作成装置100が所定のエリア内を走行した移動軌跡に基づいて走行エリアA1に設定する例を説明した。動作の第1の例の変形例1(以下、変形例1という)では、走行エリアを設定するときに、走行用地図作成装置100が走行エリアの境界を設定についての指示を取得した場合の動作例について説明する。
[Modification 1 of the first example]
In the first example of the operation, as shown in FIGS. 7A and 7B, the travel map creation device 100 moves to the travel area A1 based on the movement trajectory traveled in the predetermined area. An example of setting was explained. In modification 1 of the first example of the operation (hereinafter referred to as modification 1), when setting the driving area, the driving map creation device 100 acquires an instruction to set the boundary of the driving area. An example will be described.
 図8は、情報端末200の受付画面の一例を示す図である。図9は、走行用地図作成装置100及び自律走行型ロボット300の動作の一例を模式的に示す図である。図9の(a)は、走行用地図作成装置100の走行例を示す図であり、図9の(b)は、自律走行型ロボット300の走行例を示す図である。 FIG. 8 is a diagram showing an example of the reception screen of the information terminal 200. FIG. FIG. 9 is a diagram schematically showing an example of the operation of the traveling map creation device 100 and the autonomous traveling robot 300. As shown in FIG. FIG. 9(a) is a diagram showing a running example of the traveling map creation device 100, and FIG. 9(b) is a diagram showing a running example of the autonomous mobile robot 300. FIG.
 例えば、図8に示されるように、情報端末200の受付部240は、例えばタッチパネルであって、走行用地図作成装置100に走行方向を指示するアイコンと、走行の停止を指示するアイコンと、境界を設定するか否かを指示するアイコンとが表示されてもよい。情報端末200は、受付部240により受け付けられたユーザの指示(例えば、境界を設定しない指示)を走行用地図作成装置100へ出力する。当該指示は、走行用地図作成装置100の動作中(つまり、所定のエリアの走行中)に行われてもよいし、動作後(つまり、所定のエリアの走行後)に行われてもよい。 For example, as shown in FIG. 8, the receiving unit 240 of the information terminal 200 is, for example, a touch panel, and includes an icon for instructing the traveling map creating device 100 to indicate the traveling direction, an icon for instructing to stop traveling, and a boundary. may be displayed to indicate whether or not to set the The information terminal 200 outputs the user's instruction received by the reception unit 240 (for example, an instruction not to set a boundary) to the driving map creation device 100 . The instruction may be given while the driving map creating device 100 is in operation (that is, while driving in a predetermined area) or after the operation (that is, after driving in a predetermined area).
 変形例1では、走行用地図作成装置100が動作中に上記のユーザの指示を取得した例について説明する。前提として、走行エリア設定部123は、短辺の長さが所定値(例えば、上面視における自律走行型ロボット300の本体301の半径)よりも短い矩形領域(以下、凹みエリアという)を走行エリアに含めない。このような凹みエリアは、例えば、自己位置の移動軌跡において、自己位置の移動方向と交差する方向に位置し、位置センサ102により当該領域の外形を規定する物体(例えば、壁、パーティション又は柱など)との位置関係が取得された領域である。しかしながら、例えば、走行用地図作成装置100が情報端末200から境界L1(図7の(b))を設定しない指示を取得すると、境界指示部124は、走行エリア設定部123へ走行エリアA1と凹みエリア(例えば、非走行エリアN1)との境界L1を設定しない指示を出力する。より具体的には、例えば、境界指示部124は、自己位置の移動軌跡が凹み領域に含まれなくても、凹み領域を移動軌跡により規定される矩形領域に含める指示を出力する。 In Modified Example 1, an example will be described in which the user's instruction is obtained while the driving map creation device 100 is in operation. As a premise, the travel area setting unit 123 sets a rectangular area (hereinafter referred to as a recessed area) whose short side length is shorter than a predetermined value (for example, the radius of the main body 301 of the autonomous mobile robot 300 when viewed from above) as the travel area. not included in Such a recessed area is located, for example, in a direction intersecting the movement direction of the self-position on the movement trajectory of the self-position, and is defined by the position sensor 102 as an object (for example, wall, partition, pillar, etc.) that defines the contour of the area. ) is the area for which the positional relationship was obtained. However, for example, when the driving map creation device 100 acquires an instruction not to set the boundary L1 ((b) in FIG. 7) from the information terminal 200, the boundary instruction unit 124 sends the driving area setting unit 123 to the driving area A1 and the recessed area. An instruction not to set a boundary L1 with an area (for example, non-running area N1) is output. More specifically, for example, the boundary instruction unit 124 outputs an instruction to include the concave area in the rectangular area defined by the movement locus even if the locus of movement of the self-position is not included in the concave area.
 例えば、走行用地図作成装置100の走行中又は走行開始時に、図8に示される境界設定OFFのアイコンが選択されると、情報端末200の受付部240は、境界を設定しない指示を受け付け、受け付けられた指示が走行用地図作成装置100へ出力される。走行用地図作成装置100の境界指示部124は当該受け付けられた指示に基づいて上記の指示(走行エリアA1と凹みエリアとの境界を設定しない指示)を走行エリア設定部123へ出力する。走行エリア設定部123は、上記の指示を取得すると、例えば図9の(a)に示されるように走行用地図作成装置100が凹み領域を走行しなくても(又は、凹み領域に進入しなくても)、自己位置の移動軌跡で規定される第1矩形領域R1(図7の(b)参照)に、凹み領域(ここでは、非走行エリアN1)を含める。このように設定された走行エリアA1を含む走行用の地図に基づいて、自律走行型ロボット300は、例えば、図9の(b)に示されるように、第1矩形領域R1の走行時に凹み領域も走行する。 For example, when the border setting OFF icon shown in FIG. 8 is selected while the travel map creating device 100 is running or when the travel starts, the receiving unit 240 of the information terminal 200 receives an instruction not to set the border, and accepts The received instruction is output to the travel mapping device 100 . Boundary instruction unit 124 of travel map creation device 100 outputs the above instruction (instruction not to set a boundary between travel area A1 and recessed area) to travel area setting unit 123 based on the received instruction. When the travel area setting unit 123 acquires the above instruction, the travel map creation device 100 does not travel through the recessed area (or does not enter the recessed area) as shown in (a) of FIG. 9, for example. ), the recessed area (here, the non-running area N1) is included in the first rectangular area R1 (see (b) of FIG. 7) defined by the locus of movement of the self-position. Based on the map for travel including the travel area A1 set in this way, the autonomous mobile robot 300, for example, as shown in FIG. also run.
 なお、凹みエリアは、上記の例に限られない。例えば、凹みエリアは、短辺の長さが上面視における自律走行型ロボット300の本体301の直径以下であってもよいし、自律走行型ロボット300の用途により適宜設定されてもよい。 It should be noted that the recessed area is not limited to the above example. For example, the length of the short side of the recessed area may be equal to or less than the diameter of the main body 301 of the autonomous mobile robot 300 in top view, or may be appropriately set depending on the application of the autonomous mobile robot 300 .
