JPH04279023A - Method of selectively growing 3-5 compound semiconductor - Google Patents

Method of selectively growing 3-5 compound semiconductor

Info

Publication number
JPH04279023A
JPH04279023A JP63291A JP63291A JPH04279023A JP H04279023 A JPH04279023 A JP H04279023A JP 63291 A JP63291 A JP 63291A JP 63291 A JP63291 A JP 63291A JP H04279023 A JPH04279023 A JP H04279023A
Authority
JP
Japan
Prior art keywords
compound
group
growth
volatile
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63291A
Other languages
Japanese (ja)
Other versions
JP2739778B2 (en
Inventor
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291A priority Critical patent/JP2739778B2/en
Publication of JPH04279023A publication Critical patent/JPH04279023A/en
Application granted granted Critical
Publication of JP2739778B2 publication Critical patent/JP2739778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To realize a low-temperature method for selectively growing a high- quality 3-5 compound semiconductor which does not take carbon impurities in its body by obtaining a selecting property and sufficiently high growing speed at a low temperature. CONSTITUTION:In this method for selectively growing 3-5 compound semiconductors which supplies a volatile complex compound composed of a gourp 3 compound and group 5 compound and a group 5 element or group 5 volatile compound onto a substrate, a hydrogen compound in which a group 3 element and halogen element are directly linked with each other is used for the group 3 compound constituting the valatile complex compound. In addition, a nitrogen compound can be used as the group 5 compound constituting the volatile complex compound.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は品質の優れた3−5族化
合物半導体を低温で選択的に成長する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively growing Group 3-5 compound semiconductors of excellent quality at low temperatures.

【0002】0002

【従来の技術】3−5族化合物半導体の選択エピタキシ
ャル成長は、発光ダイオ−ド(LED)やレ−ザ−ダイ
オ−ド(LD)に代表される光デバイス、また電界効果
トランジスタ(FET)やヘテロバイポーラトランジス
タ(HBT)に代表される高速デバイスの高性能化のた
めに極めて重要である。たとえばGaAsFETでは電
極形成前にソースおよびドレイン領域のみに選択的にN
+型コンタクト層を成長して寄生抵抗の低減することが
できる。また活性領域を高抵抗のAlGaAs層で埋め
込んだBHレーザーでは駆動電流の低減することができ
る。さらに光および高速デバイスを同一基板上へ集積化
し、高機能化をはかる際の素子分離などにも選択エピタ
キシャル成長技術は欠かすことができない。
[Prior Art] Selective epitaxial growth of Group 3-5 compound semiconductors is used for optical devices such as light emitting diodes (LEDs) and laser diodes (LDs), as well as for field effect transistors (FETs) and heterogeneous devices. This is extremely important for improving the performance of high-speed devices such as bipolar transistors (HBTs). For example, in a GaAsFET, N is selectively applied only to the source and drain regions before electrode formation.
A + type contact layer can be grown to reduce parasitic resistance. Further, in a BH laser whose active region is buried with a high-resistance AlGaAs layer, the driving current can be reduced. Furthermore, selective epitaxial growth technology is indispensable for element isolation when integrating optical and high-speed devices on the same substrate and achieving higher functionality.

【0003】ハロゲン輸送法や有機金属気相成長法(M
OCVD法)が実用化されるまでは、選択エピタキシャ
ル成長法としてもっぱら液相成長法(LPE法)が用い
られてきた。最近さらに高真空で成長する有機金属分子
線エピタキシャル成長法(MO−MBE法)などのガス
を用いる気相成長法(VPE法)が注目されている。
[0003] Halogen transport method and organometallic vapor phase epitaxy (M
Until the practical use of the OCVD method, the liquid phase epitaxy method (LPE method) was exclusively used as a selective epitaxial growth method. Recently, vapor phase epitaxy (VPE) using gas, such as metal organic molecular beam epitaxial growth (MO-MBE), which grows in a higher vacuum, has been attracting attention.

【0004】選択成長に加えてデバイス性能の向上に必
要な薄膜構造の成長が可能で、また量産性が優れている
In addition to selective growth, it is possible to grow thin film structures necessary for improving device performance, and it has excellent mass productivity.

