JPH04282539A - Method for forming reflection-charge preventing film - Google Patents

Method for forming reflection-charge preventing film

Info

Publication number
JPH04282539A
JPH04282539A JP3044665A JP4466591A JPH04282539A JP H04282539 A JPH04282539 A JP H04282539A JP 3044665 A JP3044665 A JP 3044665A JP 4466591 A JP4466591 A JP 4466591A JP H04282539 A JPH04282539 A JP H04282539A
Authority
JP
Japan
Prior art keywords
sio2
film
forming
reflective
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3044665A
Other languages
Japanese (ja)
Inventor
Katsumi Obara
小原 克美
Hiromitsu Kawamura
河村 啓溢
Takao Kawamura
河村 孝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3044665A priority Critical patent/JPH04282539A/en
Publication of JPH04282539A publication Critical patent/JPH04282539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To provide a method for forming a reflection/charge-preventing film difficult to stain further with sufficient practical strength in a manufacturing process and the other handling, in the case of forming the reflecting/charge- preventing film provided on a glass material surface or the like. CONSTITUTION:A method for forming an SiO2 film layer 6 by applying an alcohol solution of Si(OR)4, adding ultrafine grains SiO2, onto a glass body surface by a dip or spin method to form a reflecting/charge-preventing film 4 and then applying the alcohol solution of Si(OR)4 further onto this film by the dip method, and baking it.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は陰極線管、液晶表示装置
その他のディスプレイ装置のガラス表面に設ける反射・
帯電防止膜の形成に係り、特に、製造工程その他の取扱
いにおいて、汚れが付き難く、かつ、十分な実用強度を
有する反射・帯電防止膜の形成方法に関する。
[Industrial Application Field] The present invention relates to a reflection device provided on the glass surface of a cathode ray tube, liquid crystal display device, or other display device.
The present invention relates to the formation of an antistatic film, and particularly to a method for forming a reflective/antistatic film that is resistant to staining during the manufacturing process and other handling processes and has sufficient strength for practical use.

【0002】0002

【従来の技術】従来、この種の反射防止膜の形成方法と
しては真空蒸着等で多層干渉膜を積層する方法、化学エ
ッチングにより無反射膜を形成する方法などが、また、
帯電防止膜の形成方法としては真空蒸着、CVD法など
によってSnO2、In2O3などからなる透明導電膜
を形成する方法などが知られているが、これらの方法を
例えば陰極線管パネル外表面の反射防止、帯電防止に適
用しようとする場合には製造コストが高くなるという問
題があった。また、完成した陰極線管にこれらの方法を
直接適用することは困難である。
[Prior Art] Conventionally, methods for forming this type of antireflection film include a method of laminating a multilayer interference film by vacuum evaporation, a method of forming an antireflection film by chemical etching, etc.
As a method for forming an antistatic film, methods such as forming a transparent conductive film made of SnO2, In2O3, etc. by vacuum evaporation, CVD, etc. are known. When applied to antistatic applications, there is a problem in that the manufacturing cost becomes high. Furthermore, it is difficult to directly apply these methods to completed cathode ray tubes.

【0003】これらの問題点に対して、本発明者等は、
先に、SiO2の超微粒子を添加したSi(OR)4(
Rはアルキル基)のアルコール溶液をガラス体表面に塗
布、焼成して、該ガラス体の表面上にSiO2超微粒子
とこれを接着するSiO2バインダとからなる反射防止
膜を形成する方法を提案した(特開昭63‐19310
1号)。また、上記組成の塗布液にそれ自体が導電性を
有するSnO2、In2O3の超微粒子を含有させるこ
とによって、帯電防止効果を付与した反射防止膜につい
ても提案した(特開平01‐154444号)。
[0003] In response to these problems, the present inventors have
First, Si(OR)4(
We proposed a method of coating an alcoholic solution of R (alkyl group) on the surface of a glass body and firing it to form an antireflection film on the surface of the glass body, which consists of ultrafine SiO2 particles and a SiO2 binder that adheres them. Japanese Patent Publication No. 63-19310
No. 1). They also proposed an antireflection film that imparts an antistatic effect by incorporating ultrafine particles of SnO2 and In2O3, which themselves have conductivity, into a coating solution having the above composition (Japanese Patent Laid-Open No. 154444/1999).