 [第1の例の変形例2]
 動作の変形例1では、走行用地図作成装置100の動作中(つまり、所定のエリアの走行中)に境界の設定についての指示を取得した場合の動作例について説明した。動作の第1の例の変形例2(以下、変形例2という)では、走行用地図作成装置100の動作後(つまり、所定のエリアの走行後)に境界の設定についての指示を取得した場合の動作例について説明する。変形例2では、境界についての指示は、いわゆる、設定された境界の修正指示である。図10は、情報端末における受付画面の他の例を示す図である。
[Modification 2 of the first example]
In the modified example 1 of the operation, an operation example in which an instruction for setting a boundary is acquired during operation of the travel map creation device 100 (that is, while traveling in a predetermined area) has been described. In Modified Example 2 of the first example of operation (hereinafter referred to as Modified Example 2), when an instruction to set a boundary is acquired after operation of travel map creation device 100 (that is, after travel in a predetermined area). will be described. In Modified Example 2, the instruction about the boundary is a so-called instruction to correct the set boundary. FIG. 10 is a diagram showing another example of the reception screen on the information terminal.
 例えば、走行用地図作成装置100の制御部120は、走行用地図作成部125により走行用の地図が作成されると、走行用の地図を情報端末200へ送信する。情報端末200の制御部220は、走行用の地図を取得すると、図10に示されるように、提示部230に走行用の地図を提示させる。 For example, when the travel map creation unit 125 creates a travel map, the control unit 120 of the travel map creation device 100 transmits the travel map to the information terminal 200 . When the map for driving is acquired, the control unit 220 of the information terminal 200 causes the presentation unit 230 to present the map for driving as shown in FIG. 10 .
 このとき、例えば、ユーザが受付部240(例えば、タッチパネル)に表示されている境界設定OFFのアイコンをタップしてから、走行用の地図上の境界L1をタッチすると、受付部240は境界L1を削除する修正をする指示を受け付ける。図示していないが、走行用の地図上の境界L1をタッチすると、境界L1の表示が消え、非走行エリアN1と第1矩形領域R1とを含む修正後の領域が表示される。次に、ユーザがOKアイコンをタップすると、当該指示の受付が確定される。次に、情報端末200の制御部220は、受付部240により受け付けられた指示を走行用地図作成装置100へ出力する。 At this time, for example, when the user taps the boundary setting OFF icon displayed on the reception unit 240 (for example, a touch panel) and then touches the boundary L1 on the driving map, the reception unit 240 sets the boundary L1. Accepts instructions to modify to delete. Although not shown, when the boundary L1 on the map for driving is touched, the display of the boundary L1 disappears and the area after correction including the non-running area N1 and the first rectangular area R1 is displayed. Next, when the user taps the OK icon, acceptance of the instruction is confirmed. Next, the control unit 220 of the information terminal 200 outputs the instruction accepted by the accepting unit 240 to the driving map creating device 100 .
 走行用地図作成装置100の境界指示部124は、当該指示を取得すると、走行エリア設定部123へ境界L1を削除し、第1矩形領域R1を非走行エリアN1と第1矩形領域R1とを含む領域に修正する指示を出力する。走行エリア設定部123は、境界指示部124から当該指示を取得すると、当該指示に基づいて境界L1を削除する修正を行うことにより、走行エリアA1内の第1矩形領域R1を、非走行エリアN1と第1矩形領域R1とを含む領域に修正する。これにより、走行エリア設定部123は、走行エリアA1を修正する。 Upon acquiring the instruction, the boundary instruction unit 124 of the driving map creation device 100 deletes the boundary L1 to the driving area setting unit 123, and sets the first rectangular area R1 to include the non-driving area N1 and the first rectangular area R1. Outputs instructions to modify the region. Upon receiving the instruction from the boundary instruction unit 124, the travel area setting unit 123 corrects the boundary L1 based on the instruction to change the first rectangular region R1 in the travel area A1 to the non-travel area N1. and the first rectangular region R1. Accordingly, the travel area setting unit 123 corrects the travel area A1.
 走行用地図作成部125は、走行エリア設定部123により修正された走行エリアA1を含む走行用の地図を作成する(不図示)。 The travel map creation unit 125 creates a travel map including the travel area A1 corrected by the travel area setting unit 123 (not shown).
 なお、図10の例では、走行エリア設定部123は、境界L1を削除する修正指示を取得すると、第1矩形領域R1を非走行エリアN1と第1矩形領域R1とを含む領域に修正したが、境界の修正は、この例に限られない。例えば、走行エリア設定部123は、境界の修正指示に基づいて、境界L2の位置を走行用の地図上の上下方向にずらす修正をしてもよいし、走行エリア内の隣接する矩形領域間(例えば、第1矩形領域R1と第2矩形領域R2との間)に境界を設定することで、第2矩形領域R2を非走行エリアに変更してもよい。 In the example of FIG. 10, when the travel area setting unit 123 acquires the correction instruction to delete the boundary L1, the first rectangular region R1 is corrected to include the non-travel area N1 and the first rectangular region R1. , boundary modification is not limited to this example. For example, the driving area setting unit 123 may shift the position of the boundary L2 in the vertical direction on the map for driving based on the instruction to correct the boundary, or between adjacent rectangular areas in the driving area ( For example, the second rectangular region R2 may be changed to a non-running area by setting a boundary between the first rectangular region R1 and the second rectangular region R2.
 [第2の例]
 続いて、本実施の形態における自律走行型ロボットシステム400の動作の第2の例について説明する。第1の例では、走行用地図作成装置100が情報端末200により受け付けられた指示に基づいて走行用の地図を作成する処理について説明した。第2の例では、自律走行型ロボット300が走行用地図作成装置100により作成された走行用の地図に基づいて所定のフロアを走行しながら掃除を行う処理について説明する。
[Second example]
Next, a second example of the operation of autonomous mobile robot system 400 according to the present embodiment will be described. In the first example, the process of creating a map for travel by the map creation device for travel 100 based on an instruction received by the information terminal 200 has been described. In the second example, a process will be described in which the autonomous mobile robot 300 cleans while traveling on a predetermined floor based on the map for travel created by the map creation device 100 for travel.
 図11は、実施の形態における自律走行型ロボットシステム400の動作の第2の例を示すフローチャートである。以下では、走行エリアを掃除エリアと読み替えて説明する。 FIG. 11 is a flow chart showing a second example of the operation of the autonomous mobile robot system 400 according to the embodiment. In the following description, the travel area is replaced with the cleaning area.
 まず、情報端末200の受付部240により掃除の開始指示が受け付けられると、情報端末200の制御部220は、自律走行型ロボット300へ当該指示を出力する(不図示)。 First, when the reception unit 240 of the information terminal 200 receives an instruction to start cleaning, the control unit 220 of the information terminal 200 outputs the instruction to the autonomous mobile robot 300 (not shown).