【0005】3族有機金属化合物を原料とする気相成長
法のうち特に減圧MOCVD法が普及している。高真空
下で成長を行なうMO−MBE法の実用化が始まってい
る。
[0005] Among the vapor phase growth methods using group III organometallic compounds as raw materials, the low pressure MOCVD method is particularly popular. Practical use of the MO-MBE method, which performs growth under high vacuum, has begun.

【0006】特に熱平衡により近い状態での気相成長手
法であるハロゲン輸送法の選択性が優れている。しかし
Alを構成元素に含む3−5族化合物半導体の成長が難
しいためあまり用いられていない。ホットウオール反応
管を用いるハロゲン輸送法ではAlと石英管壁との反応
が問題となり、管壁をカーボンでコーティングするなど
特別な工夫が必要となる。
[0006] Particularly, the selectivity of the halogen transport method, which is a vapor phase growth method in a state closer to thermal equilibrium, is excellent. However, because it is difficult to grow Group 3-5 compound semiconductors containing Al as a constituent element, they are not used much. In the halogen transport method using a hot wall reaction tube, the reaction between Al and the quartz tube wall becomes a problem, and special measures such as coating the tube wall with carbon are required.

【0007】3族有機金属化合物を原料とした選択成長
において、3族有機金属が基板結晶表面に比べてSiO
2 マスク上で分解しにくい性質を利用している。その
ため3族有機金属原料としてトリエチルガリウム(TE
Ga)などエチル基をもつものより、より分解しにくい
トリメチルガリウム(TMGa)などメチル基をもつ原
料を用いた方が選択性が優ているまた成長圧力が低くS
iO2 マスク上での3族原料の表面拡散長が伸びるほ
ど選択性は良くなる。したがって高真空下で成長を行な
うMO−MBE法の方がより低温で良好な選択性が得る
In selective growth using a group 3 organometallic compound as a raw material, the group 3 organometal has a SiO
2. Utilizes the property that it is difficult to decompose on the mask. Therefore, triethylgallium (TE
Using a raw material with a methyl group such as trimethyl gallium (TMGa), which is more difficult to decompose, has better selectivity than a material with an ethyl group such as Ga), and has a lower growth pressure.
The longer the surface diffusion length of the Group 3 raw material on the iO2 mask, the better the selectivity. Therefore, the MO-MBE method, which performs growth under high vacuum, provides better selectivity at lower temperatures.

【0008】純粋な有機金属ではないが3族原子とハロ
ゲン元素、中でも塩素との結合を持つ有機金属化合物、
たとえばジエチルガリウムクロライド(DEGaCl)
を用いる方法が現在までに報告された中では最も良好な
選択性が得られる。これはDEGaClの分解で生じた
GaClが極めて安定で、SiO2上では分解しないた
めと考えられる。成長温度600℃以上で減圧MOCV
D法に適用した場合についてAPL(Applied 
 Physics  Letters),vol.54
,no.10,March,1989,pp.L910
〜912に報告されている。
[0008] Organometallic compounds that are not pure organometallics but have bonds with group III atoms and halogen elements, especially chlorine;
For example, diethyl gallium chloride (DEGaCl)
The method using this method provides the best selectivity among the methods reported to date. This is thought to be because GaCl generated by decomposition of DEGaCl is extremely stable and does not decompose on SiO2. Depressurized MOCV at a growth temperature of 600℃ or higher
When applied to method D, APL (Applied
Physics Letters), vol. 54
, no. 10, March, 1989, pp. L910
~912 reported.

【0009】本発明者の実験結果では成長温度400℃
以下まで、すなわちDEGaClが分解し成長に寄与で
きる温度以上のすべての温度範囲で選択性のあることを
確認している。成長圧力に依存しないので、たとえば大
気圧下でも良好な選択性が得られる。
According to the experimental results of the present inventor, the growth temperature was 400°C.
It has been confirmed that there is selectivity in the entire temperature range below, that is, above the temperature at which DEGaCl can decompose and contribute to growth. Since it does not depend on the growth pressure, good selectivity can be obtained even under atmospheric pressure, for example.