【0004】0004

【発明が解決しようとする課題】上記本発明者等提案の
方法は、ガラス体表面の他に、従来技術では困難であっ
た陰極線管パネルの外表面に反射・帯電防止膜を直接形
成できるという優れた効果を有する方法であるが、該反
射・帯電防止膜の表面を手で触れたりすると指紋などの
汚れが付きやすく、また、この汚れが容易に除去できる
ものではないために、反射防止特性を損なうことがあっ
た。また、ここで得られる反射・帯電防止膜の構成粒子
同士の接着強度および該膜とガラス体表面との間の接着
強度が小さいために、硬いもので摩擦するようなことが
起った場合に、構成粒子の一部が削り取られたりあるい
はガラス体表面から一部剥離してしまうことがあった。 例えば、消しゴム(ライオン事務器製、タイプ50‐5
0)で擦った場合にもこのような現象が発生していた。
[Problems to be Solved by the Invention] The method proposed by the present inventors can directly form a reflective and antistatic film on the outer surface of the cathode ray tube panel, which was difficult to do with conventional techniques, in addition to the surface of the glass body. Although this method has excellent effects, when the surface of the reflective/antistatic coating is touched with hands, fingerprints and other stains are likely to adhere, and since this stain cannot be easily removed, the antireflective properties may be damaged. In addition, since the adhesive strength between the constituent particles of the reflective/antistatic film obtained here and the adhesive strength between the film and the surface of the glass body are low, when friction occurs with a hard object, In some cases, some of the constituent particles were scraped off or partially peeled off from the surface of the glass body. For example, eraser (manufactured by Lion Office Equipment, type 50-5)
0), such a phenomenon also occurred.

【0005】本発明の目的は、上記従来技術の有してい
た課題を解決して、製造工程その他の取扱いにおいて、
汚れが付き難く、かつ、十分な実用強度を有する反射・
帯電防止膜の形成方法を提供することにある。
An object of the present invention is to solve the problems of the above-mentioned prior art, and to improve the manufacturing process and other handling.
Reflective material that is hard to get dirty and has sufficient strength for practical use.
An object of the present invention is to provide a method for forming an antistatic film.

【0006】[0006]

【発明を解決するための手段】上記目的は、SiO2超
微粒子とSnO2超微粒子とを添加したSi(OR)4
のアルコール溶液をディップ法あるいはスピン法により
ガラス体表面上に塗布して反射・帯電防止膜を形成した
後、該膜上にさらにSi(OR)4のアルコール溶液を
ディップ法により塗布、焼成してSiO2膜層を形成す
ることによって達成することができる。
Means for Solving the Invention The above object is to provide Si(OR)4 to which SiO2 ultrafine particles and SnO2 ultrafine particles are added.
An alcohol solution of Si(OR)4 is applied onto the surface of the glass body by a dip method or a spin method to form a reflective/antistatic film, and then an alcohol solution of Si(OR)4 is further applied onto the film by a dip method and baked. This can be achieved by forming a SiO2 film layer.

【0007】[0007]

【作用】上記したようにガラス体表面上に形成した、S
iO2超微粒子とSnO2超微粒子およびこれらを接着
固定するためのSiO2バインダからなる反射・帯電防
止膜上にさらにSiO2層を形成すると、後者のSiO
2層が前者の反射・帯電防止膜の保護層の役目を果し、
これによって、反射・帯電防止膜の耐汚染性、耐摩耗性
に関する実用強度を確保することができる。
[Operation] S formed on the surface of the glass body as described above.
When an SiO2 layer is further formed on the reflection/antistatic film made of iO2 ultrafine particles, SnO2 ultrafine particles, and a SiO2 binder for adhering and fixing them, the latter SiO
The two layers serve as a protective layer for the former reflective/antistatic film,
This makes it possible to ensure practical strength in terms of stain resistance and abrasion resistance of the reflective/antistatic film.

