JPH0535719B2 - - Google Patents

Info

Publication number
JPH0535719B2
JPH0535719B2 JP61228605A JP22860586A JPH0535719B2 JP H0535719 B2 JPH0535719 B2 JP H0535719B2 JP 61228605 A JP61228605 A JP 61228605A JP 22860586 A JP22860586 A JP 22860586A JP H0535719 B2 JPH0535719 B2 JP H0535719B2
Authority
JP
Japan
Prior art keywords
growth
group
gaas
compound
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61228605A
Other languages
Japanese (ja)
Other versions
JPS6385098A (en
Inventor
Kazuo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP22860586A priority Critical patent/JPS6385098A/en
Publication of JPS6385098A publication Critical patent/JPS6385098A/en
Publication of JPH0535719B2 publication Critical patent/JPH0535719B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は−族化合物半導体の気相成長方法
による係るものであり、特に大面積高均一の−
族化合物半導体およびその混晶の極薄膜を形成
する−族化合物半導体気相成長技術に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for vapor phase growth of - group compound semiconductors, and particularly relates to a method for growing - group compound semiconductors in a vapor phase.
The present invention relates to a - group compound semiconductor vapor phase growth technique for forming ultrathin films of group compound semiconductors and their mixed crystals.

(従来の技術) −族化合物半導体のエピタキシヤル成長層
は発光ダイオード、レーザーダイオードなどの光
デバイスや、FETなどの高速デバイス等に広く
応用されている。さらに最近では、デバイス性能
を向上させるために数〜数十Åの薄膜半導体を積
み重ねた構造が要求されている。例えば、量子井
戸構造を持つレーザダイオードでは駆動電流の低
減や温度特性の向上、また発振波長の短波長化が
可能である。また二次元電子ガスを利用した
FETなどは、高速低雑音デバイスとして期待さ
れている。
(Prior Art) Epitaxially grown layers of - group compound semiconductors are widely applied to optical devices such as light emitting diodes and laser diodes, and high-speed devices such as FETs. Furthermore, recently, in order to improve device performance, a structure in which thin film semiconductors of several to several tens of angstroms are stacked is required. For example, a laser diode with a quantum well structure can reduce driving current, improve temperature characteristics, and shorten the oscillation wavelength. Also, using two-dimensional electron gas
FETs and other devices are expected to be used as high-speed, low-noise devices.

これらの薄膜エピタキシヤル成長法として従来
は、有機金属気相成長法(MOCVD法)やハロ
ゲン輸送法などのガスを用いる気相成長法
(VPE法)が知られ、供給ガスの量、成長温度お
よび成長時間等の精密な制御により膜厚をコント
ロールしていた。また高真空中での元素のビーム
を飛ばして成長を行う分子線エピタキシヤル成長
法(MBE法)は比較的厚さ制御が容易な成長法
として知られているが、やはり分子線強度や成長
温度、時間等の精密な制御が必要であつた。
Conventionally, vapor phase epitaxy (VPE) using gases such as metal organic chemical vapor deposition (MOCVD) and halogen transport have been known as thin film epitaxial growth methods, and the amount of supply gas, growth temperature, and Film thickness was controlled through precise control of growth time and other factors. Furthermore, the molecular beam epitaxial growth method (MBE method), in which growth is performed by ejecting an elemental beam in a high vacuum, is known as a growth method that allows relatively easy thickness control, but it also depends on the molecular beam intensity and growth temperature. , precise control of time, etc. was required.

これを改良したのが近年、スントラ(T.
Suntola)らによつて報告された原子層エピタキ
シヤル法(ALE法)で、第16回固体素子・材料
コンフアレンス予稿集(T.Suntola,Extended
Abstract of the 16th Conference on Solid
State Device and Materials,Kobe,1984,pp
−647−650)に説明されているように、化合物半
導体の構成元素、あるいはその元素を含むガスを
交互に供給して1原子層あるいは1分子層分ずつ
吸着させまた反応させ全体として所望の厚さの化
合物半導体を成長させる方法である。彼らはこの
方法を−族化合物半導体の成長に適用し、真
空中で構成元素を交互に供給しCdTe等の成長に
成功している。また、ZnCl2とH2Sを交互に導入
しての成長を試みているが、得られたZnS膜は多
結晶であり、理論から予想されるよりも薄い膜厚
しか得られていない。
In recent years, this has been improved by Suntra (T.
The atomic layer epitaxial method (ALE method) reported by T. Suntola et al.
Abstract of the 16th Conference on Solid
State Devices and Materials, Kobe, 1984, pp.
-647-650), the constituent elements of a compound semiconductor or a gas containing the elements are alternately supplied, adsorbed and reacted one atomic layer or one molecular layer at a time, and the desired thickness is obtained as a whole. This is a method for growing compound semiconductors. They applied this method to the growth of - group compound semiconductors and succeeded in growing CdTe and other materials by alternately supplying the constituent elements in a vacuum. We have also attempted growth by alternately introducing ZnCl 2 and H 2 S, but the resulting ZnS film is polycrystalline and thinner than expected from theory.