【0010】0010

【発明が解決しようとする課題】3族原料として3族元
素とハロゲン元素の結合を持つ有機金属化合物、たとえ
ば塩素と結合したDEGaClを用いた上記従来の選択
成長技術における問題点を考える。
Problems to be solved by the above conventional selective growth technique using an organometallic compound having a bond between a Group 3 element and a halogen element, such as DEGaCl bonded to chlorine, as a Group 3 raw material will be considered.

【0011】DEGaClを用いると、DEGaClが
分解し成長する温度、400℃以上のすべての温度範囲
で選択性があり、成長圧力にも依存しない。しかしなが
ら低温ではカーボンが不純物として大量に取込まれてし
まうという問題点があり、これは原料の分解、すなわち
エチル基の脱離が低温では起こりにくく、エチル基に含
まれるカーボンが結晶中に取込まれてしまうためと考え
られる。そのため高純度の膜を得るためには500℃以
上の比較的高温で成長を行なう必要があった。
When DEGaCl is used, there is selectivity over the entire temperature range of 400° C. or higher, which is the temperature at which DEGaCl decomposes and grows, and it does not depend on the growth pressure. However, there is a problem that a large amount of carbon is incorporated as an impurity at low temperatures.This is because the decomposition of the raw material, that is, the elimination of the ethyl group, is difficult to occur at low temperatures, and the carbon contained in the ethyl group is incorporated into the crystal. This is thought to be because it gets lost. Therefore, in order to obtain a highly pure film, it was necessary to perform growth at a relatively high temperature of 500° C. or higher.

【0012】ところで熱的に安定なGa−Cl結合を持
つ化合物でさえあれば、本来はカーボンの取込みの原因
となる有機化合物を用いる必要性はなく、たとえばクロ
ロガラン(GaH2 Cl)やジクロロガラン(GaH
Cl2 )、さらにGaCl3 などの無機化合物を用
いればカーボンの取込みを完全に防ぐことができると考
えられる。
[0012] By the way, as long as the compound has a thermally stable Ga-Cl bond, there is no need to use an organic compound that causes carbon uptake.
It is considered that carbon uptake can be completely prevented by using inorganic compounds such as Cl2) or GaCl3.

【0013】ところがGaH2 ClやGaHCl2 
は常温で極めて不安定で、蒸気圧も低いなど大きな問題
がある。一方GaCl3 は安定で、所定の蒸気圧があ
るのでガスとして配管内を移送しバルブで切り換えて反
応容器に供給できると思われる。
However, GaH2 Cl and GaHCl2
has major problems, such as being extremely unstable at room temperature and having low vapor pressure. On the other hand, GaCl3 is stable and has a predetermined vapor pressure, so it is thought that it can be transported as a gas through piping and supplied to the reaction vessel by switching with a valve.

【0014】ところがGaCl3 は強い潮解性と腐食
性があるので、取扱いが極めて難しく、選択成長用の原
料とすることができなかった。
However, since GaCl3 has strong deliquescent and corrosive properties, it is extremely difficult to handle and could not be used as a raw material for selective growth.

【0015】本発明の目的はこのような従来技術の問題
点を解消し、さらに低温で高品質の3−5族化合物半導
体を選択的に成長する方法を提供することにある。
An object of the present invention is to solve the problems of the prior art and to provide a method for selectively growing high quality Group 3-5 compound semiconductors at low temperatures.

【0016】[0016]

【課題を解決するための手段】本発明の3−5族化合物
半導体の選択成長方法は、3族化合物および5族化合物
からなる揮発性錯化合物と5族元素または5族揮発性化
合物とを基板上に供給する。ここで揮発性錯化合物を構
成する3族化合物は3族元素とハロゲン元素とが直接結
合した水素化合物である。また揮発性錯化合物を構成す
る5族化合物として窒素化合物を用いることができる。
[Means for Solving the Problems] The method for selectively growing a Group 3-5 compound semiconductor of the present invention involves growing a volatile complex compound consisting of a Group 3 compound and a Group 5 compound and a Group 5 element or a Group 5 volatile compound on a substrate. feed on top. The Group 3 compound constituting the volatile complex compound is a hydrogen compound in which a Group 3 element and a halogen element are directly bonded. Further, a nitrogen compound can be used as the Group 5 compound constituting the volatile complex compound.

