JPH04273183A - Piezoelectric effect element and electrostriction effect element and its manufacture - Google Patents

Piezoelectric effect element and electrostriction effect element and its manufacture

Info

Publication number
JPH04273183A
JPH04273183A JP3033934A JP3393491A JPH04273183A JP H04273183 A JPH04273183 A JP H04273183A JP 3033934 A JP3033934 A JP 3033934A JP 3393491 A JP3393491 A JP 3393491A JP H04273183 A JPH04273183 A JP H04273183A
Authority
JP
Japan
Prior art keywords
effect element
inorganic
sintered body
electrostrictive
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3033934A
Other languages
Japanese (ja)
Other versions
JP2705333B2 (en
Inventor
Yoshiki Inoue
芳樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3033934A priority Critical patent/JP2705333B2/en
Publication of JPH04273183A publication Critical patent/JPH04273183A/en
Application granted granted Critical
Publication of JP2705333B2 publication Critical patent/JP2705333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Micromachines (AREA)

Abstract

PURPOSE:To satisfy requirements to high temperature resistance properties from the side of a system whose mutual bonding strength of sintered bodies does not deteriorate even if it is exposed to a high temperature by using glass- based inorganic adhesive as adhesive. CONSTITUTION:A green sheet is manufactured in kneading process and film formation process. Then, inside electrode print process, cutting process and thermal bonding process are carried out. Furthermore, cutting process, binder removal process and burning process are carried out. A lamination body which is acquired through the processes is provided with outside electrodes 3a, 3b in outside electrode print process and burning process, and becomes a sintered body 5 of lamination ceramic chip capacitor structure. In the next process, inorganic paste containing lead borosilicate as the main component, organic binder, solvent and plasticizer is applied to a bonding side by a dispenser. After 10 sintered bodies are laminated and dried at about 150 deg.C to remove organic solvent, heating is further carried out at about 680 deg.C to burn inorganic matter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、圧電効果素子および電
歪効果素子ならびにその製造方法に関し、特に、積層型
の圧電効果素子および電歪効果素子ならびにその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric effect element, an electrostrictive effect element, and a method for manufacturing the same, and more particularly to a laminated piezoelectric effect element, an electrostrictive effect element, and a method for manufacturing the same.

【0002】0002

【従来の技術】圧電・電歪効果素子とは、固体の圧電・
電歪効果を利用して電気エネルギーを機械エネルギーに
変換するトランスジューサである。具体的には、圧電・
電歪セラミックのような圧電・電歪効果の大きな固体の
対向する二つの面に金属などで電極を設け、この電極間
に電位差を与えた時に発生する固体の歪みを利用する。
[Prior Art] A piezoelectric/electrostrictive effect element is a solid-state piezoelectric/electrostrictive element.
A transducer that converts electrical energy into mechanical energy using electrostrictive effects. Specifically, piezoelectric
Metal electrodes are provided on two opposing surfaces of a solid material with strong piezoelectric and electrostrictive effects, such as electrostrictive ceramics, and the strain in the solid material that occurs when a potential difference is applied between these electrodes is utilized.

【0003】上記の圧電・電歪効果においては、通常、
電界と平行方向に発生する歪み(縦効果歪み)の方が電
界と垂直方向に生じる歪み(横効果歪み)に比べて大き
いので、前者を利用する方が有利であり且つ電気・機械
エネルギー変換効率も高い。
[0003] In the above piezoelectric/electrostrictive effects, usually,
Since the strain that occurs in the direction parallel to the electric field (longitudinal effect strain) is larger than the strain that occurs in the direction perpendicular to the electric field (transverse effect strain), it is more advantageous to use the former and also improves the electrical/mechanical energy conversion efficiency. It's also expensive.

【0004】この縦効果歪みを利用した圧電・電歪効果
素子(以下素子と記す)では、素子の単位長さ当りの変
位量は印加される電界強度が大きいほど大きい。従って
素子として大きな変位量を得るためには、対向電極間に
高い電圧を印加するか或いは圧電・電歪材料を薄い層状
にして対向電極間の距離を小さくすることが有効である
In a piezoelectric/electrostrictive element (hereinafter referred to as an element) that utilizes this longitudinal effect strain, the amount of displacement per unit length of the element increases as the applied electric field strength increases. Therefore, in order to obtain a large amount of displacement as an element, it is effective to apply a high voltage between the opposing electrodes or to make the piezoelectric/electrostrictive material into a thin layer to reduce the distance between the opposing electrodes.

【0005】ところが電圧を高くすることは大型でしか
も高価な電源を必要とし、また取り扱いにおける危険度
も増すので好ましくない。
However, increasing the voltage requires a large and expensive power source and also increases the risk of handling, which is not desirable.

【0006】このため実際の素子としては、大きな歪み
を得るために圧電・電歪材料の厚さを薄くして電極間間
隔を狭くすることによって電界強度を強くし更にこれを
複数積層した構造の、いわゆる積層型の素子が考えられ
ている。
[0006] For this reason, in order to obtain a large strain, the actual device has a structure in which the electric field strength is increased by reducing the thickness of the piezoelectric/electrostrictive material and narrowing the spacing between the electrodes, and then laminating multiple layers of these materials. , a so-called stacked type element is being considered.