西澤らはこの方法をデバイス応用上重要な−
族化合物半導体に適用した。雑誌「ジヤーナ
ル・オブ・ジ・エレクトロケミカル・ソサイアテ
イ(Journal of the Electrochemical Society)」
第132巻第3号(1985年3月)の第1197−1200頁
に説明されているように、トリメチルガリウム
(TMG)とアルシン(AsH3)を真空中で交互に
GaAs基板上に導入することによつて、ある条件
下では1回の繰り返しサイクル当りほぼGaAsの
単分子層分の成長が可能であることを確かめた。
Nishizawa et al. have demonstrated that this method is important for device applications.
applied to group compound semiconductors. Magazine "Journal of the Electrochemical Society"
Trimethylgallium (TMG) and arsine (AsH 3 ) are alternately mixed in vacuo as described in Vol. 132, No. 3 (March 1985), pp. 1197-1200.
By introducing it onto a GaAs substrate, it was confirmed that under certain conditions it was possible to grow approximately a monomolecular layer of GaAs per one repeated cycle.

また碓井らはGaClとAs4(AsH3)を用いた多成
長室ハロゲ輸送法でGaAs基板をGaCl中とAs4
に交互に移動することによつてGaAs単分子層ご
との成長を行つた。(雑誌「ジヤパニーズ・ジヤ
ーナル・オブ・アプライド・フイジクス
(Japnese Journal of Applied Physics)」第25
巻第3号(1986年3月)の第L212−214頁に記
載。) (発明が解決しようとする問題点) −族化合物半導体の構成元素を含むガスを
交互に供給することによる−族化合物半導体
の結晶成長方法において、上記の従来技術の問題
点を考えて見る。
Furthermore, Usui et al. used a multi-growth chamber halogen transport method using GaCl and As 4 (AsH 3 ) to grow each GaAs monolayer by moving the GaAs substrate alternately into GaCl and As 4 . . (Japanese Journal of Applied Physics, No. 25)
Described in Volume No. 3 (March 1986), pages L212-214. ) (Problems to be Solved by the Invention) In a method for growing a crystal of a - group compound semiconductor by alternately supplying gases containing constituent elements of a - group compound semiconductor, the problems of the above-mentioned prior art will be considered.

前記西澤らの報告によると、真空中でTMG等
のアルキル基を3つもつ族有機金属化合物と
AsH3を基板結晶上に交互に導入する方法によつ
て、原料の流量にほぼよらずGaAsの単分子層/
1サイクルの成長を実現するためには、数十度以
内の狭い範囲に成長温度を制御する必要がある。
またアルキル基としてエチル基をもつ化合物で
は、この温度範囲はさらに狭くなる。H2をキヤ
リアガスとして常圧または減圧下での気相法で同
様の成長を行えば量産的に有利と思われるが、本
発明者の実験によると上記温度範囲は真空中より
も狭くなるかまたはなくなつてしまう。
According to the report by Nishizawa et al., group organometallic compounds with three alkyl groups such as TMG and
By alternately introducing AsH 3 onto the substrate crystal, GaAs monolayer/GaAs monolayer/
In order to achieve one cycle of growth, it is necessary to control the growth temperature within a narrow range of several tens of degrees.
Moreover, for compounds having an ethyl group as an alkyl group, this temperature range becomes even narrower. It would be advantageous for mass production to perform similar growth using a vapor phase method under normal pressure or reduced pressure using H2 as a carrier gas, but according to the inventor's experiments, the above temperature range is narrower than in vacuum or It will disappear.

一方前記碓井らの報告によると、GaClとAs4
(AsH3)を交互に基板結晶上に供給するハロゲ
ン輸送法では数百度以上の極めて広い温度範囲に
おいて単分子層以上の原料供給で供給量にも依存
せずほぼ完全な単分子層/サイクルの成長が実現
できる。しかし、この方法は族元素金属のハロ
ゲン化水素と反応させ輸送するため、高温中に
族元素金属と結晶基板を別に置き勾配のある温度
分布、あるいは均一な温度分布が要求されるた
め、例えば高周波誘導加熱による局所加熱方式が
用いられず量産的に不利である。また、この方法
は石英反応管を用いるホツトウオール法であるた
めAl金属と石英との反応が問題となりAl元素を
含む化合物の成長には石英表面を例えばカーボン
等でコーテイングするなど工夫が必要となる。
On the other hand, according to the report by Usui et al., GaCl and As 4
In the halogen transport method, in which (AsH 3 ) is alternately supplied onto the substrate crystal, it is possible to supply more than a monomolecular layer of raw material in an extremely wide temperature range of several hundred degrees or more, and it is possible to achieve a nearly complete monomolecular layer/cycle regardless of the supply amount. Growth can be achieved. However, since this method transports group element metals by reacting them with hydrogen halide, it is necessary to place the group element metals and the crystal substrate separately at high temperatures and to have a gradient or uniform temperature distribution. A local heating method using induction heating is not used, which is disadvantageous for mass production. Furthermore, since this method is a hot wall method using a quartz reaction tube, the reaction between Al metal and quartz becomes a problem, and in order to grow a compound containing the Al element, it is necessary to take measures such as coating the quartz surface with carbon or the like.