【0017】[0017]

【作用】一般に3族化合物を構成する3族原子には空の
p電子軌道があり、そのためこれら化合物は電子受容体
(Lewis酸)として働く。一方、5族化合物を構成
する5族原子は孤立電子対をもつためこれら化合物は電
子供与体(Lewis塩基)として働く。その結果3族
化合物と5族化合物とがいわゆる酸・塩基の反応を起こ
す。すなわち3族原子の空のp電子軌道に5族原子の孤
立電子対が配位して、より安定な錯合体を形成しようと
する。
[Operation] Generally, Group 3 atoms constituting Group 3 compounds have empty p-electron orbitals, and therefore these compounds function as electron acceptors (Lewis acids). On the other hand, since the Group 5 atoms constituting the Group 5 compounds have lone pairs of electrons, these compounds act as electron donors (Lewis bases). As a result, the Group 3 compound and the Group 5 compound undergo a so-called acid-base reaction. That is, the lone pair of electrons of the Group 5 atom coordinates with the vacant p-electron orbital of the Group 3 atom to form a more stable complex.

【0018】3族元素とハロゲン元素とが直接結合した
水素化合物、例えばGa−Cl結合を持つGaH2 C
lやGaHCl2 などは常温で極めて不安定であると
いう問題があった。しかしこの場合も適切な5族化合物
を選んでこれら水素化合物と反応させれば、常温で安定
でかつ適度な蒸気圧を持つ錯合体を形成することができ
る。 このような錯合体は成長温度では3族水素化合物と5族
化合物とに容易に分解する。
[0018] A hydrogen compound in which a Group 3 element and a halogen element are directly bonded, such as GaH2C having a Ga-Cl bond.
1 and GaHCl2 have a problem in that they are extremely unstable at room temperature. However, in this case as well, if a suitable Group 5 compound is selected and reacted with these hydrogen compounds, a complex that is stable at room temperature and has an appropriate vapor pressure can be formed. Such a complex easily decomposes into a Group 3 hydrogen compound and a Group 5 compound at the growth temperature.

【0019】ここで5族化合物自体が安定で分解しなけ
れば、5族元素の供給は実質的にはないものと見なすこ
とができる。また分解さえしなければたとえ5族有機化
合物を用いてもカーボン不純物源とはならない。一方3
族水素化合物、例えばGaH2 Clは成長温度で容易
に分解するので、以上のプロセスによって最終的にはG
a−Clのみを基板表面に供給することができる。
Here, if the Group 5 compound itself is stable and does not decompose, it can be considered that the Group 5 element is not substantially supplied. Furthermore, even if a Group 5 organic compound is used, it will not become a source of carbon impurities unless it is decomposed. On the other hand 3
Group hydrogen compounds, such as GaH2Cl, are easily decomposed at the growth temperature, so the above process ultimately produces G
Only a-Cl can be supplied to the substrate surface.

【0020】さて5族化合物としてはヒ素や燐また窒素
などの化合物が3族水素化合物と安定な錯合体を形成す
る。しかしその中では原子番号の最も小さい窒素の化合
物、例えばNH3 や、また有機化合物では特にメチル
基を持つトリメチルアミン(TMN:N(CH3 )3
 )やジメチルアミン(DMNH:NH(CH3 )2
 )などが最も熱的に安定であり、かつ得られる錯合体
の蒸気圧も高い。
As Group 5 compounds, compounds such as arsenic, phosphorus, and nitrogen form stable complexes with Group 3 hydrogen compounds. However, among them, nitrogen compounds with the lowest atomic number, such as NH3, and organic compounds, especially trimethylamine (TMN:N(CH3)3), which has a methyl group, are
) and dimethylamine (DMNH:NH(CH3)2
) are the most thermally stable, and the resulting complex has a high vapor pressure.