 次に、自律走行型ロボット300の制御部340が掃除の開始指示を取得すると(ステップS11)、走行用地図取得部341は、走行用の地図を取得する(ステップS12)。例えば、走行用地図取得部341は、走行用地図作成装置100に所定のフロアの走行用の地図を要求してネットワーク10を介して取得してもよいし、記憶部350に格納された走行用の地図を読み出してもよい。 Next, when the control unit 340 of the autonomous mobile robot 300 acquires a cleaning start instruction (step S11), the travel map acquisition unit 341 acquires a travel map (step S12). For example, the driving map acquisition unit 341 may request a driving map of a predetermined floor from the driving map generating device 100 and acquire the driving map via the network 10 , or may acquire the driving map stored in the storage unit 350 . You may read the map of
 次に、自律走行型ロボット300の制御部340は、位置センサ320及び障害物センサ330などの自律走行型ロボット300が備える各種センサにセンシング開始の指示を出力し、それらのセンサからセンシングデータを取得する(ステップS13)。 Next, the control unit 340 of the autonomous traveling robot 300 outputs a sensing start instruction to various sensors provided in the autonomous traveling robot 300, such as the position sensor 320 and the obstacle sensor 330, and acquires sensing data from these sensors. (step S13).
 次に、自己位置推定部342は、ステップS12で取得された走行用の地図(走行用地図)と、位置センサ320により取得された自律走行型ロボット300の本体301の周囲の物体との位置関係とに基づいて、走行用の地図上での自律走行型ロボット300の本体301の自己位置を推定する(ステップS14)。 Next, the self-position estimation unit 342 determines the positional relationship between the driving map (driving map) acquired in step S12 and the objects around the main body 301 of the autonomous mobile robot 300 acquired by the position sensor 320. , the self-position of the main body 301 of the autonomous mobile robot 300 on the map for travel is estimated (step S14).
 次に、走行計画作成部344は、ステップS14で推定された自己位置と走行用の地図とに基づいて、走行用の地図に含まれる複数の掃除エリアのうち自己位置に近い掃除エリアを検索する(ステップS15)。 Next, based on the self-position estimated in step S14 and the map for travel, the travel plan creation unit 344 searches for a cleaning area close to the self-position among a plurality of cleaning areas included in the map for travel. (Step S15).
 次に、走行計画作成部344は、ステップS15で検索された掃除エリア内の開始位置(より詳細には、掃除を開始する位置)を決定する(ステップS16)。 Next, the travel plan creation unit 344 determines the start position (more specifically, the position where cleaning is to start) within the cleaning area searched in step S15 (step S16).
 次に、走行計画作成部344は、掃除エリア内の走行計画を作成する(ステップS17)。このとき、走行計画作成部344は、掃除エリア内の走行経路に加えて、走行速度、及び、掃除の態様などを決定してもよい。掃除の態様は、例えば、掃く、拭く、及び、塵埃の吸引の少なくともいずれかと、ブラシの回転速度、又は、吸引強度などの掃除強度とを含む。 Next, the travel plan creation unit 344 creates a travel plan within the cleaning area (step S17). At this time, the travel plan creation unit 344 may determine the travel speed, the manner of cleaning, etc. in addition to the travel route in the cleaning area. The cleaning aspect includes, for example, at least one of sweeping, wiping, and dust suction, and cleaning intensity such as brush rotation speed or suction intensity.
 次に、走行計画作成部344は、掃除エリアの順序を決定する(ステップS18)。例えば、走行計画作成部344は、記憶部350内に格納されている履歴情報データベース(不図示)から、例えば、当該掃除エリアの掃除の頻度、又は、掃除エリアの優先度などの履歴情報を参照して掃除エリアの掃除の順序を決定してもよい。 Next, the travel plan creation unit 344 determines the order of cleaning areas (step S18). For example, the travel plan creation unit 344 refers to history information such as the frequency of cleaning of the cleaning area or the priority of the cleaning area from a history information database (not shown) stored in the storage unit 350. may be used to determine the order of cleaning the cleaning area.
 次に、走行計画作成部344は、走行用の地図に含まれるすべての掃除エリアの走行計画を終了したか否かを判定し(ステップS19)、終了していないと判定した場合(ステップS19でNo)、他の掃除エリアについてステップS16の処理を行う。そして、走行計画作成部344は、他の掃除エリアについてステップS16~S18までの処理を終了すると、すべての掃除エリアの走行計画を終了したか否かを判定する(ステップS19)。そして、走行計画作成部344は、全ての掃除エリアの走行計画を終了したと判定すると(ステップS19でYes)、作成された走行計画及び制御開始指示を走行制御部345及び掃除制御部346に出力する(不図示)。 Next, the travel plan creation unit 344 determines whether or not the travel plan for all the cleaning areas included in the travel map has been completed (step S19). No), the process of step S16 is performed for other cleaning areas. Then, when the processing of steps S16 to S18 is completed for the other cleaning areas, the travel plan creating unit 344 determines whether or not the travel plans for all the cleaning areas have been completed (step S19). Then, when it is determined that the travel plans for all the cleaning areas have been completed (Yes in step S19), the travel plan creation unit 344 outputs the created travel plan and a control start instruction to the travel control unit 345 and the cleaning control unit 346. (not shown).
 走行制御部345及び掃除制御部346は、走行計画作成部344から走行計画及び制御開始指示を取得すると、走行計画に従って走行部360及び掃除部370を制御し、掃除を行う(ステップS20)。 When the travel control unit 345 and the cleaning control unit 346 acquire the travel plan and the control start instruction from the travel plan creation unit 344, they control the travel unit 360 and the cleaning unit 370 according to the travel plan to perform cleaning (step S20).
 自律走行型ロボット300の制御部340は、走行計画に従って全てのエリアの掃除を行うと、掃除を終了する。 The control unit 340 of the autonomous mobile robot 300 finishes cleaning after cleaning all areas according to the travel plan.
 [3.効果等]
 以上説明したように、走行用地図作成装置100は、所定のフロア内を自律的に走行する自律走行型ロボット300の走行用の地図を作成する走行用地図作成装置であって、自己の周囲の物体を検知し、自己に対する物体の位置関係を取得する位置センサ102と、位置センサ102により取得された位置関係に基づいて所定のフロアを示すフロアマップを作成するフロアマップ作成部121と、位置センサ102により取得された位置関係とフロアマップ作成部121により作成されたフロアマップに基づいてフロアマップ上での自己位置を推定する自己位置推定部122と、フロアマップ及び自己位置に基づいて、自己位置の移動軌跡で規定される第1矩形領域R1を自律走行型ロボット300が走行する走行エリアに設定する走行エリア設定部123と、走行エリア設定部123により設定された走行エリアを含む走行用の地図を作成する走行用地図作成部125と、を備える。
[3. effects, etc.]
As described above, the travel map creation device 100 is a travel map creation device that creates a travel map for the autonomous mobile robot 300 that autonomously travels within a predetermined floor. A position sensor 102 that detects an object and acquires the positional relationship of the object with respect to itself; a floor map creation unit 121 that creates a floor map indicating a predetermined floor based on the positional relationship acquired by the position sensor 102; a self-position estimation unit 122 for estimating the self-position on the floor map based on the positional relationship acquired by 102 and the floor map created by the floor map creation unit 121; A travel area setting unit 123 that sets a first rectangular region R1 defined by the movement locus of , as a travel area in which the autonomous mobile robot 300 travels, and a travel map that includes the travel area set by the travel area setting unit 123 and a travel map creation unit 125 that creates a map.