【0007】このような積層型の素子の一例を図4(a
)及び(b)に示す。図4(a)は素子の断面図であり
、図4(b)は積層方向の投影図である。なお以下の説
明では圧電効果素子を例にとって説明するが、圧電効果
と電歪効果との違いは、誘電体に電界を印加した時に発
生する歪みが電界に比例するかあるいは電界の2乗に比
例するかの違いであって、素子の材料,構造および製造
方法などは同様のものであるので、以下の圧電効果素子
に関する説明において「圧電効果」を「電歪効果」に読
み替えてよい。
An example of such a stacked element is shown in FIG. 4(a).
) and (b). FIG. 4(a) is a cross-sectional view of the element, and FIG. 4(b) is a projected view in the stacking direction. The following explanation uses a piezoelectric effect element as an example, but the difference between the piezoelectric effect and the electrostrictive effect is that the strain that occurs when an electric field is applied to a dielectric material is proportional to the electric field or proportional to the square of the electric field. However, since the materials, structures, manufacturing methods, etc. of the elements are the same, "piezoelectric effect" may be replaced with "electrostrictive effect" in the following description of the piezoelectric effect element.

【0008】図4(a)および(b)に示す素子におい
ては、圧電材料1の内部に内部電極2a,2bが一定の
間隔で形成されている。そしてこれらの内部電極は一つ
おきに外部電極3a,3bに接続されている。このよう
な構造は積層セラミックチップコンデンサによく用いら
れる構造であるので、以後このような構造を積層セラミ
ックチップコンデンサ構造と呼ぶこととする。
In the device shown in FIGS. 4A and 4B, internal electrodes 2a and 2b are formed inside the piezoelectric material 1 at regular intervals. And every other internal electrode is connected to external electrodes 3a, 3b. Since such a structure is often used in multilayer ceramic chip capacitors, such a structure will hereinafter be referred to as a multilayer ceramic chip capacitor structure.

【0009】このような構造にすると、通常の積層セラ
ミックチップコンデンサの薄膜化技術を利用して、圧電
材料1の層の厚さを数10μm程度にまで薄くすること
ができる。しかもこれらの層を積層するので、低電圧で
も大きな変位を発生するような縦効果利用の素子を実現
することができる。
With such a structure, the thickness of the layer of piezoelectric material 1 can be made as thin as several tens of micrometers by using ordinary film thinning technology for multilayer ceramic chip capacitors. Moreover, since these layers are laminated, it is possible to realize an element that utilizes the longitudinal effect and generates a large displacement even at a low voltage.

【0010】ところでこの構造の素子では、この素子を
積層方向から見ると、図4(b)からも分るように内部
電極2aと2bとが重なる部分(図の中央の矩形の内部
)の方が素子の断面(図の最外側の線で囲まれる部分)
の内側になっている。すなわち、基本的に、内部電極の
重なった部分は電界に応じて変形するがその他の部分は
変形しようとしない。
By the way, in an element having this structure, when the element is viewed from the stacking direction, as can be seen from FIG. is the cross section of the element (the part surrounded by the outermost line in the figure)
It is inside. That is, basically, the overlapping parts of the internal electrodes deform in response to the electric field, but the other parts do not try to deform.

【0011】従ってこの構造では、外部から電圧を印加
してこの素子を駆動させる場合、周辺部からの束縛があ
るので大きな変位を取り出すのに不利である。また大き
な変位を取り出そうとして高い電圧を印加すると、変形
する部分と変形しにくい部分との境界部分(図4(a)
中に破線で囲った部分)に大きな応力が集中し、はなは
だしい場合にはこの部分に機械的な破壊が生じてしまう
ことがある。とくに上述の境界部分の最上部および最下
部は、この部分に応力が累積するので破壊しやすい。
[0011] Therefore, in this structure, when applying a voltage from the outside to drive this element, there is constraint from the peripheral portion, which is disadvantageous for extracting a large displacement. Furthermore, when a high voltage is applied to obtain a large displacement, the boundary between the deformable part and the hard-to-deform part (Fig. 4(a)
A large amount of stress is concentrated in the area (the part surrounded by the broken line), and in extreme cases, mechanical failure may occur in this part. In particular, the uppermost and lowermost portions of the above-mentioned boundary portion are prone to breakage because stress accumulates in these portions.

【0012】そこでこのような従来の素子の欠点を改善
するために、上記の素子をいくつかの単位に分解しこれ
を合成して一つの素子とすることが提唱されている。
[0012] In order to improve the drawbacks of such conventional elements, it has been proposed to break down the above-mentioned elements into several units and synthesize them into one element.

【0013】すなわち、一つの素子としての必要な高さ
のn分の1の高さを持つ積層セラミックチップコンデン
サ構造の焼結体を作りこの焼結体をn個積み上げる構造
である。このような構造の素子を図5に示す。図5(a
)は素子の断面図であり、図5(b)は積層方向の投影
図である。この素子においては、焼結体5の面の中心部
だけをエポキシなどの有機系の接着剤6で接着すること
によって、各焼結体5を連結している。
That is, the structure is such that a sintered body having a multilayer ceramic chip capacitor structure having a height that is 1/n of the height required for one element is made and n pieces of this sintered body are stacked. An element having such a structure is shown in FIG. Figure 5 (a
) is a cross-sectional view of the element, and FIG. 5(b) is a projected view in the stacking direction. In this element, each sintered body 5 is connected by bonding only the center portion of the surface of the sintered body 5 with an organic adhesive 6 such as epoxy.