上記2例の他、例えばGaCl3等、族元素金属
のハロゲン化物とAsH3等、族元素の水素化物
を用いれば、すべてガスの状態で原料の供給が可
能である。しかし、ルバンスタイン
(Rrbenstein)らがジヤーナル・オブ・ジ・エレ
クトロケミカル・ソサイアテイ(Journal of the
Electrochemical Society)第113巻第4号(1966
年4月)の第365−367頁GaCl3とAs4を用いたH2
中での気相成長法において説明しているように、
基板上流でGaCl3を1且800〜850℃程度以上に加
熱し、GaClに変換してやる必要があり、これよ
り低温での加熱ではほとんど、またはまつたく成
長が起こらない。したがつてこの方法をホツトウ
オールで行うことはさけられず量産には不利であ
る。
In addition to the above two examples, if a halide of a group element metal such as GaCl 3 and a hydride of a group element metal such as AsH 3 are used, all raw materials can be supplied in a gaseous state. However, Rubenstein et al. in the Journal of the Electrochemical Society
Electrochemical Society) Volume 113 No. 4 (1966
H 2 using GaCl 3 and As 4 , pp. 365-367 (April 2013)
As explained in the vapor phase growth method in
It is necessary to heat GaCl 3 upstream of the substrate to a temperature of about 1 to 800 to 850° C. or higher to convert it into GaCl, and heating at a temperature lower than this causes little or no growth. Therefore, this method cannot be avoided using hot wall, which is disadvantageous for mass production.

本発明の目的はこのような従来技術の欠点を克
服し、量産に適した原子層エピタキシヤル過程に
よる超高均一なGaAsをはじめとする−族化
合物半導体の極薄膜を形成する−族化合物半
導体気相成長方法を提供することにある。
The purpose of the present invention is to overcome these drawbacks of the conventional technology and to form an ultra-thin film of - group compound semiconductors such as GaAs with ultra-high uniformity by an atomic layer epitaxial process suitable for mass production. An object of the present invention is to provide a phase growth method.

(問題点を解決するための手段) 本発明によれば族元素の有機揮発性化合物と
して族元素とハロゲン元素の結合を少なくとも
1つ持つ化合物と族元素の揮発性化合物を交互
に基板結晶上に供給し、その繰り返しによつて
−族化合物半導体およびその混晶の薄膜を形成
することを特徴とする−族化合物半導体の気
相成長方法が得られる。
(Means for Solving the Problems) According to the present invention, a compound having at least one bond between a group element and a halogen element and a volatile compound of a group element are alternately used as an organic volatile compound of a group element on a substrate crystal. A method for vapor phase growth of a - group compound semiconductor is obtained, which is characterized in that a thin film of a - group compound semiconductor and its mixed crystal is formed by supplying and repeating the steps.