【0021】したがって3族元素−ハロゲン元素の結合
をもつ3族水素化合物と5族窒素化合物とが反応して生
成する揮発性錯化合物、例えばGaH2 Cl・TMN
を3族原料として用いて、高品質な3−5族化合物半導
体をさらに低温で選択成長する方法が実現できる。
[0021] Therefore, a volatile complex compound formed by the reaction of a group 3 hydrogen compound having a group 3 element-halogen element bond and a group 5 nitrogen compound, such as GaH2 Cl.TMN
It is possible to realize a method of selectively growing a high quality Group 3-5 compound semiconductor at a lower temperature by using the compound semiconductor as a Group 3 raw material.

【0022】[0022]

【実施例】本発明の一実施例について、図面を参照して
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings.

【0023】SiO2 マスクを形成したGaAs(1
00)基板にGaAsを成長させるために、図1に示す
横型減圧MOCVD装置を用いた。
[0023] GaAs (1
00) In order to grow GaAs on a substrate, a horizontal low pressure MOCVD apparatus shown in FIG. 1 was used.

【0024】反応容器1の中にサセプタホルダ4で支持
されたカ−ボンサセプタ2に基板結晶3を置いた。反応
容器1の外周の高周波コイル8でサセプタ2を加熱する
A substrate crystal 3 was placed on a carbon susceptor 2 supported by a susceptor holder 4 in a reaction vessel 1 . The susceptor 2 is heated by a high frequency coil 8 around the outer periphery of the reaction vessel 1.

【0025】フィルタ5を通して排気装置6および排気
管7が接続されている。
An exhaust device 6 and an exhaust pipe 7 are connected through the filter 5.

【0026】ガス導入系統としてAsH3 ガスボンベ
9、DEGaClバブラ10、GaH2 Cl・TMN
バブラ11およびキャリヤになるH2 ガス12が接続
され、流量制御装置13とバルブ14によってガス流量
が制御される。
As a gas introduction system, AsH3 gas cylinder 9, DEGaCl bubbler 10, GaH2 Cl/TMN
A bubbler 11 and H2 gas 12 serving as a carrier are connected, and the gas flow rate is controlled by a flow rate control device 13 and a valve 14.

【0027】選択性の有無を調べるためGaAs基板3
の表面の一部にはSiO2 マスクが形成されている。
[0027] In order to examine the presence or absence of selectivity, the GaAs substrate 3
A SiO2 mask is formed on a part of the surface.

【0028】キャリアガスとなるH2 を9l/min
とし、反応管内圧力100Torr、GaAs基板3の
温度200℃〜700℃でGaAsを30分成長した。 AsH3 の反応管内分圧は1Torr、GaH2 C
l・TMNの分圧は2×10−2Torrとした。
[0028] H2 as carrier gas is supplied at 9 l/min.
Then, GaAs was grown for 30 minutes at a reaction tube internal pressure of 100 Torr and a GaAs substrate 3 temperature of 200° C. to 700° C. The partial pressure in the reaction tube of AsH3 is 1 Torr, and the partial pressure of AsH3 is 1 Torr.
The partial pressure of l·TMN was set to 2×10 −2 Torr.

【0029】比較のためGaH2 Cl・TMNのかわ
りに従来のDEGaClを用いた実験も行なった。成長
後、光学顕微鏡観察から選択性を評価した。SiO2 
マスクを除去してから、成長したGaAs層の膜厚を段
差計で測定した。
For comparison, an experiment was also conducted using conventional DEGaCl instead of GaH2Cl.TMN. After growth, selectivity was evaluated by optical microscopic observation. SiO2
After removing the mask, the thickness of the grown GaAs layer was measured using a step meter.

【0030】GaAsの成長速度の温度依存性を図2に
示す。この温度範囲ではほぼ一定で、SiO2 マスク
へのGaAsの析出は認められない。選択成長が可能と
いえる。
FIG. 2 shows the temperature dependence of the growth rate of GaAs. In this temperature range, the temperature is almost constant, and no GaAs precipitation is observed on the SiO2 mask. It can be said that selective growth is possible.

【0031】一方従来の原料であるDEGaClを用い
ると、図2に重ねて示すように400℃以下で成長速度
が大きく低下した。低温ではDEGaClの分解率が減
少するためと考えられる。
On the other hand, when DEGaCl, which is a conventional raw material, was used, the growth rate decreased significantly at temperatures below 400° C., as shown in FIG. This is thought to be because the decomposition rate of DEGaCl decreases at low temperatures.