【0008】上記本発明の方法によって形成した反射・
帯電防止膜と従来技術の方法による反射・帯電防止膜と
の比較について、図によってさらに詳細に説明すれば次
の通りである。
Reflections formed by the method of the present invention described above
A comparison between the antistatic film and the reflective/antistatic film formed by the prior art method will be explained in more detail with reference to the drawings as follows.

【0009】まず、図2は従来技術の方法によって形成
した反射・帯電防止膜4の構成状態を示す断面図で、こ
の場合、SiO2超微粒子1は反射防止効果を、SnO
2超微粒子2は導電性を、また、SiO2バインダ3は
SiO2超微粒子1とSnO2超微粒子2およびガラス
体表面5との接着固定の役割を果す。ここで、SiO2
超微粒子1として平均粒径120nmの粒子を用いた場
合、凹凸の深さは約60〜120nmで、極めて微細な
凹凸となる。また、このような場合、SiO2超微粒子
1とSnO2超微粒子2とガラス体表面5とは殆ど点で
接着している。このような状態の表面を手で触れたり、
消しゴム等の硬い物で擦ったりすると、汚れが付いたり
、消しゴムかすが凹凸の間に埋まったりするため汚れが
取れ難くなったり、SiO2、SnO2超微粒子がガラ
ス体表面5から剥離したり、または、SiO2超微粒子
が摩耗したりするために、反射防止効果が損なわれるこ
とがある。
First, FIG. 2 is a cross-sectional view showing the configuration of a reflection/antistatic coating 4 formed by a conventional method.
2 The ultrafine particles 2 have conductivity, and the SiO2 binder 3 serves to bond and fix the SiO2 ultrafine particles 1, the SnO2 ultrafine particles 2, and the glass body surface 5. Here, SiO2
When particles with an average particle diameter of 120 nm are used as the ultrafine particles 1, the depth of the unevenness is approximately 60 to 120 nm, resulting in extremely fine unevenness. Further, in such a case, the SiO2 ultrafine particles 1, the SnO2 ultrafine particles 2, and the glass body surface 5 are adhered at almost all points. Do not touch the surface in this condition with your hands,
If you rub it with a hard object such as an eraser, it will get dirty, or the eraser scum will get buried between the unevenness, making it difficult to remove the dirt, or the ultrafine particles of SiO2 and SnO2 will peel off from the surface of the glass body 5, or the SiO2 The antireflection effect may be impaired due to wear of the ultrafine particles.

【0010】これに対して、図1は本発明の方法により
形成した反射・帯電防止膜の概略構成を示した図で、こ
の場合には、従来技術の場合と同様構成の反射・帯電防
止膜の上にさらにSiO2層6(厚さ約5〜20nm)
が反射防止特性を劣化させることなく設けられているた
めに、SiO2超微粒子、SnO2超微粒子同士および
ガラス体表面とが十分に接着固定することができるため
、耐汚染性、耐摩耗性に関して十分な実用強度を確保す
ることができる。
On the other hand, FIG. 1 is a diagram showing a schematic structure of a reflective/antistatic film formed by the method of the present invention. Further SiO2 layer 6 (thickness approximately 5-20 nm)
is provided without deteriorating the antireflection properties, and the SiO2 ultrafine particles and SnO2 ultrafine particles can be sufficiently adhesively fixed to each other and to the glass body surface, resulting in sufficient stain resistance and abrasion resistance. Practical strength can be ensured.

