JPH04144053A - Device for generating white pulse light - Google Patents

Device for generating white pulse light

Info

Publication number
JPH04144053A
JPH04144053A JP26788290A JP26788290A JPH04144053A JP H04144053 A JPH04144053 A JP H04144053A JP 26788290 A JP26788290 A JP 26788290A JP 26788290 A JP26788290 A JP 26788290A JP H04144053 A JPH04144053 A JP H04144053A
Authority
JP
Japan
Prior art keywords
light
pulsed light
white
electron
white pulsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26788290A
Other languages
Japanese (ja)
Other versions
JPH061688B2 (en
Inventor
Toshiaki Ito
利昭 伊藤
Mitsuo Hiramatsu
光夫 平松
Koji Muraki
村木 広次
Isuke Hirano
平野 伊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26788290A priority Critical patent/JPH061688B2/en
Publication of JPH04144053A publication Critical patent/JPH04144053A/en
Publication of JPH061688B2 publication Critical patent/JPH061688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To take out white pulse light with a high efficiency by employing a means for separating white light radiated from an electron discharge metal in the direction approximately the same with the incident direction of light of a strong light intensity. CONSTITUTION:A light beam 5 of a strong light intensity of Nd:YAG laser 2 is reflected with a beam sampler 8 and made to irradiate via a lens 1 the electrode 4 (means to be irradiated) of a xenon lamp 3. White light 5 emitted from a cathode 4 is collected through a lens 1 and a sampler 8 and with a lens 6 to an optical fiber 7.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は高輝度の白色パルス光を得るための白色パルス
光発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a white pulsed light generator for obtaining high-intensity white pulsed light.

「従来の技術」 電圧を印加していないキセノンランプの電極(カソード
)に5例えばYAGレーザの基本波(1064nm)を
照射すると、高輝度の白色パルス光を発生することが知
られている。この白色パルス光は1例えばストリークカ
メラを検出器とした時間分解吸収測定装置におけるプロ
ーブ光として利用される。
"Prior Art" It is known that when the electrode (cathode) of a xenon lamp to which no voltage is applied is irradiated with, for example, the fundamental wave (1064 nm) of a YAG laser, a high-intensity white pulsed light is generated. This white pulsed light is used, for example, as a probe light in a time-resolved absorption measuring device using a streak camera as a detector.

この種の時間分解吸収装置は、第5図に示すように、レ
ーザパルスの励起光(9)を試料(10)に照射し、こ
の試料(10)に生じる励起種、反応中間体のスペクト
ルとその強度の変化を白色プローブ光(11)により追
跡するもので、このプローブ光(11)はスペクトルが
連続的な白色光を用い、このプローブ光(11)の強度
変化をストリークカメラ(12)で検出することにより
、過渡吸収スペクトルとその強度変化を観察するもので
ある。
As shown in Figure 5, this type of time-resolved absorption device irradiates a sample (10) with excitation light (9) of a laser pulse, and produces spectra of excited species and reaction intermediates generated in this sample (10). The change in the intensity is tracked using a white probe light (11). This probe light (11) uses white light with a continuous spectrum, and the change in the intensity of this probe light (11) is tracked using a streak camera (12). Through detection, the transient absorption spectrum and its intensity changes are observed.

しかるに、前記白色プローブ光(11)の発生装置は、
第5図に示すように、光強度の大きな光、例えばYAG
レーザの基本波(1064nm) (2)をレンズ(1
)で、被照射手段としてのキセノンランプ(3)のカソ
ード(4)の正面に集光させて白色光(5)を発生させ
、発生した白色光(5)を取出して、レンズ(6)で集
光して光ファイバ(7)を介して試料(10)へ送るよ
うにしている。
However, the generator for the white probe light (11) is
As shown in Fig. 5, light with high light intensity, such as YAG
Laser fundamental wave (1064nm) (2) is connected to lens (1)
), the light is focused on the front of the cathode (4) of the xenon lamp (3) serving as the irradiation means to generate white light (5), and the generated white light (5) is taken out and exposed to the lens (6). The light is focused and sent to the sample (10) via an optical fiber (7).

「発明が解決しようとする課題」 前述のように、入射レーザ(2)をキセノンランプ(3
)のカソード(4)に集光すると、このカソード(4)
から白色パルス光が発生する。特に、レー・ザ(2)の
入射経路と略同−経路の面(13)(図中斜線部分)に
強く放射する。ところが、従来は、レーザ(2)の入射
経路と同一経路からとり出すのが構造上無理なため、止
むを得ず、第5図のように、側方からとり出していた。
“Problems to be Solved by the Invention” As mentioned above, the incident laser (2) is replaced by a xenon lamp (3).
), this cathode (4)
A white pulsed light is generated. In particular, it radiates strongly to the surface (13) (shaded area in the figure) that is on approximately the same path as the incident path of the laser (2). However, in the past, since it was structurally impossible to take out the laser from the same path as the incident path of the laser (2), it had no choice but to take out from the side as shown in FIG.