【0014】このようにすると、この素子に電圧を印加
した時には、図6に示すように、それぞれの焼結体単位
で変形する。従って素子全体としては、前述の境界部分
に加わる応力が焼結体単位に分散され全体として緩和さ
れる。
[0014] With this arrangement, when a voltage is applied to this element, each sintered body deforms as a unit, as shown in FIG. Therefore, in the element as a whole, the stress applied to the boundary portion described above is dispersed in each sintered body unit and is relaxed as a whole.

【0015】圧電効果素子の使用方法の一つとして駆動
電圧を繰り返しパルス的に印加して動作させるような使
い方があるが、上記の素子構造によれば、このような使
い方をした時でも機械的破壊に至るまでの寿命を延ばす
ことができる。しかも素子の変位を増大させることもで
きる。
One way to use piezoelectric effect elements is to operate them by repeatedly applying a driving voltage in the form of pulses. According to the element structure described above, even when used in this way, mechanical The lifespan until destruction can be extended. Moreover, the displacement of the element can also be increased.

【0016】[0016]

【発明が解決しようとする課題】上述したように、図5
に示す従来の積層型の素子では、積層セラミックチップ
コンデンサ構造の焼結体5を接着する際に有機系の接着
剤(例えばエポキシ樹脂など)6を用いている。
[Problem to be Solved by the Invention] As mentioned above, FIG.
In the conventional multilayer device shown in FIG. 1, an organic adhesive (for example, epoxy resin, etc.) 6 is used when bonding a sintered body 5 having a multilayer ceramic chip capacitor structure.

【0017】ところがこの素子を電子機器システムなど
に組み込んで使用する時に、システム側からの要求で素
子自体が高温に曝されることがある。例えば、この素子
を搭載した基板をはんだリフロー炉に通す場合には23
0℃近い温度に曝される。このような条件の下では、有
機系の接着剤6の接着強度が劣化し場合によっては接着
面で剥れてしまうということが起る。
However, when this element is incorporated into an electronic equipment system and used, the element itself may be exposed to high temperatures due to requests from the system side. For example, when passing a board on which this element is mounted through a solder reflow oven,
Exposure to temperatures close to 0°C. Under such conditions, the adhesive strength of the organic adhesive 6 may deteriorate and, in some cases, it may peel off at the adhesive surface.

【0018】[0018]

【課題を解決するための手段】本発明の圧電効果素子(
電歪効果素子)は、圧電効果(電歪効果)を示す材料の
層と内部電極の層とが交互に積層されそれぞれの内部電
極が二つの外部電極のいずれかに接続されている構造の
焼結体が積層方向に少なくとも二以上積み重ねられてい
る型の圧電効果素子(電歪効果素子)であって、互いに
隣り合う焼結体の積層方向に垂直な面同志が、ガラスを
主成分とする無機物接着層を介して接着されていること
を特徴とする。
[Means for solving the problems] The piezoelectric effect element of the present invention (
An electrostrictive element (electrostrictive effect element) has a structure in which layers of material exhibiting a piezoelectric effect (electrostrictive effect) and layers of internal electrodes are laminated alternately, and each internal electrode is connected to one of two external electrodes. A type of piezoelectric effect element (electrostrictive effect element) in which at least two or more bodies are stacked in the stacking direction, where the surfaces of adjacent sintered bodies perpendicular to the stacking direction have glass as the main component. It is characterized by being bonded via an inorganic adhesive layer.

【0019】[0019]

【実施例】次に、本発明の最適な実施例について図面を
参照して説明する。図1(a)は本発明の第1の実施例
の構造を示す断面図であり、図1(b)は第1の実施例
の積層方向の投影図である。また図2は本実施例の製造
工程を示すフローチャート図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1(a) is a sectional view showing the structure of the first embodiment of the present invention, and FIG. 1(b) is a projected view of the first embodiment in the stacking direction. Further, FIG. 2 is a flowchart showing the manufacturing process of this embodiment.

【0020】本実施例が図5に示す従来の素子と異なる
のは、図1において焼結体5同志を接着するのにガラス
を主成分とする無機物接着層7を用いている点である。
This embodiment differs from the conventional element shown in FIG. 5 in that an inorganic adhesive layer 7 containing glass as a main component is used to bond the sintered bodies 5 together in FIG.

【0021】本実施例は、以下のようにして作製する。 先ず、本実施例の出発材料はニッケル・ニオブ酸ーチタ
ン酸ージルコン酸鉛系の圧電効果を示す材料である。
This example is manufactured as follows. First, the starting material of this example is a nickel-niobate-titanate-lead zirconate-based material exhibiting a piezoelectric effect.

【0022】はじめに混練工程および成膜工程で、上記
の材料の予焼粉末に有機系の溶剤,バインダおよび可塑
剤を添加し、ドクターブレード法で約130μmの厚さ
のグリーンシートを作製する。
First, in the kneading step and the film forming step, an organic solvent, a binder and a plasticizer are added to the pre-fired powder of the above material, and a green sheet with a thickness of about 130 μm is produced by a doctor blade method.

【0023】次に内部電極印刷工程,切断工程および熱
圧着工程に移る。ここではグリーンシートを乾燥させ、
その上に銀ーパラジウム合金粉末を主成分とする内部電
極用ペーストを印刷し、所定の形状に切断した後所定の
枚数を積層、熱圧着して生積層体を得る。
Next, the internal electrode printing process, cutting process and thermocompression bonding process are carried out. Here, the green sheet is dried,
An internal electrode paste containing silver-palladium alloy powder as a main component is printed thereon, cut into a predetermined shape, and then a predetermined number of sheets are laminated and thermocompressed to obtain a green laminate.