 これにより、走行用地図作成装置100は、自己位置の移動軌跡で規定される第1矩形領域R1を自律走行型ロボット300の走行エリアA1に設定することができるため、自律走行型ロボット300の走行用の地図に走行エリアA1を容易に設定することができる。 As a result, the traveling map creation device 100 can set the first rectangular region R1 defined by the movement trajectory of the self-position as the traveling area A1 of the autonomous traveling robot 300. The travel area A1 can be easily set on the map for use.
 例えば、走行用地図作成装置100では、走行エリア設定部123は、移動軌跡において、自己位置の移動方向が右回り及び左回りの一方に(第1の方向、図7の(a)では、左回り)所定の角度(例えば、90°)で回転する3つの第1の点を第1矩形領域R1の頂点に決定することにより、第1矩形領域R1を設定してもよい。 For example, in the travel map creation device 100, the travel area setting unit 123 sets the travel direction of the self-position to one of clockwise and counterclockwise (first direction, leftward in FIG. 7A) in the travel locus. Rotation) The first rectangular region R1 may be set by determining three first points rotated by a predetermined angle (for example, 90°) as the vertices of the first rectangular region R1.
 これにより、走行用地図作成装置100は、所定の方向に所定の角度で曲がる地点を第1矩形領域R1の頂点に決定するため、走行用地図作成装置100の動き(曲がる方向及び角度)の変化に基づいて、第1矩形領域R1を容易に設定することができる。 As a result, the travel map creation device 100 determines the vertex of the first rectangular region R1 as the point where the travel map creation device 100 turns at a predetermined angle in a predetermined direction. , the first rectangular region R1 can be easily set.
 例えば、走行用地図作成装置100では、走行エリア設定部123は、移動軌跡において、右回り及び左回りの他方に(第2の方向、図7の(a)では、右回り)所定の角度(例えば、90°)で回転する2つの第2の点が存在する場合、2つの第2の点を第2矩形領域R2の頂点に決定することにより、第1矩形領域R1と第2矩形領域R2とを含む走行エリアA1を設定してもよい。 For example, in the travel map creation device 100, the travel area setting unit 123 sets a predetermined angle ( For example, if there are two second points rotated by 90°, the first rectangular area R1 and the second rectangular area R2 are determined by determining the two second points to be the vertices of the second rectangular area R2. You may set driving|running|working area A1 containing and.
 これにより、走行用地図作成装置100は、所定の方向と逆の方向に所定の角度で曲がる地点が2つ存在する場合に、これらの2点を第1矩形領域R1とは異なる第2矩形領域R2の頂点に決定するため、走行用地図作成装置100の動き(曲がる方向及び角度)の変化に基づいて、走行エリアA1に含まれる複数の矩形領域を容易に設定することができる。 As a result, when there are two points where the vehicle turns at a predetermined angle in a direction opposite to the predetermined direction, the map creating apparatus for driving 100 divides these two points into a second rectangular area different from the first rectangular area R1. Since the vertex of R2 is determined, it is possible to easily set a plurality of rectangular areas included in the driving area A1 based on changes in movement (turning direction and angle) of the driving mapping device 100. FIG.
 例えば、走行用地図作成装置100では、走行エリア設定部123は、移動軌跡において、2つの第2の点P2、P2’(図7の(a)参照)の間に、右回り及び左回りの一方に(第1の方向、図7の(a)では、左回り)所定の角度(例えば、90°)で回転する2つの点が存在する場合、2つの第2の点P2、P2’に加え、2つの点を第2矩形領域R2の頂点に決定することにより、第2矩形領域R2(図7の(b)参照)を設定してもよい。 For example, in the travel map creation device 100, the travel area setting unit 123 creates clockwise and counterclockwise directions between the two second points P2 and P2′ (see FIG. 7A) on the movement trajectory. When there are two points rotated by a predetermined angle (for example, 90°) on one side (in the first direction, counterclockwise in FIG. 7A), two second points P2 and P2′ In addition, the second rectangular region R2 (see (b) of FIG. 7) may be set by determining two points as vertices of the second rectangular region R2.
 これにより、走行用地図作成装置100は、走行用地図作成装置100の動き(曲がる方向及び角度)の変化に基づいて、第2矩形領域R2と第1矩形領域R1との境界に対向する第2矩形領域R2の一辺をなす2つの頂点を決定するため、より正確に第2矩形領域R2を設定することができる。 As a result, the travel map creation device 100 generates the second rectangular region R1 facing the boundary between the second rectangular region R2 and the first rectangular region R1 based on the change in the motion (curving direction and angle) of the travel map creation device 100. Since the two vertices forming one side of the rectangular region R2 are determined, the second rectangular region R2 can be set more accurately.
 例えば、走行用地図作成装置100では、走行エリア設定部123は、短辺の長さが所定値(例えば、上面視における自律走行型ロボット300の本体301の半径)よりも短い第3矩形領域を走行エリアに含めなくてもよい。 For example, in the travel map creation device 100, the travel area setting unit 123 selects a third rectangular region in which the length of the short side is shorter than a predetermined value (for example, the radius of the main body 301 of the autonomous travel robot 300 when viewed from above). It does not have to be included in the running area.
 これにより、走行用地図作成装置100は、短辺の長さが所定値よりも短い矩形領域(いわゆる、凹みエリア)を走行エリアA1に含めないため、自律走行型ロボット300は所定のエリア内を効率的に走行することができる。 As a result, the travel map creation device 100 does not include in the travel area A1 a rectangular area (so-called recessed area) whose short side length is shorter than a predetermined value, so that the autonomous mobile robot 300 moves within the predetermined area. can run efficiently.
 例えば、走行用地図作成装置100は、さらに、走行エリア設定部123に走行エリアA1の境界の設定についての指示を出力する境界指示部124を備え、走行エリア設定部123は、境界指示部124により境界を修正する指示が出力されると、指示に基づいて境界を修正することにより、走行エリアA1を修正し、走行用地図作成部125は、走行エリア設定部123により修正された走行エリアを含む走行用の地図を作成してもよい。 For example, the driving map creation device 100 further includes a boundary instruction unit 124 that outputs an instruction for setting the boundary of the driving area A1 to the driving area setting unit 123. When an instruction to correct the boundary is output, the boundary is corrected based on the instruction to correct the driving area A1, and the driving map creation unit 125 includes the driving area corrected by the driving area setting unit 123. You may create a map for driving.
 これにより、走行用地図作成装置100は、例えば、ユーザの要望に応じて境界を修正することができるため、よりユーザの要望に沿ったエリア設定を行うことができる。 As a result, the driving map creation device 100 can, for example, correct the boundary according to the user's request, so that it is possible to set the area more in line with the user's request.