(作 用) 族元素の有機揮発性化合物として族元素と
ハロゲン元素の結合を1つだけ持つ化合物を好ま
しい原料として特定する本発明は、有機金属の気
相および半導体結晶表面での分解過程等を考察す
ることによつて得られた。3つのアルキル基をも
つ族有機金属化合物を用いた原子層エピタキシ
ヤル法では、この有機金属原料が気相中もしくは
基板結晶表面で一部または完全に分解し、この分
解種の族原子が基板表面の族原子と結合を作
り化学吸着するとの認識が得られている。一方、
例えばGa金属とHClの反応で生じるGaCl等のモ
ノハロゲン化金属を用いた方法では族原子がハ
ロゲン原子と結合した状態のまま基板表面の族
原子と結合を作り化学吸着すると考えることがで
きる。そして、吸着種が有機金属の分解種の場合
でもCaClである場合でも族原子と族原子の
間の結合は強く、いずれも充分に大きな吸着エネ
ルギーをもつため、600℃程度以下の温度ではほ
とんど脱離しない。次に吸着種上への多層吸着の
可能性を考えてみる。雑誌「ジヤーナル・オブ・
ジ・エレクトロケミカル・ソサイアテイ
(Journal of the Electrochemical Society)第
132巻第3号(1985年3月)の第677−679頁によ
ると、トリエチルガリウム(TEG)は300℃程度
の低温でも分解が十分に進むこと、またトリメチ
ルガリウム(TMG)もこれより高い温度ではあ
るが分解が進むことが示されている。このような
アルキル基を3つもつ有機金属化合物は非常に不
安定であり高温において非可逆的に分解が進み金
属原子単体となる。したがつてこのような化合物
の分解種を吸着種として用いた場合、高温ではよ
り分解が進んだ形で吸着種として働くであろう
し、吸着種上での分解多層吸着が容易に起こるよ
うになる。これに対して例えばCaClのようなモ
ノハロゲン化金属は安定であり、H2気流中での GaCl+〓H2Ga+HCl の平衡は大きく左に片寄つている。これは基板結
晶上へ化学吸着した状態でも同様で、高温でもハ
ロゲン原子は族金属原子から脱離しないと考え
ることができる。そして、このような電気陰性度
の大きいハロゲン原子との結合をもつ族原子上
への多層吸着は起こりにくい。
(Function) The present invention specifies a compound having only one bond between a group element and a halogen element as a preferable raw material as an organic volatile compound of a group element. This was obtained through consideration. In the atomic layer epitaxial method using a group organometallic compound having three alkyl groups, the organometallic raw material is partially or completely decomposed in the gas phase or on the substrate crystal surface, and the group atoms of the decomposed species are distributed on the substrate surface. It is recognized that chemical adsorption occurs by forming bonds with group atoms. on the other hand,
For example, in a method using a monohalogenated metal such as GaCl generated by the reaction of Ga metal and HCl, the group atoms can be considered to form bonds with the group atoms on the substrate surface while remaining bonded to the halogen atoms, resulting in chemical adsorption. Whether the adsorbed species is a decomposed organometallic species or CaCl, the bonds between group atoms are strong, and both have sufficiently large adsorption energy that almost no desorption occurs at temperatures below about 600°C. I won't let you go. Next, let us consider the possibility of multilayer adsorption onto adsorbed species. Magazine “Journal of
Journal of the Electrochemical Society No.
According to Vol. 132, No. 3 (March 1985), pp. 677-679, triethyl gallium (TEG) decomposes sufficiently even at temperatures as low as 300°C, and trimethyl gallium (TMG) also decomposes at higher temperatures. However, it has been shown that decomposition progresses. Such an organometallic compound having three alkyl groups is extremely unstable and irreversibly decomposes into a single metal atom at high temperatures. Therefore, when decomposed species of such compounds are used as adsorbed species, at high temperatures they will act as adsorbed species in a more decomposed form, and decomposition multilayer adsorption on the adsorbed species will easily occur. . On the other hand, monohalogenated metals such as CaCl are stable, and the equilibrium of GaCl+〓H 2 Ga+HCl in an H 2 gas flow is largely shifted to the left. This is the same even when chemically adsorbed onto a substrate crystal, and it can be considered that halogen atoms do not desorb from group metal atoms even at high temperatures. In addition, multilayer adsorption on group atoms having bonds with halogen atoms having high electronegativity is unlikely to occur.

以上の考察に基づき得られたのが本発明の族
元素の有機揮発性化合物として族元素とハロゲ
ン元素の結合を少なくとも1つ持つ化合物を用い
る方法である。このような化合物はある程度の高
温で容易に分解して2つのアルキル基が脱離す
る。したがつてこのような反応が気相中、または
基板結晶上で起こることによつてモノハロゲン化
金属が生成し、安定な吸着種となりうる。ガス状
の化合物原料であるため例えば高周波誘導加熱に
よる局所加熱方式を用いることができ、この族
化合物原料と族元素の揮発性化合物を交互に基
板結晶上に供給することにより量産に適した原子
層エピタキシヤル過程による超高均一な−族
化合物半導体の極薄膜を形成する気相成長方法が
実現できる。
Based on the above considerations, the method of the present invention is to use a compound having at least one bond between a group element and a halogen element as an organic volatile compound of a group element. Such a compound is easily decomposed at a certain high temperature and two alkyl groups are eliminated. Therefore, when such a reaction occurs in the gas phase or on the substrate crystal, a metal monohalide is generated and can become a stable adsorbed species. Because it is a gaseous compound raw material, local heating methods such as high-frequency induction heating can be used, and by alternately supplying this group compound raw material and volatile compounds of group elements onto the substrate crystal, an atomic layer suitable for mass production can be created. A vapor phase growth method for forming an ultra-thin film of an ultra-highly uniform - group compound semiconductor through an epitaxial process can be realized.