【0024】更に切断工程,バインダ除去工程および焼
成工程を行なう。ここでは前述の生積層体を所定の寸法
に切断した後、約500℃で加熱して有機系のバインダ
を除去し、その後約1100℃の温度で焼成を行なう。
Further, a cutting process, a binder removal process and a firing process are performed. Here, the green laminate described above is cut into predetermined dimensions, heated at about 500°C to remove the organic binder, and then fired at a temperature of about 1100°C.

【0025】上記のような工程を経て得られた積層体は
、次いで外部電極印刷工程および焼成工程で外部電極3
a,3bを形成される。そして積層セラミックチップコ
ンデンサ構造の焼結体5となる。外部電極3a,3bは
銀ーパラジウム合金粉末を主成分としたペーストを85
0℃の温度で焼成して形成する。
The laminate obtained through the above steps is then subjected to an external electrode printing process and a firing process to form external electrodes 3.
a, 3b are formed. Then, a sintered body 5 having a multilayer ceramic chip capacitor structure is obtained. The external electrodes 3a and 3b are made of paste containing silver-palladium alloy powder as a main component.
It is formed by firing at a temperature of 0°C.

【0026】上記の焼結体の構造は、積層方向の断面が
5mm×5mm、高さが1mmであり、内部電極2aと
2bとの重なりの部分の面積が4.7mm×4.7mm
である。また内部電極2aと2bとの間の距離は約10
0μmである。なお図1は素子の構造を模式的に描いた
ものであって各焼結体5の内部には内部電極が4枚しか
示されていないが、実際の焼結体では10枚の内部電極
が形成されている。本実施例では次の無機物塗布工程お
よび焼成工程で、上記の積層セラミックチップコンデン
サ構造の焼結体を10個接着した。
The structure of the above sintered body has a cross section in the stacking direction of 5 mm x 5 mm and a height of 1 mm, and the area of the overlapped portion of the internal electrodes 2a and 2b is 4.7 mm x 4.7 mm.
It is. Further, the distance between the internal electrodes 2a and 2b is approximately 10
It is 0 μm. Although FIG. 1 schematically depicts the structure of the element and only four internal electrodes are shown inside each sintered body 5, there are ten internal electrodes in the actual sintered body. It is formed. In this example, ten sintered bodies having the above-mentioned multilayer ceramic chip capacitor structure were bonded together in the following inorganic coating process and firing process.

【0027】この工程では先ず、接着する面に、硼珪酸
鉛系ガラスを主成分とし有機系のバインダ,溶剤および
可塑剤の入った無機物ペーストをディスペンサで塗布す
る。そして10個の焼結体を積み重ね約150℃で乾燥
して有機系の溶剤を除去した後、さらに約680℃で加
熱して無機物を焼成する。その結果ガラスと焼結体5中
の圧電材料1とが接合することによって、10個の焼結
体5が無機物接着層7を介して連結された構造の素子が
得られる。なお無機物接着層7の接着面積は約1.5m
mφである。
In this step, first, an inorganic paste containing lead borosilicate glass as a main component, an organic binder, a solvent, and a plasticizer is applied to the surface to be bonded using a dispenser. Then, ten sintered bodies are stacked and dried at about 150° C. to remove the organic solvent, and then further heated at about 680° C. to bake the inorganic material. As a result, the glass and the piezoelectric material 1 in the sintered body 5 are bonded to each other, so that an element having a structure in which ten sintered bodies 5 are connected via the inorganic adhesive layer 7 is obtained. The adhesive area of the inorganic adhesive layer 7 is approximately 1.5 m.
It is mφ.

【0028】そして最後にそれぞれの焼結体体5の外部
電極同志を、リード線4a,4bを高温はんだではんだ
付けすることによって電気的に接続して本実施例の素子
を完成する。
Finally, the external electrodes of each sintered body 5 are electrically connected by soldering the lead wires 4a and 4b with high-temperature solder to complete the device of this embodiment.

【0029】つぎに本発明の効果を確認するために試験
を行なった。試料は、本実施例による素子とエポキシ樹
脂で接着した従来の構造の素子とであり、それぞれ10
0個ずつである。これらの試料を230℃の恒温層内に
60分間放置した。
Next, tests were conducted to confirm the effects of the present invention. The samples were an element according to this example and an element with a conventional structure bonded with epoxy resin, each with 10
There are 0 pieces each. These samples were left in a constant temperature bath at 230°C for 60 minutes.

【0030】その結果、従来の素子ではすべて接着強度
が劣化し接着面からの剥れが見られたのにして、本実施
例による素子ではいずれも接着強度の劣化はなかった。 なお本実施例の素子でははんだの融点である240℃ま
では接着強度が劣化しないことを確認した。
[0030] As a result, while all of the conventional elements showed deterioration in adhesive strength and peeling from the adhesive surface, none of the elements according to the present example showed any deterioration in adhesive strength. It was confirmed that the adhesive strength of the device of this example did not deteriorate up to 240° C., which is the melting point of the solder.

【0031】また圧電材料を代えて、マグネシウム・ニ
オブ酸ーチタン酸鉛系の電歪材料を用いた素子について
も同様の調査を試みたが上記の結果と全く同様の結果が
得られた。
[0031] A similar investigation was also attempted on an element using an electrostrictive material based on magnesium niobate-lead titanate instead of the piezoelectric material, but results exactly the same as those described above were obtained.