本発明の目的は、光強度の大きな光の入射経路と略同−
の強く放射するところから高効率の白色パルス光をとり
出せる装置を得ることである。また、その結果として、
光の入射による損傷を与えないようなものを得ることで
ある。
The object of the present invention is to
The object of the present invention is to obtain a device that can extract highly efficient white pulsed light from a strongly radiated source. Also, as a result,
The goal is to obtain something that will not be damaged by incident light.

「課題を解決するための手段」 本発明は、被照射手段のガス入り透明容器内に。"Means to solve problems" The present invention is applied to a gas-filled transparent container of a means to be irradiated.

電子の放出し易い金属を設け、この電子放出金属に光強
度の大きな光を照射し、二の電子放出金属から所定の白
色パルス光を発生せしめるようにした装置において、前
記光強度の大きな光の入射方向と略同一方向に、前記電
子放出金属から放射された白色パルス光を分離する分離
手段を設けてなるものである。
In an apparatus in which a metal that easily emits electrons is provided, the electron-emitting metal is irradiated with light of high intensity, and a predetermined white pulsed light is generated from the second electron-emitting metal. Separating means for separating the white pulsed light emitted from the electron-emitting metal is provided in substantially the same direction as the incident direction.

「作用」 光強度の大きな光としてレーザを用いた場合、入射する
レーザは、最初はできるだけビーム径の広がった状態と
しておく。このビーム径の大きなレーザは、焦点距離の
短かなレンズを介在させることにより、キセノンランプ
のガラス面の部分はできるだけビーム径の大きな状態で
透過することにより、ガラス面部分の損傷を最小限にす
る。透過したレーザはキセノンランプのカソードに集光
され、このカソードで白色光を発生する。発生した白色
パルス光のうちレーザの入射経路と略同−経路に放射さ
れた白色パルス光だけが分離手段で分離され、光ファイ
バを経て次段へ伝送される。
"Operation" When a laser is used as light with high light intensity, the beam diameter of the incident laser is initially made as wide as possible. This laser with a large beam diameter uses a lens with a short focal length to pass through the glass surface of the xenon lamp with a beam diameter as large as possible, thereby minimizing damage to the glass surface. . The transmitted laser beam is focused on the cathode of the xenon lamp, which generates white light. Of the generated white pulsed light, only the white pulsed light emitted along substantially the same path as the laser incident path is separated by the separation means and transmitted to the next stage via the optical fiber.

「実施例」 以下、本発明の一実施例を図面に基き説明する。"Example" Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、(2)は光強度の大きな光で、例えば
Nd:YAGレーザ装置にて発生する基本波の1010
64n 30ps、 30m、lレーザパルスとする。
In Fig. 1, (2) is light with high optical intensity, for example, 1010 of the fundamental wave generated by an Nd:YAG laser device.
64n 30ps, 30m, l laser pulse.

このレーザ(2)を電子放出金属であるカソード(4)
へ入射し。
This laser (2) is connected to a cathode (4) which is an electron-emitting metal.
incident on.

このカソード(4)で発光した光は前記レーザ(2)と
分離する分離手段、すなわちダイクロインクミラーなど
のビームサンプラー(8)に送られる。このビームサン
プラー(8)は、石英基板に16層程度のZrO2,5
in2を蒸着したもので、第2図のように、11064
n付近を略1.00%反射し、可視光領域を略100%
透過するような特性をもち、さらに光損傷しきい値が高
くなるように作られる。このビームサンプラー(8)で
反射したレーザ(2)はレンズ(1)を通して被照射手
段のキセノンランプ(3)の電極(カソード)(4)に
照射される。このとき、キセノンランプ(3)のガラス
面(14)の半径が大きければ、このガラス面(14)
の損傷の問題はない。しかし、ガラス面(14)の半径
か小さければレンズ(1)は非球面で焦点距離を短かく
し、かつできるだけキセノンランプ(3)に近づけるこ
とによってレーザ(2)のビーム径を最初は広くしてキ
セノンランプ(3)のガラス面(14)を透過させて 
このガラス面(14)の損傷を可及的に防止する。レー
ザ(2)がキセノンランプ(3)のカソード(4)に集
光されると、この方ソード(4)の略全周で白色パルス
光(5)が発生する。
The light emitted by this cathode (4) is sent to a separation means that separates it from the laser (2), that is, a beam sampler (8) such as a dichroic ink mirror. This beam sampler (8) consists of about 16 layers of ZrO2,5 on a quartz substrate.
11064 as shown in Figure 2.
Reflects approximately 1.00% near n and approximately 100% in the visible light region
It has transparent properties and is made to have a high optical damage threshold. The laser (2) reflected by the beam sampler (8) passes through the lens (1) and is irradiated onto an electrode (cathode) (4) of a xenon lamp (3) serving as the irradiation means. At this time, if the radius of the glass surface (14) of the xenon lamp (3) is large, this glass surface (14)
There is no damage problem. However, if the radius of the glass surface (14) is small, the lens (1) should be aspherical to shorten the focal length, and the beam diameter of the laser (2) should be initially widened by placing it as close to the xenon lamp (3) as possible. Through the glass surface (14) of the xenon lamp (3)
Damage to this glass surface (14) is prevented as much as possible. When the laser (2) is focused on the cathode (4) of the xenon lamp (3), white pulsed light (5) is generated around the entire circumference of the cathode (4).