(実施例) 以下に族有機金属化合物の持つハロゲン元素
が塩素(Cl)である場合における本発明の実施例
について、図面を参照して詳細に説明する。ハロ
ゲン元素として他の同じく電気陰性度の大きい
F,Br,Iなどの元素を持つ原料を用いた場合
についても本発明が有効であることは明らかであ
る。
(Example) Examples of the present invention in which the halogen element of the group organometallic compound is chlorine (Cl) will be described in detail below with reference to the drawings. It is clear that the present invention is also effective when using raw materials having other elements having high electronegativity, such as F, Br, and I, as the halogen element.

(実施例 1) 第1図に示した横型減圧MOCVD装置によつ
てGaAs(100)基板上へのGaAs成長を行つた。
(Example 1) GaAs was grown on a GaAs (100) substrate using the horizontal reduced pressure MOCVD apparatus shown in FIG.

反応容器1の中にカーボンサセプタ2があり、
これはサセプタホルダ4で支持されている。基板
結晶3はサセプタ2上に置く。サセプタ2を加熱
するために反応容器1の外側に高周波コイルが巻
かれている。また5〜7がガスを排気する系統で
あり、5がフイルタ、6が排気装置、7が排気管
である。また9〜14がガス導入系統で、9,1
0,11が原料ガスを発生するそれぞれAsH3
スボンベ、DEGaClバブラ、DEAlClバブラであ
り、12がキヤリアとなるH2ガスである。それ
ぞれのガスは流量制御装置13とバルブ14によ
つて流量が制御される。
There is a carbon susceptor 2 in the reaction vessel 1,
This is supported by a susceptor holder 4. A substrate crystal 3 is placed on a susceptor 2. A high frequency coil is wound around the outside of the reaction vessel 1 to heat the susceptor 2. Further, 5 to 7 are systems for exhausting gas, 5 is a filter, 6 is an exhaust device, and 7 is an exhaust pipe. Also, 9 to 14 are gas introduction systems, and 9, 1
Numerals 0 and 11 are AsH 3 gas cylinders, DEGaCl bubblers, and DEAlCl bubblers that generate raw material gases, and 12 is H 2 gas serving as a carrier. The flow rate of each gas is controlled by a flow rate control device 13 and a valve 14.

成長させる際に、選択成長の可否も同時に調べ
るため、GaAs基板3の表面の一部にSiO2マスク
部分を設けておいた。キヤリアガスとしてH2
9/min流し、反応管内圧力100torrとして高
周波加熱によつてカーボンサセプタ2上のGaAs
基板3を400℃〜600℃に加熱した。このとき反応
管内に1.1×10-1torrの分圧のAsH3を供給してお
いた。しかる後にAsH3を停止し、2秒経過後1
×10-3〜3×10-2torrの分圧のジエチルガリウム
クロライド(DEGaCl)を3秒間供給した。この
あと原料無供給時間を2秒間とり、そのあと1.1
×10-1torrの分圧のAsH3を4秒間供給した。原
料無供給時間の2秒間というのは本実施例の反応
管内から原料が排除されるのに十分な時間であ
る。この11秒間の操作を1000回繰り返した。第2
図aは成長温度500℃でDEGaClの分圧を変化さ
せたときの1回の繰り返しサイクル当たりに換算
した膜厚を示したものである。DEGaClの分圧が
約6×10-3torr以上ではGaAs(100)でのGaAsl
分子層の厚み2.38Åに非常に良く一致した。また
第2図bはDEGaClの分圧を1.2×10-2torrに固定
して成長温度を400〜600℃に変化させたときの1
サイクル当たりの膜厚で、温度によらずGaAsl分
子層の厚み2.83Åに非常に良く一致した。さらに
上記のいずれの条件で成長した場合も、SiO2
スク部分にはGaAsの析出は認められず選択成長
が可能であつた。
During the growth, a SiO 2 mask portion was provided on a part of the surface of the GaAs substrate 3 in order to simultaneously check whether selective growth is possible. GaAs on the carbon susceptor 2 was heated by high-frequency heating at a pressure of 100 torr in the reaction tube by flowing H2 as a carrier gas at 9/min.
Substrate 3 was heated to 400°C to 600°C. At this time, AsH 3 at a partial pressure of 1.1×10 −1 torr was supplied into the reaction tube. After that, stop AsH 3 , and after 2 seconds, 1
Diethyl gallium chloride (DEGaCl) at a partial pressure of ×10 −3 to 3×10 −2 torr was supplied for 3 seconds. After this, there is a 2 seconds of no raw material supply, and then 1.1
AsH 3 at a partial pressure of ×10 −1 torr was supplied for 4 seconds. The raw material non-supply time of 2 seconds is sufficient time for the raw materials to be removed from the reaction tube in this example. This 11 second operation was repeated 1000 times. Second
Figure a shows the film thickness calculated per one repeated cycle when the partial pressure of DEGaCl was varied at a growth temperature of 500°C. When the partial pressure of DEGaCl is about 6×10 -3 torr or higher, GaAsl in GaAs (100)
It was in very good agreement with the molecular layer thickness of 2.38 Å. In addition, Figure 2b shows the 1.0% change in growth temperature when the partial pressure of DEGaCl was fixed at 1.2×10 -2 torr and the growth temperature was varied from 400 to 600°C.
The film thickness per cycle was in very good agreement with the thickness of the GaAsl molecular layer, 2.83 Å, regardless of temperature. Furthermore, when grown under any of the above conditions, no GaAs precipitation was observed in the SiO 2 mask portion, and selective growth was possible.