 また、自律走行型ロボット300は、所定のフロア内を自律的に走行する自律走行型ロボットであって、本体301と、本体301に配置され、本体301を走行可能とする走行部360と、上記のいずれかの走行用地図作成装置100で作成された走行用の地図を取得する走行用地図取得部341と、本体301の周囲の物体を検知し、本体301に対する物体の位置関係を取得する位置センサ320と、走行用の地図及び位置関係に基づいて、走行用の地図上での本体301の位置である自己位置を推定する自己位置推定部342と、走行用の地図及び自己位置に基づいて、所定のフロアにおける走行計画を作成する走行計画作成部344と、走行計画に基づいて走行部360を制御する走行制御部345と、を備える。 Further, the autonomous traveling robot 300 is an autonomous traveling robot that autonomously travels within a predetermined floor, and includes a main body 301, a traveling section 360 arranged in the main body 301 and enabling the main body 301 to travel, and a position for detecting an object around the main body 301 and obtaining the positional relationship of the object with respect to the main body 301. A sensor 320, a self-position estimating unit 342 for estimating the self-position, which is the position of the main body 301 on the map for driving, based on the map for driving and the positional relationship, and a map for driving and the self-position , a travel plan creation unit 344 that creates a travel plan for a predetermined floor, and a travel control unit 345 that controls the travel unit 360 based on the travel plan.
 これにより、自律走行型ロボットシステム400では、走行エリアが設定された走行用の地図に基づいて自律走行型ロボット300が走行計画を作成することができるため、自律走行型ロボット300が適切に所定のエリアを走行することができる。 As a result, in the autonomous mobile robot system 400, the autonomous mobile robot 300 can create a travel plan based on the travel map in which the travel area is set. You can run in the area.
 例えば、自律走行型ロボット300は、さらに、掃く、拭く、及び、塵埃を吸引する、の少なくともいずれかの動作を実行することにより床面を掃除する掃除部370と、掃除部370を制御する掃除制御部346と、を備え、走行計画作成部344は、さらに、掃除計画を作成し、掃除制御部346は、掃除計画に基づいて掃除部370を制御してもよい。 For example, the autonomous mobile robot 300 further includes a cleaning unit 370 that cleans the floor surface by executing at least one of sweeping, wiping, and sucking dust, and a cleaning unit that controls the cleaning unit 370. and a control unit 346, the travel plan creation unit 344 may further create a cleaning plan, and the cleaning control unit 346 may control the cleaning unit 370 based on the cleaning plan.
 これにより、自律走行型ロボット300は、走行用の地図に基づいて走行計画に加えて掃除計画を作成することができるため、適切に所定のエリアを走行しながら掃除を行うことができる。 As a result, the autonomous mobile robot 300 can create a cleaning plan in addition to the travel plan based on the map for travel, so that it can clean while appropriately traveling in a predetermined area.
 また、走行用地図作成方法は、所定のフロア内を自律的に走行する自律走行型ロボット300の走行用の地図を作成する走行用地図作成方法であって、自己(自律走行型ロボット300または自律走行型ロボット300の走行用の地図を作成する走行用地図作成装置)の周囲の物体を検知し、自己に対する物体の位置関係を取得する取得ステップと、取得ステップで取得された位置関係に基づいて所定のフロアを示すフロアマップを作成するフロアマップ作成ステップと、取得ステップで取得された位置関係とフロアマップ作成ステップで作成されたフロアマップに基づいてフロアマップ上での自己位置(自律走行型ロボット300の位置または自律走行型ロボット300または自律走行型ロボット300の走行用の地図を作成する走行用地図作成装置の位置)を推定する自己位置推定ステップと、フロアマップ及び自己位置に基づいて、自己位置の移動軌跡で規定される第1矩形領域R1を自律走行型ロボット300が走行する走行エリアに設定する走行エリア設定ステップと、走行エリア設定ステップで設定された走行エリアA1を含む走行用の地図を作成する走行用地図作成ステップと、を含む。 Further, the travel map creation method is a travel map creation method for creating a travel map for the autonomous travel robot 300 that autonomously travels within a predetermined floor. an acquisition step of detecting objects around the traveling map creating device for creating a travel map of the traveling robot 300 and acquiring the positional relationship of the object with respect to itself; A floor map creation step that creates a floor map showing a given floor, and a self-position (autonomous mobile robot) on the floor map based on the positional relationship acquired in the acquisition step and the floor map created in the floor map creation step. 300 or the position of the autonomous mobile robot 300 or the travel mapping device that creates a travel map for the autonomous mobile robot 300); A travel area setting step of setting a first rectangular region R1 defined by the locus of movement of the position as a travel area in which the autonomous mobile robot 300 travels; and a travel map including the travel area A1 set in the travel area setting step. and a driving map generation step of generating a
 この走行用地図作成方法によれば、自己位置の移動軌跡で規定される第1矩形領域R1を自律走行型ロボット300の走行エリアA1に設定することができるため、自律走行型ロボット300の走行用の地図に走行エリアA1を容易に設定することができる。 According to this travel map creation method, the first rectangular region R1 defined by the locus of movement of the self-position can be set as the travel area A1 of the autonomous mobile robot 300. The travel area A1 can be easily set on the map.
 (その他の実施の形態)
 以上、実施の形態について説明したが、本開示は、上記実施の形態に限定されるものではない。例えば、自律走行型ロボットシステム400は、走行用地図作成装置100と情報端末200と自律走行型ロボット300とを備えるが、情報端末200と、走行用地図作成機能を備える自律走行型ロボットとを備えてもよいし、走行用地図作成機能を備える情報端末と自律走行型ロボット300とを備えてもよい。
(Other embodiments)
Although the embodiments have been described above, the present disclosure is not limited to the above embodiments. For example, the autonomous mobile robot system 400 includes the mobile map creation device 100, the information terminal 200, and the autonomous mobile robot 300. Alternatively, the autonomous mobile robot 300 and an information terminal having a travel map creation function may be provided.
 例えば、走行用地図作成機能を備える自律走行型ロボットは、所定のフロアの走行用の地図の作成と、走行計画の作成とを並行して行うことができる。また、当該自律走行型ロボットは、ネットワーク10を介して走行用の地図を取得する必要がないため、通信障害などの影響を受けにくく、通信で情報を取得する場合に比べて、よりスムーズに処理を行うことが可能となる。 For example, an autonomous mobile robot equipped with a map creation function for travel can create a map for travel on a given floor and create a travel plan in parallel. In addition, since the autonomous mobile robot does not need to acquire a map for running via the network 10, it is less likely to be affected by communication failures, etc., and can be processed more smoothly than when information is acquired by communication. It is possible to do
 例えば、走行用地図作成機能を備える情報端末は、ユーザが例えばLiDar SLAMを搭載したタブレット端末などの携帯型のコンピュータ装置を所持して所定のエリアを移動することで、走行用の地図の作成と走行用の地図の修正とを並行して行うことができる。そのため、ユーザが走行用地図作成装置100を台車190に載せて所定のフロアを移動する必要がなく、利便性が向上する。 For example, an information terminal equipped with a driving map creation function allows a user to carry a portable computer device such as a tablet terminal equipped with LiDar SLAM and move around a predetermined area to create a driving map. Correction of the map for running can be performed in parallel. Therefore, it is not necessary for the user to place the traveling map creating apparatus 100 on the trolley 190 and move the predetermined floor, thereby improving the convenience.