【0011】SiO2層の形成はスピン塗布法あるいは
スプレー塗布法によって行うこともできるが、反射防止
特性を損なうことがあるため不適である。また、真空蒸
着法で形成することも可能であるが、完成した陰極線管
などの大きなものに適用するためには大がかりな設備を
必要とするため、製造コストの点から方法としては不適
である。これらのことから、SiO2層6の形成にはデ
ィップ法が最適である。
[0011] The SiO2 layer can be formed by spin coating or spray coating, but this is not suitable because it may impair the antireflection properties. It is also possible to form the film by vacuum evaporation, but it requires large-scale equipment to be applied to large objects such as completed cathode ray tubes, making it unsuitable as a method in terms of manufacturing costs. For these reasons, the dipping method is most suitable for forming the SiO2 layer 6.

【0012】なお、ガラス体の表面にSiO2超微粒子
膜を形成することによって反射防止効果が得られるのは
、空気の屈折率を1.0、SiO2超微粒子の屈折率を
1.48としたとき、SiO2超微粒子の凹凸形状部分
において屈折率がSiO2の体積分律に従って連続的に
変化することによる反射低減効果によるものである。ま
た、導電性はSnO2超微粒子自体の電子伝導性による
ものである。
[0012] The antireflection effect can be obtained by forming a SiO2 ultrafine particle film on the surface of a glass body when the refractive index of air is 1.0 and the refractive index of SiO2 ultrafine particles is 1.48. This is due to the reflection reduction effect caused by the refractive index continuously changing in the uneven portion of the SiO2 ultrafine particles according to the volumetric law of SiO2. Further, the conductivity is due to the electronic conductivity of the SnO2 ultrafine particles themselves.

【0013】[0013]

【実施例】以下、本発明方法の内容について比較例との
比較によって具体的に説明する。
EXAMPLES The content of the method of the present invention will be specifically explained below by comparison with comparative examples.

【0014】まず反射・帯電防止膜を形成すべきガラス
体の表面を研摩材及びアルカリ洗浄剤等を用いて清浄化
した後、表1に示した反射・帯電防止膜塗布液およびS
iO2層形成塗布液を該ガラス体表面上に塗布し、15
0℃30分間の焼成を行った。すなわち、実施例1、2
及び比較例1、2においては、反射・帯電防止膜塗布液
をガラス体引上げ速度0.5mm/秒でディップ塗布、
実施例3においては回転数200rpmでスピン塗布を
行った。続いて、実施例1、3についてはSiO2層形
成塗布液をガラス体引上げ速度0.5mm/秒で、実施
例2についてはガラス体引上げ速度0.8mm/秒でデ
ィップ塗布、比較例1については回転数200rpmで
スピン塗布を行った。最後に上記各試料を150℃30
分間焼成した物を試料として、反射特性、耐摩耗性及び
汚染除去性を調べた。結果を表1膜特性の欄に示した。
First, the surface of the glass body on which the reflective/antistatic film is to be formed is cleaned using an abrasive and an alkaline cleaning agent, and then the reflective/antistatic film coating solution and S shown in Table 1 are applied.
Applying an iO2 layer forming coating liquid onto the surface of the glass body,
Firing was performed at 0°C for 30 minutes. That is, Examples 1 and 2
In Comparative Examples 1 and 2, the reflective/antistatic film coating solution was dip coated at a glass body pulling speed of 0.5 mm/sec.
In Example 3, spin coating was performed at a rotation speed of 200 rpm. Subsequently, for Examples 1 and 3, the SiO2 layer forming coating solution was applied by dip coating at a glass body pulling rate of 0.5 mm/sec, for Example 2, a glass body pulling rate of 0.8 mm/sec, and for Comparative Example 1, Spin coating was performed at a rotation speed of 200 rpm. Finally, each sample was heated to 30°C at 30°C.
Reflection properties, abrasion resistance, and stain removability were investigated using samples baked for minutes. The results are shown in the membrane properties column of Table 1.