【0032】さらに上記の無機物ペーストに代えて、こ
れの主成分であるガラスに、5,10,15重量パーセ
ントのアルミナを加えた無機物ペーストを使った場合で
も全く同様の効果が得られた。
Furthermore, in place of the above-mentioned inorganic paste, exactly the same effect was obtained when an inorganic paste containing 5, 10, or 15 weight percent alumina added to glass as its main component was used.

【0033】つぎに本発明の第2の実施例について述べ
る。図3(a)は本発明の第2の実施例の構造を示す断
面図であり、図3(b)は第2の実施例の積層方向の投
影図である。
Next, a second embodiment of the present invention will be described. FIG. 3(a) is a sectional view showing the structure of a second embodiment of the present invention, and FIG. 3(b) is a projected view of the second embodiment in the stacking direction.

【0034】本実施例が図1に示す第1の実施例と異な
るのは、それぞれの焼結体において無機物接着層7とこ
の無機物接着層7に最も近い内部電極2c,2dとの間
にガラス拡散防止層8が設けられている点である。この
ガラス拡散防止層8の材料は第1の実施例の内部電極に
用いられたと同じ銀ーパラジウム合金粉末を主成分とす
るペーストを焼成したものである。
The difference between this embodiment and the first embodiment shown in FIG. 1 is that in each sintered body, glass is provided between the inorganic adhesive layer 7 and the internal electrodes 2c and 2d closest to the inorganic adhesive layer 7. The difference is that a diffusion prevention layer 8 is provided. The material of this glass diffusion prevention layer 8 is a fired paste containing the same silver-palladium alloy powder as the main component used for the internal electrodes of the first embodiment.

【0035】本実施例による素子は、第1の実施例と同
一の材料を用い同様の製造工程によって作製される。た
だし本実施例の場合には、ガラス拡散防止層8を設ける
ために、図2示す製造工程のフローチャート図に対して
成膜工程および内部電極印刷工程と積層工程に下記のよ
うなサブ工程が追加される。
The device according to this example is manufactured using the same materials and the same manufacturing process as in the first example. However, in the case of this example, in order to provide the glass diffusion prevention layer 8, the following sub-processes were added to the film forming process, internal electrode printing process, and lamination process in the flowchart of the manufacturing process shown in FIG. be done.

【0036】先ず成膜工程および内部電極印刷工程で圧
電材料1用のグリーンシートを作る際に、これとは別に
ガラス拡散防止層8用のグリーンシートを作製する。こ
のグリーンシートの材料は圧電材料1用のグリーンシー
トと同一であり、大きさも同じである。但し厚さは10
μmと薄くする。
First, when a green sheet for the piezoelectric material 1 is produced in the film forming process and the internal electrode printing process, a green sheet for the glass diffusion prevention layer 8 is produced separately. The material of this green sheet is the same as the green sheet for piezoelectric material 1, and the size is also the same. However, the thickness is 10
Make it as thin as μm.

【0037】つぎに内部電極印刷工程で圧電材料1用の
グリーンシートに内部電極用ペーストを印刷する時に、
上記のガラス拡散防止8用のグリーシートにも同じ内部
電極用ペーストを印刷する。この場合印刷パターンは、
図3(b)に示すように、3mm×3mmとし完成後の
厚さが3μmになるように調整する。
Next, when printing the internal electrode paste on the green sheet for piezoelectric material 1 in the internal electrode printing process,
The same paste for internal electrodes is printed on the grease sheet for glass diffusion prevention 8 described above. In this case, the printing pattern is
As shown in FIG. 3(b), the size is 3 mm x 3 mm and the thickness after completion is adjusted to 3 μm.

【0038】そしてこのあと圧電材料1用のグリーンシ
ートとガラス拡散防止層用8のグリーンシートとを積層
する。
After that, the green sheet for piezoelectric material 1 and the green sheet for glass diffusion prevention layer 8 are laminated.

【0039】この場合圧電材料1用のグリーンシートを
第1の実施例と同様の構造になるように積層し、更にそ
の外側に図3(b)に示すように、ガラス拡散防止層8
用のグリーンシートを1枚積層する。この時ガラス拡散
防止層8用グリーンシート上の内部電極用ペーストが内
側を向くように積層する。
In this case, green sheets for the piezoelectric material 1 are laminated to have the same structure as in the first embodiment, and a glass diffusion prevention layer 8 is further formed on the outside thereof as shown in FIG. 3(b).
Stack one green sheet. At this time, the green sheets for glass diffusion prevention layer 8 are laminated so that the paste for internal electrodes faces inward.

【0040】以後、第1の実施例と同一の製造工程によ
り、上記のようにして得られた生積層体から焼結体5を
作製しこの焼結体5を無機物接着層7で接着する工程を
経て第2の実施例の素子を完成する。
Thereafter, by the same manufacturing process as in the first embodiment, a sintered body 5 is produced from the green laminate obtained as described above, and this sintered body 5 is bonded with an inorganic adhesive layer 7. Through these steps, the device of the second embodiment is completed.

【0041】このようにして作製した素子では、ガラス
拡散防止層8は、面積が3mm×3mm,厚さが3μm
である。またこのガラス拡散防止層8と無機物接着層7
との間の距離は約8μmである。
In the device manufactured in this way, the glass diffusion prevention layer 8 has an area of 3 mm×3 mm and a thickness of 3 μm.
It is. In addition, this glass diffusion prevention layer 8 and the inorganic adhesive layer 7
The distance between them is approximately 8 μm.