 また、例えば、上記実施の形態では、走行用地図作成装置100が位置センサ102を備えているが、位置センサ102は走行用地図作成装置100に備えられなくてもよい。例えば、走行用地図作成装置100は、位置センサ102以外の構成を備える情報処理装置であってもよい。この場合、位置センサ102を備えるセンサを台車190に載せて所定のフロアを移動させながらセンサにより取得されたデータを情報処理装置に出力してもよい。 Further, for example, in the above-described embodiment, the travel map creation device 100 includes the position sensor 102 , but the travel map creation device 100 does not have to include the position sensor 102 . For example, the driving map creation device 100 may be an information processing device having a configuration other than the position sensor 102 . In this case, a sensor including the position sensor 102 may be placed on a carriage 190 and data acquired by the sensor may be output to the information processing device while moving on a predetermined floor.
 例えば、上記実施の形態では、走行用地図作成装置100により生成された走行用の地図は、ネットワーク10を介して、自律走行型ロボット300に送信される例を説明したが、走行用の地図の取得の態様はこれに限られない。例えば、走行用地図作成装置100がネットワーク10を介して走行用の地図を情報端末200に送信し、情報端末200が取得した走行用の地図を、ネットワーク10を介して自律走行型ロボット300に送信してもよい。なお、ネットワーク10は、インターネットなどの広域通信ネットワークであるが、Wi-Fi(登録商標)などの局所通信ネットワークであってもよい。 For example, in the above-described embodiment, an example in which the travel map generated by the travel map creation device 100 is transmitted to the autonomous mobile robot 300 via the network 10 has been described. The mode of acquisition is not limited to this. For example, the travel map creation device 100 transmits a travel map to the information terminal 200 via the network 10, and the travel map acquired by the information terminal 200 is transmitted to the autonomous travel robot 300 via the network 10. You may The network 10 is a wide area communication network such as the Internet, but may be a local communication network such as Wi-Fi (registered trademark).
 また、例えば、自律走行型ロボット300は、走行用地図作成装置100により生成された走行用の地図が保存されたUSB(Universal Serial Bus)メモリなどを介して、走行用の地図を取得してもよい。 Also, for example, the autonomous mobile robot 300 can acquire a map for travel via a USB (Universal Serial Bus) memory in which the map for travel generated by the map creation device 100 is stored. good.
 例えば、上記実施の形態では、走行用地図作成装置100及び自律走行型ロボット300が別体である例を説明したが、走行用地図作成装置100が自律走行型ロボット300に組み込まれた単一の装置として実現されてもよい。 For example, in the above-described embodiment, an example in which the traveling map creation device 100 and the autonomous mobile robot 300 are separate units has been described. It may be embodied as a device.
 例えば、上記実施の形態では、自律走行型ロボットシステム400は、複数の装置によって実現されているが、単一の装置として実現されてもよい。また、システムが複数の装置によって実現される場合、自律走行型ロボットシステム400が備える構成要素は、複数の装置にどのように振り分けられてもよい。また、例えば、自律走行型ロボットシステム400と通信可能なサーバ装置が、走行用地図作成装置100の制御部120、情報端末200の制御部220、及び自立走行型ロボット300の制御部340に含まれる複数の構成要素を備えていてもよい。 For example, although the autonomous mobile robot system 400 is implemented by a plurality of devices in the above embodiment, it may be implemented as a single device. Moreover, when the system is realized by a plurality of devices, the constituent elements of the autonomous mobile robot system 400 may be distributed among the plurality of devices in any way. Also, for example, a server device capable of communicating with the autonomous mobile robot system 400 is included in the control unit 120 of the mobile map creation device 100, the control unit 220 of the information terminal 200, and the control unit 340 of the autonomous mobile robot 300. It may comprise multiple components.
 例えば、上記実施の形態における装置間の通信方法については特に限定されるものではない。また、装置間の通信においては、図示されない中継装置が介在してもよい。 For example, the communication method between devices in the above embodiment is not particularly limited. Further, a relay device (not shown) may intervene in communication between devices.
 また、上記実施の形態において特定の処理部が実行する処理を、別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 Also, the processing executed by a specific processing unit in the above embodiment may be executed by another processing unit. In addition, the order of multiple processes may be changed, and multiple processes may be executed in parallel.
 また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Also, in the above embodiments, each component may be realized by executing a software program suitable for each component. Each component may be implemented by a program execution unit such as a CPU (Central Processing Unit) or processor reading and executing a software program recorded in a recording medium such as a hard disk or semiconductor memory.
 また、各構成要素は、ハードウェアによって実現されてもよい。例えば、各構成要素は、回路(又は集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Also, each component may be realized by hardware. For example, each component may be a circuit (or integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROM(Compact Disc-Read Only Memory)などの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, general or specific aspects of the present disclosure may be realized by a system, apparatus, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM (Compact Disc-Read Only Memory). good. Also, any combination of systems, devices, methods, integrated circuits, computer programs and recording media may be implemented.
 例えば、本開示は、自律走行型ロボットシステム400などのコンピュータが実行する走行制御方法として実現されてもよいし、このような走行用地図作成方法をコンピュータに実行させるためのプログラムとして実現されてもよい。また、本開示は、汎用のコンピュータを上記実施の形態の走行用地図作成装置100として動作させるためのプログラムとして実現されてもよい。本開示は、これらのプログラムが記録されたコンピュータで読み取り可能な非一時的な記録媒体として実現されてもよい。 For example, the present disclosure may be implemented as a travel control method executed by a computer such as the autonomous mobile robot system 400, or may be implemented as a program for causing a computer to execute such a map creation method for travel. good. Further, the present disclosure may be implemented as a program for causing a general-purpose computer to operate as driving map creation device 100 of the above embodiment. The present disclosure may be implemented as a computer-readable non-temporary recording medium on which these programs are recorded.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, forms obtained by applying various modifications to each embodiment that a person skilled in the art can think of, or realized by arbitrarily combining the constituent elements and functions of each embodiment within the scope of the present disclosure. Also included in the present disclosure is the form of
 本開示は、自律的に走行するロボットに広く利用可能である。 The present disclosure can be widely used for robots that run autonomously.