さて、比較のため、DEGaClのかわりに通常
の、ハロゲン元素を持たない有機金属原料である
TMGを用いた同様の実験も行つた。第3図がそ
の結果で、減圧下での気相成長法では特に成長温
度500℃以下の低温でTMG分圧に対してGaAs膜
圧は強い飽和傾向を示した。しかし、分圧に対し
て膜圧は常に増加する傾向にあり、GaAs単分子
層/サイクルの成長を実現するにはあるTMG分
圧に条件を固定する必要がある。また、GaAs膜
厚のTMG分圧にに対する飽和傾向は高温になる
につれて急激に弱くなり、ついにはTMG分圧に
比例した成長速度となる。成長温度500℃での単
分子層/サイクルとなる成長条件で、SiO2マス
ク部分を設けた基板上への成長を試みたがSiO2
上にもGaAs膜が析出し選択性は得られなかつ
た。
Now, for comparison, instead of DEGaCl, we use a normal organometallic raw material that does not have a halogen element.
Similar experiments using TMG were also conducted. Figure 3 shows the results. In the vapor phase growth method under reduced pressure, the GaAs film pressure showed a strong tendency to saturate with respect to the TMG partial pressure, especially at low growth temperatures below 500°C. However, the membrane pressure always tends to increase relative to the partial pressure, and it is necessary to fix the conditions at a certain TMG partial pressure to realize the growth of a GaAs monolayer/cycle. Furthermore, the saturation tendency of the GaAs film thickness with respect to the TMG partial pressure rapidly weakens as the temperature increases, and eventually the growth rate becomes proportional to the TMG partial pressure. We attempted to grow SiO 2 on a substrate with a mask part under the growth conditions of monolayer/cycle at a growth temperature of 500°C, but SiO 2
A GaAs film was also precipitated on top, making it impossible to obtain selectivity.

以上のように、DEGaClを族有機金属原料と
して用いることによつて極めて広い温度および
DEGaClの供給分圧の範囲で理想的な原子層エピ
タキシヤル成長が実現でき、選択成長も可能であ
ることが示された。また、1サイクルで1分子層
の成長をするためには原料の供給量と供給時間の
積が一定値以上であればよく、原料供給量を増や
すことで1サイクルに要する時間をさらに短縮す
ることができる。気相成長装置としては減圧装置
を用いた常圧でも同じ結果が得られる。さらに同
様の結果はDEAlClとAsH3を用いたAlAsの成長
や、DMInClとPH3を用いたInPの成長などでも
得られ、これらの例に限らず混晶も含み広く−
族化合物半導体の成長に本発明を適用すること
ができる。族有機金属化合物を構成するアルキ
ル基としては分解脱離が容易であれば基本的に他
のアルキル基でもよい。
As mentioned above, by using DEGaCl as a group organometallic raw material, it is possible to
It was shown that ideal atomic layer epitaxial growth can be achieved within a range of supply partial pressures of DEGaCl, and that selective growth is also possible. In addition, in order to grow one molecular layer in one cycle, the product of the amount of raw material supplied and the supply time only needs to be a certain value or more, and by increasing the amount of raw material supplied, the time required for one cycle can be further shortened. I can do it. The same results can be obtained by using a vapor phase growth device at normal pressure using a pressure reduction device. Furthermore, similar results have been obtained with the growth of AlAs using DEAlCl and AsH 3 , and the growth of InP using DMInCl and PH 3 , and this is not limited to these examples, but can be applied to a wide range of applications including mixed crystals.
The present invention can be applied to the growth of group compound semiconductors. The alkyl group constituting the group organometallic compound may basically be any other alkyl group as long as it can be easily decomposed and eliminated.