【0015】表1の結果から、比較例1の試料は初期の
反射特性が悪く、比較例2の試料は耐摩耗性が小さくま
た汚れ除去性も悪いのに対して、本発明実施例1、2、
3の試料は何れも初期の反射特性が良く、耐摩耗強度も
強く、汚れ除去性も極めて容易であることが判る。なお
、上記汚れ除去性の検査は、反射・帯電防止膜を指で触
って指紋を付けた後メタノールで拭きとり、そのときの
指紋の除去し易さの比較によって行った。また、本発明
実施例試料の反射・帯電防止膜の表面抵抗の初期値は何
れも1×109Ω/□であり、十分高い導電性を示すも
のであった。
From the results in Table 1, it can be seen that the sample of Comparative Example 1 had poor initial reflection characteristics, and the sample of Comparative Example 2 had low abrasion resistance and poor dirt removal properties, whereas the sample of Example 1 of the present invention, 2,
It can be seen that all samples No. 3 have good initial reflection characteristics, strong abrasion resistance, and are extremely easy to remove dirt. The stain removability was tested by touching the reflective/antistatic film with a finger to leave a fingerprint on it, then wiping it off with methanol, and comparing the ease with which the fingerprint was removed. Further, the initial values of the surface resistance of the reflective/antistatic coatings of the samples of the examples of the present invention were all 1×10 9 Ω/□, indicating sufficiently high conductivity.

【0016】[0016]

【表1】[Table 1]

【0017】[0017]

【発明の効果】以上述べてきたように、反射・帯電防止
膜の形成方法を本発明の形成方法とすることによって、
従来技術の有していた課題を解決して、製造工程その他
の取扱いにおいて汚れが付き難く、かつ、十分な実用強
度を有する反射・帯電防止膜の形成方法を提供すること
ができた。この方法によって、上記の優れた特性を有す
る反射・帯電防止膜を簡単な工程で、低コストで得るこ
とができる。
[Effects of the Invention] As described above, by using the method of forming a reflective/antistatic film according to the present invention,
By solving the problems of the prior art, it has been possible to provide a method for forming a reflective/antistatic film that is resistant to staining during the manufacturing process and other handling processes and has sufficient strength for practical use. By this method, a reflective/antistatic film having the above-mentioned excellent properties can be obtained through simple steps and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の方法で形成した反射・帯電防止
膜の断面構造を示す模式図。
FIG. 1 is a schematic diagram showing the cross-sectional structure of a reflective/antistatic film formed by the method of the present invention.

【図2】図2は従来技術の方法で形成した反射・帯電防
止膜の断面構造を示す模式図。
FIG. 2 is a schematic diagram showing the cross-sectional structure of a reflective/antistatic film formed by a conventional method.

【符号の説明】[Explanation of symbols]

1…SiO2超微粒子、2…SnO2超微粒子、3…S
iO2バインダ、4…反射・帯電防止膜、5…ガラス体
、6…SiO2層。
1...SiO2 ultrafine particles, 2...SnO2 ultrafine particles, 3...S
iO2 binder, 4... reflective/antistatic film, 5... glass body, 6... SiO2 layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】SiO2微粒子とSnO2微粒子とを添加
したSi(OR)4(Rはアルキル基)のアルコール溶
液をディップ法あるいはスピン法によりガラス体表面上
に塗布して反射・帯電防止膜を形成した後、該膜上にさ
らにSi(OR)4のアルコール溶液をディップ法によ
り塗布、焼成してSiO2膜層を形成したことを特徴と
する反射・帯電防止膜の形成方法。
Claim 1: A reflective/antistatic film is formed by applying an alcoholic solution of Si(OR)4 (R is an alkyl group) to which SiO2 fine particles and SnO2 fine particles are added onto the surface of a glass body using a dipping method or a spin method. After that, an alcohol solution of Si(OR)4 is further coated on the film by a dip method and baked to form a SiO2 film layer.
JP3044665A 1991-03-11 1991-03-11 Method for forming reflection-charge preventing film Pending JPH04282539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044665A JPH04282539A (en) 1991-03-11 1991-03-11 Method for forming reflection-charge preventing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044665A JPH04282539A (en) 1991-03-11 1991-03-11 Method for forming reflection-charge preventing film