 10 ネットワーク
 100 走行用地図作成装置
 101 本体
 102 位置センサ
 110 通信部
 120 制御部
 121 フロアマップ作成部
 122 自己位置推定部
 123 走行エリア設定部
 124 境界指示部
 125 走行用地図作成部
 130 記憶部
 140 受付部
 190 台車
 191 ハンドル
 192 スタンド
 200 情報端末
 210 通信部
 220 制御部
 230 提示部
 240 受付部
 250 記憶部
 300 自律走行型ロボット
 301 本体
 310 通信部
 320 位置センサ
 330 障害物センサ
 331 発信部
 332 受信部
 340 制御部
 341 走行用地図取得部
 342 自己位置推定部
 343 障害物情報取得部
 344 走行計画作成部
 345 走行制御部
 346 掃除制御部
 350 記憶部
 360 走行部
 361 車輪
 370 掃除部
 371 サイドブラシ
 372 メインブラシ
 373 吸引口
 400 自律走行型ロボットシステム
 A1 走行エリア
 R1 第1矩形領域
 R2 第2矩形領域
 R3 第3矩形領域
 N1、N2、N3 非走行エリア
 L0、L1、L2 境界
 P1、P2、P2’、P3、P3’ 点
10 Network 100 Driving Map Creation Device 101 Main Body 102 Position Sensor 110 Communication Unit 120 Control Unit 121 Floor Map Creating Unit 122 Self-Position Estimating Unit 123 Driving Area Setting Unit 124 Boundary Instruction Unit 125 Driving Map Creating Unit 130 Storage Unit 140 Receiving Unit 190 cart 191 handle 192 stand 200 information terminal 210 communication unit 220 control unit 230 presentation unit 240 reception unit 250 storage unit 300 autonomous mobile robot 301 main body 310 communication unit 320 position sensor 330 obstacle sensor 331 transmission unit 332 reception unit 340 control unit 341 travel map acquisition unit 342 self-position estimation unit 343 obstacle information acquisition unit 344 travel plan creation unit 345 travel control unit 346 cleaning control unit 350 storage unit 360 travel unit 361 wheel 370 cleaning unit 371 side brush 372 main brush 373 suction port 400 Autonomous Running Robot System A1 Running Area R1 First Rectangular Area R2 Second Rectangular Area R3 Third Rectangular Area N1, N2, N3 Non-running Area L0, L1, L2 Boundaries P1, P2, P2', P3, P3' Points

Claims (11)

  1.  所定のフロア内を自律的に走行する自律走行型ロボットの走行用の地図を作成する走行用地図作成装置であって、
     自己の周囲の物体を検知し、自己に対する前記物体の位置関係を取得する位置センサと、
     前記位置センサにより取得された前記位置関係に基づいて前記所定のフロアを示すフロアマップを作成するフロアマップ作成部と、
     前記位置センサにより取得された前記位置関係と前記フロアマップ作成部により作成された前記フロアマップとに基づいて前記フロアマップ上での自己位置を推定する自己位置推定部と、
     前記フロアマップ及び前記自己位置に基づいて、前記自己位置の移動軌跡で規定される第1矩形領域を前記自律走行型ロボットが走行する走行エリアに設定する走行エリア設定部と、
     前記走行エリア設定部により設定された前記走行エリアを含む走行用の地図を作成する走行用地図作成部と、
     を備える、
     走行用地図作成装置。
    A travel map creation device for creating a travel map for an autonomous robot that autonomously travels within a predetermined floor,
    a position sensor that detects objects around the self and acquires the positional relationship of the object with respect to the self;
    a floor map creation unit that creates a floor map showing the predetermined floor based on the positional relationship acquired by the position sensor;
    a self-position estimating unit for estimating a self-position on the floor map based on the positional relationship acquired by the position sensor and the floor map created by the floor map creating unit;
    a travel area setting unit that sets a first rectangular area defined by the movement trajectory of the self-position as a travel area in which the autonomous mobile robot travels, based on the floor map and the self-position;
    a driving map creation unit that creates a driving map including the driving area set by the driving area setting unit;
    comprising
    Driving cartography device.
  2.  前記走行エリア設定部は、前記移動軌跡において、前記自己位置の移動方向が右回り及び左回りの一方に第1の所定の角度で回転する3つの第1の点を前記第1矩形領域の頂点に決定することにより、前記第1矩形領域を設定する、
     請求項1に記載の走行用地図作成装置。
    The travel area setting unit sets three first points on the movement trajectory at which the direction of movement of the self-position rotates by a first predetermined angle in one of clockwise and counterclockwise directions as vertices of the first rectangular area. setting the first rectangular region by determining
    The travel mapping device according to claim 1.
  3.  前記走行エリア設定部は、前記移動軌跡において、前記右回り及び前記左回りの他方に第2の所定の角度で回転する2つの第2の点が存在する場合、前記2つの第2の点を第2矩形領域の頂点に決定することにより、前記第1矩形領域と前記第2矩形領域とを含む前記走行エリアを設定する、
     請求項2に記載の走行用地図作成装置。
    If there are two second points rotating at a second predetermined angle in the other of the clockwise and counterclockwise directions in the movement trajectory, the travel area setting unit sets the two second points. setting the running area including the first rectangular area and the second rectangular area by determining the vertex of the second rectangular area;
    3. The travel mapping device according to claim 2.
  4.  前記走行エリア設定部は、前記移動軌跡において、前記2つの第2の点の間に、前記右回り及び前記左回りの一方に前記第1の所定の角度で回転する2つの点が存在する場合、前記2つの第2の点に加え、前記2つの点を前記第2矩形領域の頂点に決定することにより、前記第2矩形領域を設定する、
     請求項3に記載の走行用地図作成装置。
    When the travel area setting unit rotates at the first predetermined angle in one of the clockwise direction and the counterclockwise direction between the two second points in the movement locus , setting the second rectangular area by determining the two points as vertices of the second rectangular area in addition to the two second points;
    4. The travel mapping device according to claim 3.
  5.  前記走行エリア設定部は、短辺の長さが所定値よりも短い第3矩形領域を前記走行エリアに含めない、
     請求項1~4のいずれか1項に記載の走行用地図作成装置。
    The travel area setting unit does not include in the travel area a third rectangular area whose short side length is shorter than a predetermined value.
    A travel mapping device according to any one of claims 1 to 4.
  6.  さらに、前記走行エリア設定部に前記走行エリアの境界の設定についての指示を出力する境界指示部を備え、
     前記走行エリア設定部は、前記境界指示部により前記境界を修正する指示が出力されると、前記指示に基づいて前記境界を修正することにより、前記走行エリアを修正し、
     前記走行用地図作成部は、前記走行エリア設定部により修正された前記走行エリアを含む前記走行用の地図を作成する、
     請求項1~5のいずれか1項に記載の走行用地図作成装置。
    Furthermore, a boundary instruction unit for outputting an instruction for setting a boundary of the driving area to the driving area setting unit,
    When the boundary instruction unit outputs an instruction to correct the boundary, the traveling area setting unit corrects the traveling area by correcting the boundary based on the instruction,
    The driving map creating unit creates the driving map including the driving area corrected by the driving area setting unit.
    A driving map creation device according to any one of claims 1 to 5.
  7.  所定のフロア内を自律的に走行する自律走行型ロボットであって、
     本体と、
     前記本体に配置され、前記本体を走行可能とする走行部と、
     請求項1~6のいずれか1項に記載の前記走行用地図作成装置で作成された前記走行用の地図を取得する走行用地図取得部と、
     前記本体の周囲の物体を検知し、前記本体に対する前記物体の位置関係を取得する位置センサと、
     前記走行用の地図及び前記位置関係に基づいて、前記走行用の地図上での前記本体の位置である自己位置を推定する自己位置推定部と、
     前記走行用の地図及び前記自己位置に基づいて、前記所定のフロアにおける走行計画を作成する走行計画作成部と、
     前記走行計画に基づいて前記走行部を制御する走行制御部と、
     を備える、
     自律走行型ロボット。
    An autonomous traveling robot that autonomously travels within a predetermined floor,
    the main body;
    a running portion disposed on the main body and allowing the main body to travel;
    a driving map obtaining unit for obtaining the driving map created by the driving map generating device according to any one of claims 1 to 6;
    a position sensor that detects an object around the main body and acquires a positional relationship of the object with respect to the main body;
    a self-position estimation unit that estimates a self-position, which is the position of the main body on the map for driving, based on the map for driving and the positional relationship;
    a travel plan creation unit that creates a travel plan for the predetermined floor based on the travel map and the self-position;
    a travel control unit that controls the travel unit based on the travel plan;
    comprising
    Autonomous robot.