(実施例 2) 同じく第1図の装置を用いて3インチGaAs基
板上へのAlAs/GaAs多重量子井戸構造の成長を
行つた。キヤリアガスとしてH2を9/min流
し、管内圧力100torrで基板温度を525℃に保つ
た。このとき反応管内に1.1×10-1torrの分圧の
AsH3を供給しておいた。DEGaClまたはDEAlCl
とAsH3を交互に供給する実施例1に説明した方
法で1回の繰り返しサイクル当たり単分子層の
GaAsまたはAlAsを成長した。第4図aに示すよ
うにGaAs基板20の上にまず、50分子層(141.5
Å)のAlAs21を成長後、20分子層(56.5Å)
のGaAs井戸層22を、続いて20分子層(56.5Å)
のAlAsバリア層23を成長した。この順で総計
GaAs井戸層22を5層、AlAsバリア層23の4
層成長し、第5のGaAs井戸層22を成長後50分
子層(141.5Å)のAlAs21を成長した。最後に
キヤツプ層24として(AlAs)1(GaAs)1超格子
を175周期(350分子層、990.5Å)成長した。第
4図bへ原料ガスの流れ方向72mmにわたつて成長
層のホトルミネツセンス測定を行つた結果であ
る。測定は液体窒素温度(77k)でアルゴンイオ
ンレーザの5145Åの発振線を励起光源として行つ
た。第4図bのように作製したAlAs/GaAs多重
量子井戸構造の発光ピーク波長は上流から下流の
72mmにわたつて±1nm以内の範囲で一定であり、
極薄膜のヘテロ多層エピタキシヤル成長において
も極めて高均一な成長層が本発明によつて得られ
ることが示された。同様の結果がInやP,Sbな
どを含む−族化合物半導体の薄膜多層成長で
も得られる。
(Example 2) An AlAs/GaAs multiple quantum well structure was grown on a 3-inch GaAs substrate using the same apparatus shown in FIG. H 2 was flowed at 9/min as a carrier gas, and the substrate temperature was maintained at 525° C. with an internal pressure of 100 torr. At this time, a partial pressure of 1.1×10 -1 torr was created in the reaction tube.
AsH3 was supplied. DEGaCl or DEAlCl
of a monolayer per repeated cycle using the method described in Example 1 , which alternately supplies
Grown GaAs or AlAs. As shown in FIG. 4a, a layer of 50 molecules (141.5
20 molecular layers (56.5 Å) after growing AlAs21 (Å)
GaAs well layer 22, followed by 20 molecular layers (56.5 Å)
An AlAs barrier layer 23 was grown. Total in this order
5 layers of GaAs well layer 22, 4 layers of AlAs barrier layer 23
After growing the fifth GaAs well layer 22, 50 molecular layers (141.5 Å) of AlAs 21 were grown. Finally, as the cap layer 24, (AlAs) 1 (GaAs) 1 superlattice was grown with 175 periods (350 molecular layers, 990.5 Å). FIG. 4b shows the results of photoluminescence measurement of the grown layer over 72 mm in the flow direction of the raw material gas. The measurements were performed at liquid nitrogen temperature (77K) using the 5145 Å oscillation line of an argon ion laser as the excitation light source. The emission peak wavelength of the AlAs/GaAs multiple quantum well structure fabricated as shown in Figure 4b is from upstream to downstream.
It is constant within ±1 nm over 72 mm,
It has been shown that even in the hetero-multilayer epitaxial growth of extremely thin films, extremely uniform growth layers can be obtained by the present invention. Similar results can be obtained by growing thin film multilayers of - group compound semiconductors containing In, P, Sb, etc.