【0032】200℃〜700℃の温度範囲でGaH2
 Cl・TMNおよびDEGaClを用いて成長した膜
の不純物密度をホール測定データを図3に示す。本実施
例のGaH2 Cl・TMNを用いて成長した膜はすべ
て1014〜1015/cm3 の低濃度のN型伝導を
示した。一方従来のDEGaClを用いて成長した膜は
500℃以下でP型伝導を示し、低温になると不純物密
度が増加する。このP型高濃度の不純物はSIMS測定
からカーボンであることが確かめられた。
[0032] GaH2 in the temperature range of 200°C to 700°C
FIG. 3 shows Hall measurement data for the impurity density of films grown using Cl.TMN and DEGaCl. All the films grown using GaH2Cl.TMN in this example exhibited low concentration N-type conductivity of 1014 to 1015/cm3. On the other hand, a film grown using conventional DEGaCl exhibits P-type conductivity at temperatures below 500° C., and the impurity density increases as the temperature decreases. SIMS measurement confirmed that this highly concentrated P-type impurity was carbon.

【0033】本実施例においてGaH2 Cl・TMN
を3族原料として用いることによって、より低温でGa
Asの選択成長が実現できた。カーボン不純物の取込み
は認められなかった。
In this example, GaH2Cl・TMN
By using Ga as a Group 3 raw material, Ga can be produced at lower temperatures.
Selective growth of As was achieved. No incorporation of carbon impurities was observed.

【0034】なお3族Ga原料としてはGaH2 Cl
・DMNHなどを用いることができ、5族元素の種類を
変えたGaPやGaSbの選択成長、またGaAsPな
ど混晶の選択成長にも本発明を適用することができる。 AlH2 I・TMNとAsH3を用いたAlAsの選
択成長やInH2 Cl・TMNとPH3 を用いたI
nPの選択成長などでも同様の効果得られる。そのほか
広く3−5族化合物半導体の選択成長に本発明を適用す
ることができる。
[0034] As the group III Ga raw material, GaH2Cl
- DMNH etc. can be used, and the present invention can also be applied to the selective growth of GaP and GaSb with different types of Group 5 elements, as well as the selective growth of mixed crystals such as GaAsP. Selective growth of AlAs using AlH2 I・TMN and AsH3 and I using InH2 Cl・TMN and PH3
A similar effect can be obtained by selective growth of nP. In addition, the present invention can be broadly applied to the selective growth of Group 3-5 compound semiconductors.

【0035】本実施例では気相成長装置として減圧MO
CVD装置を用いたが、常圧MOCVD装置や真空中で
成長を行なうMOMBE装置でも同様の結果が得られる
In this example, a reduced pressure MO is used as a vapor phase growth apparatus.
Although a CVD device was used, similar results can be obtained with an atmospheric pressure MOCVD device or a MOMBE device that performs growth in a vacuum.

【0036】[0036]

【発明の効果】低温で選択性と十分な成長速度も得られ
、かつカーボン不純物の取込みがない、高品質な3−5
族化合物半導体の低温選択成長方法が実現できた。
Effects of the invention: High quality 3-5 that provides selectivity and sufficient growth rate at low temperatures and does not incorporate carbon impurities.
A low-temperature selective growth method for group compound semiconductors has been realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例で用いた気相成長装置の概略
図である。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus used in an embodiment of the present invention.

【図2】GaH2 Cl・TMNおよびDEGaClを
用いた成長温度と成長速度との関係を示すグラフである
FIG. 2 is a graph showing the relationship between growth temperature and growth rate using GaH2Cl.TMN and DEGaCl.

【図3】半導体膜の成長温度と不純物濃度との関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between growth temperature and impurity concentration of a semiconductor film.