  8.  請求項1~6のいずれか1項に記載の前記走行用地図作成装置をさらに備える、
     請求項7に記載の自律走行型ロボット。
    Further comprising the driving mapping device according to any one of claims 1 to 6,
    The autonomous mobile robot according to claim 7.
  9.  掃く、拭く、及び、塵埃を吸引する、の少なくともいずれかの動作を実行することにより床面を掃除する掃除部と、
     前記掃除部を制御する掃除制御部と、
     をさらに備え、
     前記走行計画作成部は、さらに、掃除計画を作成し、
     前記掃除制御部は、前記掃除計画に基づいて前記掃除部を制御する、
     請求項7又は8に記載の自律走行型ロボット。
    a cleaning unit that cleans the floor surface by performing at least one of sweeping, wiping, and sucking dust;
    a cleaning control unit that controls the cleaning unit;
    further comprising
    The travel plan creation unit further creates a cleaning plan,
    The cleaning control unit controls the cleaning unit based on the cleaning plan.
    The autonomous mobile robot according to claim 7 or 8.
  10.  所定のフロア内を自律的に走行する自律走行型ロボットの走行用の地図を作成する走行用地図作成方法であって、
     自己の周囲の物体を検知し、自己に対する前記物体の位置関係を取得する取得ステップと、
     前記取得ステップで取得された前記位置関係に基づいて前記所定のフロアを示すフロアマップを作成するフロアマップ作成ステップと、
     前記取得ステップで取得された前記位置関係と前記フロアマップ作成ステップで作成された前記フロアマップとに基づいて前記フロアマップ上での自己位置を推定する自己位置推定ステップと、
     前記フロアマップ及び前記自己位置に基づいて、前記自己位置の移動軌跡で規定される第1矩形領域を前記自律走行型ロボットが走行する走行エリアに設定する走行エリア設定ステップと、
     前記走行エリア設定ステップで設定された前記走行エリアを含む走行用の地図を作成する走行用地図作成ステップと、
     を含む、
     走行用地図作成方法。
    A travel map creation method for creating a travel map for an autonomous robot that autonomously travels within a predetermined floor, comprising:
    an acquisition step of detecting an object around the self and acquiring the positional relationship of the object with respect to the self;
    a floor map creation step of creating a floor map showing the predetermined floor based on the positional relationship acquired in the acquisition step;
    a self-location estimation step of estimating a self-location on the floor map based on the positional relationship acquired in the acquisition step and the floor map created in the floor map creation step;
    a travel area setting step of setting a first rectangular area defined by the movement trajectory of the self-position as a travel area in which the autonomous mobile robot travels, based on the floor map and the self-position;
    a driving map creating step of creating a driving map including the driving area set in the driving area setting step;
    including,
    Driving mapping method.
  11.  請求項10に記載の走行用地図作成方法をコンピュータに実行させるための、
     プログラム。
    for causing a computer to execute the driving mapping method according to claim 10,
    program.
PCT/JP2022/031014 2021-11-18 2022-08-17 Traveling map creating device, autonomous robot, method for creating traveling map, and program WO2023089886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-187462 2021-11-18
JP2021187462A JP2023074521A (en) 2021-11-18 2021-11-18 Traveling map creation device, autonomous travel type robot, traveling map creation method, and program

Publications (1)

Publication Number Publication Date
WO2023089886A1 true WO2023089886A1 (en) 2023-05-25

Family

ID=86396622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031014 WO2023089886A1 (en) 2021-11-18 2022-08-17 Traveling map creating device, autonomous robot, method for creating traveling map, and program

Country Status (2)

Country Link
JP (1) JP2023074521A (en)
WO (1) WO2023089886A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816241A (en) * 1994-07-01 1996-01-19 Minolta Co Ltd Map storing method and route preparing method using map
US20110125324A1 (en) * 2009-11-20 2011-05-26 Baek Sanghoon Robot cleaner and controlling method of the same
WO2018043180A1 (en) * 2016-08-31 2018-03-08 村田機械株式会社 Traveling route creation method, autonomous traveling device, and program
JP2018196513A (en) * 2017-05-23 2018-12-13 東芝ライフスタイル株式会社 Vacuum cleaner
JP2020509500A (en) * 2017-03-02 2020-03-26 ロブアート ゲーエムベーハーROBART GmbH Control method of autonomous mobile robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816241A (en) * 1994-07-01 1996-01-19 Minolta Co Ltd Map storing method and route preparing method using map
US20110125324A1 (en) * 2009-11-20 2011-05-26 Baek Sanghoon Robot cleaner and controlling method of the same
WO2018043180A1 (en) * 2016-08-31 2018-03-08 村田機械株式会社 Traveling route creation method, autonomous traveling device, and program
JP2020509500A (en) * 2017-03-02 2020-03-26 ロブアート ゲーエムベーハーROBART GmbH Control method of autonomous mobile robot
JP2018196513A (en) * 2017-05-23 2018-12-13 東芝ライフスタイル株式会社 Vacuum cleaner

Also Published As

Publication number Publication date
JP2023074521A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
US20240118700A1 (en) Mobile robot and control method of mobile robot
EP3727122B1 (en) Robot cleaners and controlling method thereof
JP5141507B2 (en) Autonomous mobile device
JP6054425B2 (en) How to perform self-location estimation automatically
JPWO2019097626A1 (en) Self-propelled vacuum cleaner
CN107773161B (en) Robot cleaner
JP6636260B2 (en) Travel route teaching system and travel route teaching method for autonomous mobile object
US20190220033A1 (en) Moving robot and controlling method for the moving robot
JP6074205B2 (en) Autonomous mobile
JP2017211825A (en) Self-position estimation device and self-position estimation method
JP6348971B2 (en) Moving body
KR20220056643A (en) Robot cleaner and driving method thereof
WO2023089886A1 (en) Traveling map creating device, autonomous robot, method for creating traveling map, and program
EP3478143B1 (en) Robot cleaner
WO2023157345A1 (en) Traveling map creation device, autonomous robot, method for creating traveling map, and program
JP2022101947A (en) Mobile robot system, terminal device and map update program
WO2022137796A1 (en) Travel map creation device, autonomous travel robot, travel control system for autonomous travel robot, travel control method for autonomous travel robot, and program
JP2022190894A (en) Traveling-map creating device, self-propelled robot system, traveling-map creating method, and program
JP2021027884A (en) Autonomous travel type vacuum cleaner, method for controlling autonomous travel type vacuum cleaner, and program
US20230046417A1 (en) Robotic cleaner
WO2023276187A1 (en) Travel map creation device, travel map creation method, and program
JP2023075740A (en) Traveling map creation device, autonomous travel type robot, traveling map creation method, and program
US20220031136A1 (en) Vacuum cleaner system and vacuum cleaner
JP2024006218A (en) Movement control system, movement control method, and program
JP2022182100A (en) Autonomous travel type robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895174

Country of ref document: EP

Kind code of ref document: A1