(発明の効果) 以上のように本発明によれば、ガス状の化合物
原料を用いる局所加熱方式の気相成長方法で理想
的な原子層エピタキシヤル成長が可能であるた
め、量産に適した超高均一な−族化合物半導
体の極薄膜を形成する気相成長方法が実現でき、
発明の効果が示された。
(Effects of the Invention) As described above, according to the present invention, ideal atomic layer epitaxial growth is possible using a local heating type vapor phase growth method using a gaseous compound raw material, which makes it possible to achieve ultra-high growth suitable for mass production. A vapor phase growth method for forming ultra-thin films of highly uniform - group compound semiconductors has been realized.
The effectiveness of the invention was demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る一例としての気
相成長装置の概略図、第2図aは実施例1におけ
る1サイクル当たりのDEGaCl供給分圧と成長膜
厚との関係を示す図、第2図bは実施例1におけ
る1サイクル当たりの成長温度と成長膜厚との関
係を示す図、第3図は実施例1で比較のために示
した従来技術に係る図で、1サイクル当たりの
TMG供給分圧または成長温度と成長膜厚との関
係を示す図、第4図aは実施例2における多重量
子井戸構造の断面構造図、第4図bは同図aの構
造の成長層の原料ガス流れ方向発光波長分布を示
す図である。 1…反応容器、2…カーボンサセプタ、3…基
板結晶、4…サセプタホルダ、5…フイルタ、6
…排気装置、7…排気管、8…高周波誘導コイ
ル、9…AsH3ガス、10…DEGaClバブラ、1
1…DEAlClバブラ、12…H2ガス、13…流量
制御装置、14…バルブ、20…GaAs基板、2
1…AlAs層(50分子層)、22…GaAs井戸層
(20分子層)、23…AlAsバリア層(20分子層)、
24…(AlAs)1(GaAs)1175周期超格子層。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus as an example according to an embodiment of the present invention, FIG. 2a is a diagram showing the relationship between the DEGaCl supply partial pressure per cycle and the grown film thickness in Example 1, Fig. 2b is a diagram showing the relationship between the growth temperature per cycle and the grown film thickness in Example 1, and Fig. 3 is a diagram related to the conventional technology shown for comparison in Example 1. of
A diagram showing the relationship between the TMG supply partial pressure or growth temperature and the grown film thickness. FIG. 4a is a cross-sectional structural diagram of the multiple quantum well structure in Example 2, and FIG. FIG. 3 is a diagram showing the emission wavelength distribution in the flow direction of the raw material gas. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Carbon susceptor, 3... Substrate crystal, 4... Susceptor holder, 5... Filter, 6
...Exhaust device, 7...Exhaust pipe, 8...High frequency induction coil, 9... AsH3 gas, 10...DEGaCl bubbler, 1
1...DEAlCl bubbler, 12... H2 gas, 13...flow control device, 14...valve, 20...GaAs substrate, 2
1... AlAs layer (50 molecular layers), 22... GaAs well layer (20 molecular layers), 23... AlAs barrier layer (20 molecular layers),
24...(AlAs) 1 (GaAs) 1 175 period superlattice layer.

Claims (1)

【特許請求の範囲】[Claims] 1 族元素の有機揮発性化合物と族元素の揮
発性化合物を交互に基板結晶上に供給することに
よる−族化合物半導体のエピタキシヤル成長
方法であり、前記族元素の有機揮発性化合物と
して族元素とハロゲン元素の結合を少なくとも
1つ持つ有機化合物を用いることを特徴とする
−族化合物半導体の気相成長方法。
This is an epitaxial growth method for a -group compound semiconductor by alternately supplying an organic volatile compound of a group element and a volatile compound of a group element onto a substrate crystal. 1. A method for vapor phase growth of - group compound semiconductors, characterized in that an organic compound having at least one bond of a halogen element is used.
JP22860586A 1986-09-26 1986-09-26 Vapor growth method for iii-v compound semiconductor Granted JPS6385098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22860586A JPS6385098A (en) 1986-09-26 1986-09-26 Vapor growth method for iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22860586A JPS6385098A (en) 1986-09-26 1986-09-26 Vapor growth method for iii-v compound semiconductor

Publications (2)

Publication Number Publication Date
JPS6385098A JPS6385098A (en) 1988-04-15
JPH0535719B2 true JPH0535719B2 (en) 1993-05-27

Family

ID=16878968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22860586A Granted JPS6385098A (en) 1986-09-26 1986-09-26 Vapor growth method for iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6385098A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
JP2009081192A (en) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor light element and method of growing iii-v compound semiconductor crystal
JP2010251458A (en) * 2009-04-14 2010-11-04 Sony Corp Semiconductor layer and method of manufacturing the same, and semiconductor laser and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123072A (en) * 1977-04-01 1978-10-27 Nec Corp Vapor phase growth method of gaas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123072A (en) * 1977-04-01 1978-10-27 Nec Corp Vapor phase growth method of gaas

Also Published As

Publication number Publication date
JPS6385098A (en) 1988-04-15

Similar Documents

Publication Publication Date Title
US5483919A (en) Atomic layer epitaxy method and apparatus
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
US5300185A (en) Method of manufacturing III-V group compound semiconductor
JPS6065798A (en) Growing of gallium nitride single crystal
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPH0535719B2 (en)
JP3137767B2 (en) Method for manufacturing semiconductor device
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
JPH0431396A (en) Growth of semiconductor crystal
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH09171966A (en) N-type doping to compound semiconductor, chemical beam deposition using the same, metal organic molecular beam epitaxial growth, gas source moleculer beam epitaxial growth, and metal organic vapor phase deposition
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JPH02203520A (en) Growth of compound semiconductor crystal
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JPS61260622A (en) Growth for gaas single crystal thin film
JPH0489399A (en) Formation of thin film of iii-v compound semiconductor
JPH0434921A (en) Vaporpiase growth method for group iii-v compound semiconductor
JPH04260696A (en) Production of crystal of compound semiconductor
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
JP2620578B2 (en) Method for producing compound semiconductor epitaxial layer
JPH04254499A (en) Production of compound semiconductor crystal