【符号の説明】[Explanation of symbols]

1    反応容器 2    カーボンサセプタ 3    基板結晶 4    サセプタホルダ 5    フィルタ 6    排気装置 7    排気管 8    高周波誘導コイル 9    AsH3 ボンベ 10    DEGaClバブラ 11    GaH2 Cl・TMNバブラ12   
 キャリアH2 ガス 13    流量制御装置 14    バルブ
1 Reaction vessel 2 Carbon susceptor 3 Substrate crystal 4 Susceptor holder 5 Filter 6 Exhaust device 7 Exhaust pipe 8 High frequency induction coil 9 AsH3 cylinder 10 DEGaCl bubbler 11 GaH2 Cl/TMN bubbler 12
Carrier H2 Gas 13 Flow rate control device 14 Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  3族化合物および5族化合物からなる
揮発性錯化合物と5族元素または5族揮発性化合物とを
基板上に供給する3−5族化合物半導体の成長方法にお
いて、揮発性錯化合物を構成する3族化合物は3族元素
とハロゲン元素とが直接結合した水素化合物であること
を特徴とする3−5族化合物半導体の選択成長方法。
1. A method for growing a Group 3-5 compound semiconductor in which a volatile complex compound consisting of a Group 3 compound and a Group 5 compound and a Group 5 element or a Group 5 volatile compound are provided on a substrate, comprising: A selective growth method for a Group 3-5 compound semiconductor, characterized in that the Group 3 compound constituting the is a hydrogen compound in which a Group 3 element and a halogen element are directly bonded.
【請求項2】  揮発性錯化合物を構成する5族化合物
が窒素化合物である請求項1記載の3−5族化合物半導
体の選択成長方法。
2. The method for selectively growing a Group 3-5 compound semiconductor according to claim 1, wherein the Group 5 compound constituting the volatile complex compound is a nitrogen compound.
JP63291A 1991-01-08 1991-01-08 Method for selective growth of group 3-5 compound semiconductor Expired - Lifetime JP2739778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291A JP2739778B2 (en) 1991-01-08 1991-01-08 Method for selective growth of group 3-5 compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291A JP2739778B2 (en) 1991-01-08 1991-01-08 Method for selective growth of group 3-5 compound semiconductor

Publications (2)

Publication Number Publication Date
JPH04279023A true JPH04279023A (en) 1992-10-05
JP2739778B2 JP2739778B2 (en) 1998-04-15

Family

ID=11479107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291A Expired - Lifetime JP2739778B2 (en) 1991-01-08 1991-01-08 Method for selective growth of group 3-5 compound semiconductor

Country Status (1)

Country Link
JP (1) JP2739778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729835A (en) * 1993-07-15 1995-01-31 Nec Corp Method for growing thin film of iii-v compound semiconductor
JP2006140450A (en) * 2004-10-05 2006-06-01 Rohm & Haas Electronic Materials Llc Organometallic compound
JP2008060536A (en) * 2006-06-09 2008-03-13 Air Products & Chemicals Inc SUPPLY OF HIGH FLOW GaCl3

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729835A (en) * 1993-07-15 1995-01-31 Nec Corp Method for growing thin film of iii-v compound semiconductor
JP2006140450A (en) * 2004-10-05 2006-06-01 Rohm & Haas Electronic Materials Llc Organometallic compound
JP2008060536A (en) * 2006-06-09 2008-03-13 Air Products & Chemicals Inc SUPPLY OF HIGH FLOW GaCl3

Also Published As

Publication number Publication date
JP2739778B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5270247A (en) Atomic layer epitaxy of compound semiconductor
JPH0547665A (en) Vapor growth method
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JP2001015437A (en) Iii group nitride crystal growing method
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
JP3013992B2 (en) Method for growing compound semiconductor crystal
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JPH0754802B2 (en) Vapor growth method of GaAs thin film
KR960004591B1 (en) Doped crystal growing method
US20050112281A1 (en) Growth of dilute nitride compounds
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2687371B2 (en) Vapor growth of compound semiconductors
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JPH04151822A (en) Vapor growth method for compound semiconductor organic metal
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
KR950011016B1 (en) Semiconductor epitaxy growth method using ultra high vacuum chemical vapor deposition
JP2936620B2 (en) Vapor phase growth of compound semiconductor crystals
JPH0535719B2 (en)
Gotoda et al. Characteristics of carbon incorporation in GaAs grown by gas source molecular beam epitaxy
JPH01261818A (en) Method of vapor growth of high-resistance algaas mixed crystal
JPH06124900A (en) Epitaxial growth method for compound crystal and method for doping
JPS647487B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971224