【0042】上記の第2の実施例による素子は、無機物
接着層7を挟んで接着された焼結体5の、この無機物接
着層7に最も近い内部電極2cと2dの間の絶縁耐圧が
第1の実施例による素子に比べて良くなるものと期待さ
れる。
In the device according to the second embodiment, the dielectric strength voltage between the internal electrodes 2c and 2d closest to the inorganic adhesive layer 7 of the sintered body 5 bonded with the inorganic adhesive layer 7 in between is the highest. It is expected that the device will be better than the device according to the first embodiment.

【0043】これは以下のように考えられる。すなわち
第1の実施例の素子では、無機物接着層7の主成分のガ
ラスと圧電材料1とが反応して反応層9が形成されるの
であるが、この反応層9は空孔が多く緻密性がよくない
。このため内部電極2cおよび2d間に5高い電圧が加
わると反応層9の付近で絶縁破壊が生じやすくなる。
This can be considered as follows. That is, in the element of the first embodiment, the glass, which is the main component of the inorganic adhesive layer 7, reacts with the piezoelectric material 1 to form the reaction layer 9, but this reaction layer 9 has many pores and is dense. is not good. Therefore, when a voltage higher than 5 is applied between the internal electrodes 2c and 2d, dielectric breakdown tends to occur near the reaction layer 9.

【0044】これに対して第2の実施例の素子では、無
機物接着層7と内部電極2c,2dとの間に設けたガラ
ス拡散防止層8がガラスの拡散を阻止し、圧電材料用の
セラミックスと同様の緻密な層が厚く残されるので、内
部電極2cと2dとの間の絶縁耐圧は高いままに保たれ
る。
On the other hand, in the element of the second embodiment, the glass diffusion prevention layer 8 provided between the inorganic adhesive layer 7 and the internal electrodes 2c and 2d prevents the diffusion of glass, and the ceramic for piezoelectric material Since a dense layer similar to the above is left thick, the dielectric strength voltage between the internal electrodes 2c and 2d remains high.

【0045】実際に第2の実施例の素子の縦断面を光学
顕微鏡で観察したところ、ガラス拡散防止層8よりも内
側の部分では、粒子形状が他の圧電材料1の部分に比べ
て変っていないのに対して、ガラス拡散防止層8より外
側の部分ではこれが変質している様子が観察された。す
なわち、無機物接着層7の主成分のガラスの拡散がガラ
ス拡散防止層8によって阻止されているものと考えるこ
とができる。
When the vertical cross section of the element of the second embodiment was actually observed using an optical microscope, it was found that the shape of the particles was different in the part inside the glass diffusion prevention layer 8 compared to the other part of the piezoelectric material 1. On the other hand, it was observed that the portions outside the glass diffusion prevention layer 8 were deteriorated in quality. That is, it can be considered that the glass diffusion prevention layer 8 prevents the diffusion of glass, which is the main component of the inorganic adhesive layer 7 .

【0046】つぎに上記のことを確認するために試験を
行なった。試料は、第1の実施例の素子50個と第2の
実施例の素子50個である。これらの試料に対して、温
度40℃,湿度90〜95%RHの条件下で定格直流電
圧150Vを印加して耐湿負荷寿命試験を施した。
Next, a test was conducted to confirm the above. The samples were 50 elements of the first example and 50 elements of the second example. These samples were subjected to a humidity load life test by applying a rated DC voltage of 150 V under conditions of a temperature of 40° C. and a humidity of 90 to 95% RH.

【0047】その結果、通電開始後2000時間までの
間に、第1の実施例の素子では2個の絶縁破壊不良が発
生したのに対して、第2の実施例の素子では不良は発生
しなかった。
As a result, within 2000 hours after the start of energization, two insulation breakdown defects occurred in the element of the first example, whereas no defects occurred in the element of the second example. There wasn't.

【0048】なお圧電材料を代えて、マグネシウム・ニ
オブ酸ーチタン酸鉛系の電歪材料を用いた素子について
も同様の調査を試みたが上記の結果と全く同様の結果が
得られた。
[0048] In place of the piezoelectric material, a similar investigation was attempted with respect to an element using an electrostrictive material based on magnesium niobate-lead titanate, and results exactly the same as those described above were obtained.

【0049】また前述の無機物ペーストに代えて、ガラ
ス成分に5,10,15重量パーセントのアルミナを加
えた無機物ペーストを用いた場合でも同様の結果が得ら
れることを確認した。
It has also been confirmed that similar results can be obtained when an inorganic paste containing 5, 10, or 15 weight percent alumina is used in place of the above-mentioned inorganic paste.

【0050】[0050]

【発明の効果】以上説明したように、本発明では積層セ
ラミックチップコンデンサ構造の焼結体を接着して素子
を作る時に、接着剤として従来のエポキシなどの有機系
接着剤に替えて、ガラスを主成分とする無機物接着剤を
用いている。
[Effects of the Invention] As explained above, the present invention uses glass instead of conventional organic adhesives such as epoxy when bonding sintered bodies of a multilayer ceramic chip capacitor structure to make an element. An inorganic adhesive is used as the main component.