Publications (1)

Publication Number Publication Date
JPH04282539A true JPH04282539A (en) 1992-10-07

Family

ID=12697746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044665A Pending JPH04282539A (en) 1991-03-11 1991-03-11 Method for forming reflection-charge preventing film

Country Status (1)

Country Link
JP (1) JPH04282539A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
KR100428967B1 (en) * 1996-12-17 2004-07-27 삼성에스디아이 주식회사 Cathode ray tube and method for manufacturing the same including steps of depositing first and second compounds and grounding copper tape
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
CN103048706A (en) * 2012-11-30 2013-04-17 法国圣戈班玻璃公司 Optical component, manufacturing method and photovoltaic device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428967B1 (en) * 1996-12-17 2004-07-27 삼성에스디아이 주식회사 Cathode ray tube and method for manufacturing the same including steps of depositing first and second compounds and grounding copper tape
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
JP4841782B2 (en) * 1999-12-13 2011-12-21 日本板硝子株式会社 Low reflective film and solar panel
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9915761B2 (en) 2004-09-16 2018-03-13 Nikon Corporation Optical system having optical thin film including amorphous silicon oxide-based binder
JPWO2006030848A1 (en) * 2004-09-16 2008-05-15 株式会社ニコン MgF2 optical thin film having amorphous silicon oxide binder, optical element including the same, and method for producing MgF2 optical thin film
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
JP4858170B2 (en) * 2004-09-16 2012-01-18 株式会社ニコン Method for producing MgF2 optical thin film having amorphous silicon oxide binder
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN103048706A (en) * 2012-11-30 2013-04-17 法国圣戈班玻璃公司 Optical component, manufacturing method and photovoltaic device

Similar Documents

Publication Publication Date Title
JP6863343B2 (en) Manufacturing method of glass laminate, front plate for display, display device and glass laminate
JP6911828B2 (en) Glass laminate, display front plate and display device
JPH04282539A (en) Method for forming reflection-charge preventing film
JP2763472B2 (en) Transparent conductive laminate and touch panel
KR20050016035A (en) Optical layer system having antireflection properties
JP2002326301A (en) Transparent conductive laminate and touch panel
KR20170035998A (en) Coating for glass with improved scratch/wear resistance and oleophobic properties
JPH0266809A (en) Transparent conductive lamination body
JP2010231171A (en) Optical article and method for producing the same
JPH08211202A (en) Light-transmitting plate containing water-repellent and oil-repellent superfine particle and its production
JP4478216B2 (en) DISPLAY DEVICE FILTER, DISPLAY DEVICE, DISPLAY DEVICE FILTER MANUFACTURING METHOD, AND SURFACE MODIFICATION FILM COATING COMPOSITION
JP2846887B2 (en) Transparent conductive laminate
JP4826007B2 (en) Touch panel
JPH0798401A (en) Antireflection film and antireflection member
JPS61118932A (en) Manufacture of braun tube
JP2003114302A (en) Antireflection film and method for manufacturing antireflective polarizing plate
US20100045911A1 (en) Liquid crystal display apparatus
JP2006289901A (en) Reflection preventing film and display unit
JP6425598B2 (en) Transparent conductive film and touch panel
JP3574158B2 (en) Liquid crystal display
JPH09110476A (en) Display device
JPH0740464B2 (en) CRT manufacturing method
JPH09197103A (en) Plastic optical article with multilayered antireflection film
JPH10148701A (en) Antireflection filter, its production, and display device using this antireflection filter
JPH07116623A (en) Removal of dirt from antireflection coating