【0051】このため、本発明によれば、高温にさらさ
れた場合でも焼結体同志の接着強度が劣化することのな
いシステム側からの耐高温性に対する要求を満足するこ
とのできる素子が得られる。
Therefore, according to the present invention, it is possible to obtain an element that can satisfy the requirements for high temperature resistance from the system side, in which the adhesive strength between sintered bodies does not deteriorate even when exposed to high temperatures. It will be done.

【0052】更に、この素子に対して無機物拡散防止層
を設けることにより、無機物接着剤内の成分が拡散して
絶縁耐圧の低い反応層を形成することを阻止することが
できるので焼結体間の絶縁耐圧に優れた信頼性の高い素
子を提供することができる。
Furthermore, by providing an inorganic diffusion prevention layer for this element, it is possible to prevent the components in the inorganic adhesive from diffusing and forming a reaction layer with low dielectric strength. A highly reliable element with excellent dielectric strength can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】分図(a)は、本発明の第1の実施例の断面図
である。分図(b)は、本発明の第1の実施例の積層方
向の投影図である。
FIG. 1 (a) is a sectional view of a first embodiment of the present invention. Part (b) is a projected view of the first embodiment of the present invention in the stacking direction.

【図2】本発明の第1の実施例および第2の実施例の製
造工程を説明するためのフローチャート図である。
FIG. 2 is a flowchart diagram for explaining the manufacturing process of the first embodiment and the second embodiment of the present invention.

【図3】分図(a)は、本発明の第2の実施例の断面図
である。分図(b)は、本発明の第2の実施例の積層方
向の投影図である。
FIG. 3 (a) is a cross-sectional view of a second embodiment of the invention. Part (b) is a projected view of the second embodiment of the present invention in the stacking direction.

【図4】分図(a)は、従来の素子の第1の例の断面図
である。分図(b)は、従来の素子の第1の例の積層方
向の投影図である。
FIG. 4 (a) is a cross-sectional view of a first example of a conventional element. Part (b) is a projected view of the first example of the conventional element in the stacking direction.

【図5】分図(a)は、従来の素子の第2の例の断面図
である。分図(b)は、従来の素子の第2の例の積層方
向の投影図である。
FIG. 5(a) is a cross-sectional view of a second example of a conventional element. Part (b) is a projection view of a second example of a conventional element in the stacking direction.

【図6】図5に示す素子の動作時の変形状態を説明する
ための模式図である。
6 is a schematic diagram for explaining a deformed state of the element shown in FIG. 5 during operation; FIG.

【符号の説明】[Explanation of symbols]

1    圧電材料 2a,2b,2c,2d    内部電極3a,3b,
外部電極 4a,4b    リード線 5    焼結体 6    接着剤 7    無機物接着層 8    ガラス拡散防止層 9    反応層
1 Piezoelectric materials 2a, 2b, 2c, 2d Internal electrodes 3a, 3b,
External electrodes 4a, 4b Lead wire 5 Sintered body 6 Adhesive 7 Inorganic adhesive layer 8 Glass diffusion prevention layer 9 Reaction layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  圧電効果を示す材料の層と内部電極の
層とが交互に積層されそれぞれの内部電極が二つの外部
電極のいずれかに接続されている構造の焼結体が積層方
向に少なくとも二以上積み重ねられている型の圧電効果
素子であって、互いに隣り合う焼結体の積層方向に垂直
な面同志が、ガラスを主成分とする無機物接着層を介し
て接着されていることを特徴とする圧電効果素子。
Claim 1: A sintered body having a structure in which layers of a material exhibiting a piezoelectric effect and layers of internal electrodes are alternately laminated and each internal electrode is connected to one of two external electrodes. It is a type of piezoelectric effect element in which two or more are stacked one on top of the other, and the surfaces of adjacent sintered bodies perpendicular to the stacking direction are bonded together via an inorganic adhesive layer mainly composed of glass. A piezoelectric effect element.
【請求項2】  電歪効果を示す材料の層と内部電極の
層とが交互に積層されそれぞれの内部電極が二つの外部
電極のいずれかに接続されている構造の焼結体が積層方
向に少なくとも二以上積み重ねられている型の電歪効果
素子であって、互いに隣り合う焼結体の積層方向に垂直
な面同志が、ガラスを主成分とする無機物接着層を介し
て接着されていることを特徴とする電歪効果素子。
Claim 2: A sintered body having a structure in which layers of a material exhibiting an electrostrictive effect and layers of internal electrodes are alternately laminated and each internal electrode is connected to one of two external electrodes in the lamination direction. An electrostrictive effect element of a type in which at least two or more are stacked, and the surfaces of adjacent sintered bodies perpendicular to the stacking direction are bonded to each other via an inorganic adhesive layer mainly composed of glass. An electrostrictive effect element characterized by:
【請求項3】  請求項1記載の圧電効果素子であって
、前記焼結体が、前記無機物接着層に最も近い内部電極
と前記無機物接着層との間に、無機物拡散防止層を有す
ることを特徴とする圧電効果素子。
3. The piezoelectric effect element according to claim 1, wherein the sintered body has an inorganic diffusion prevention layer between the internal electrode closest to the inorganic adhesive layer and the inorganic adhesive layer. A characteristic piezoelectric effect element.
【請求項4】  請求項2記載の電歪効果素子であって
、前記焼結体が、前記無機物接着層に最も近い内部電極
と前記無機物接着層との間に、無機物拡散防止層を有す
ることを特徴とする電歪効果素子。
4. The electrostrictive effect element according to claim 2, wherein the sintered body has an inorganic diffusion prevention layer between the internal electrode closest to the inorganic adhesive layer and the inorganic adhesive layer. An electrostrictive effect element characterized by:
【請求項5】  請求項3記載の圧電効果素子であって
、前記無機物拡散防止層が、銀ーパラジウム合金粉末を
主成分とするペーストを焼成して形成されたものである
ことを特徴とする圧電効果素子。
5. The piezoelectric effect element according to claim 3, wherein the inorganic diffusion prevention layer is formed by firing a paste containing a silver-palladium alloy powder as a main component. effect element.
【請求項6】  請求項4記載の電歪効果素子であって
、前記無機物拡散防止層が、銀ーパラジウム合金粉末を
主成分とするペーストを焼成して形成されたものである
ことを特徴とする電歪効果素子。
6. The electrostrictive effect element according to claim 4, wherein the inorganic diffusion prevention layer is formed by firing a paste containing a silver-palladium alloy powder as a main component. Electrostrictive effect element.
【請求項7】  請求項1,請求項3および請求項5記
載の圧電効果素子の製造方法であって、前記焼結体の隣
り合う他の焼結体と接触する面に、ガラスを主成分とす
る無機物ペーストを塗布する工程と、前記無機物ペース
トを塗布された焼結体を所定数重ね合わせて焼成する工
程とを含むことを特徴とする圧電効果素子の製造方法。
7. The method of manufacturing a piezoelectric effect element according to claim 1, claim 3, and claim 5, wherein the surface of the sintered body that comes into contact with another adjacent sintered body contains glass as a main component. 1. A method for manufacturing a piezoelectric effect element, comprising the steps of: applying an inorganic paste; and stacking a predetermined number of sintered bodies coated with the inorganic paste and firing them.
【請求項8】  請求項2,請求項4および請求項6記
載の電歪効果素子の製造方法であって、前記焼結体の隣
り合う他の焼結体と接触する面に、ガラスを主成分とす
る無機物ペーストを塗布する工程と、前記無機物ペース
トを塗布された焼結体を所定数重ね合わせて焼成する工
程とを含むことを特徴とする電歪効果素子の製造方法。
8. The method of manufacturing an electrostrictive effect element according to claim 2, claim 4, and claim 6, wherein glass is mainly used on the surface of the sintered body that comes into contact with another adjacent sintered body. A method for manufacturing an electrostrictive effect element, comprising the steps of applying an inorganic paste as a component, and stacking and firing a predetermined number of sintered bodies coated with the inorganic paste.
JP3033934A 1991-02-28 1991-02-28 Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same Expired - Lifetime JP2705333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033934A JP2705333B2 (en) 1991-02-28 1991-02-28 Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033934A JP2705333B2 (en) 1991-02-28 1991-02-28 Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04273183A true JPH04273183A (en) 1992-09-29
JP2705333B2 JP2705333B2 (en) 1998-01-28

Family

ID=12400342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033934A Expired - Lifetime JP2705333B2 (en) 1991-02-28 1991-02-28 Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2705333B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326309B2 (en) * 2001-04-12 2008-02-05 Denso Corporation Method of producing ceramic laminate body
JP2010103249A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2010103251A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2010103250A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2014072302A (en) * 2012-09-28 2014-04-21 Taiheiyo Cement Corp Multi-ganged element and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151087A (en) * 1986-12-16 1988-06-23 Ngk Spark Plug Co Ltd Multilayer piezoelectric device
JPH04167580A (en) * 1990-10-31 1992-06-15 Brother Ind Ltd Laminated piezoelectric actuator element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151087A (en) * 1986-12-16 1988-06-23 Ngk Spark Plug Co Ltd Multilayer piezoelectric device
JPH04167580A (en) * 1990-10-31 1992-06-15 Brother Ind Ltd Laminated piezoelectric actuator element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326309B2 (en) * 2001-04-12 2008-02-05 Denso Corporation Method of producing ceramic laminate body
JP2010103249A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2010103251A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2010103250A (en) * 2008-10-22 2010-05-06 Taiheiyo Cement Corp Piezoelectric actuator
JP2014072302A (en) * 2012-09-28 2014-04-21 Taiheiyo Cement Corp Multi-ganged element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2705333B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP4358220B2 (en) Multilayer piezoelectric element
JPH04214686A (en) Electrostrictive effect element
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2705333B2 (en) Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same
JP2007019420A (en) Stacked piezoelectric element
JP2003101092A (en) Laminated piezoelectric element and manufacturing method therefor, and injection device
JP2001210886A (en) Stacked type piezoelectric actuator
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP3506609B2 (en) Multilayer piezoelectric actuator
JPH05218519A (en) Electrostrictive effect element
JP2000340849A (en) Stacked piezoelectric actuator
JP4468510B2 (en) Piezoelectric element and multilayer piezoelectric actuator
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP3850163B2 (en) Multilayer piezoelectric actuator and manufacturing method thereof
JPH0476969A (en) Electrostrictive effect element
JPH04274378A (en) Peizoelectric/electrostrictive effect element
JPH10199752A (en) Multilayer ceramic electronic part
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JPH08181032A (en) Laminated ceramic capacitor
JP4788484B2 (en) Method for manufacturing ceramic laminate
JP4022062B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2003258332A (en) Manufacturing method for ceramic laminate
JP2882164B2 (en) Electrostrictive effect element and method of manufacturing the same
JP4737948B2 (en) Manufacturing method of multilayer piezoelectric element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14