発生した白色パルス光(5)のうち、レーザ(2)の入
射面と同じ面の白色パルス光(5)が最も強く放射する
ため、この入射経路と同じ経路の白色パルス光(5)を
集光する。これが再び前記レンズ(1)を通って平行光
線となる。ビームサンプラー(8)は白色パルス光(5
)の可視光領域を略100%透過し、透過した白色パル
ス光(5)はさらにレンズ(6)で光ファイバ(7)に
集光されて、この光ファイバ(7)により次段へ伝送さ
れる。
Of the generated white pulsed light (5), the white pulsed light (5) on the same surface as the incident surface of the laser (2) is emitted most intensely, so the white pulsed light (5) on the same path as this incident path is collected. Shine. This passes through the lens (1) again and becomes parallel light. The beam sampler (8) emits white pulsed light (5
), and the transmitted white pulsed light (5) is further focused by a lens (6) onto an optical fiber (7), and transmitted to the next stage by this optical fiber (7). Ru.

前記実施例では、キセノンランプ(3)のカソード(4
)にレーザ(2)を照射して白色パルス光(5)を得る
例を示したが、これに限られるものではない。
In the above embodiment, the cathode (4) of the xenon lamp (3)
) is irradiated with the laser (2) to obtain the white pulsed light (5), but the present invention is not limited to this.

すなわち、ガラス管は密閉した透明容器とし、内部にキ
セノンその他の不活性ガスを充填し、また、内部の電子
の放出しやすい金属は、例えば、バリウム、トリウムな
どのアルカリ金属、アルカリ土類金属入りのタングステ
ンとする。さらに、前記照射光源はレーザでなくとも、
光強度の大きな光であればよい。また、管内に充填する
ガスはキセノン以外に、クリプトンであってもよい。た
だし、クリプトンを用いるとやや赤みの付いたパルス光
となる。
In other words, the glass tube should be a sealed transparent container, and the inside should be filled with xenon or other inert gas, and the metal that easily releases electrons inside should be a glass tube containing an alkali metal or alkaline earth metal such as barium or thorium. tungsten. Furthermore, the irradiation light source does not have to be a laser,
Any light with high light intensity is sufficient. Further, the gas filled in the tube may be krypton instead of xenon. However, if krypton is used, the pulsed light will be slightly reddish.

前記実施例では、光強度の大きな光を電子放出金属(4
)に入射するように屈折させ、かつ、白色パルス光(5
)を透過する分離手段としてビームサンプラー(8)を
用いたが、その他の例を第3図および第4図により説明
する。
In the above embodiment, the light with high intensity is emitted from an electron-emitting metal (4
), and the white pulsed light (5
A beam sampler (8) was used as the separation means for transmitting the light beam through the beam, but other examples will be explained with reference to FIGS. 3 and 4.

第3図において、分離手段は平面反射!(8)とレンズ
(6)からなり、光強度の大きな光は平面反射鏡(8)
の中心に通過孔(15)を通して透明容器(14)の電
子放出金属(4)に照射される。このとき、ビーム径が
小さいので、透明容器(14)の通過時にガラス面(1
4)に損傷を与えない場合に用いられる。
In Figure 3, the separation means is plane reflection! (8) and lens (6), and the light with high light intensity is reflected by a flat reflector (8).
The electron-emitting metal (4) of the transparent container (14) is irradiated through the passage hole (15) at the center of the electron beam. At this time, since the beam diameter is small, the glass surface (14) passes through the transparent container (14).
4) Used when there is no damage to the product.

発生した白色パルス光(5)は平面反射! (8)で反
射され、レンズ(6)で光ファイバ(7)へ集光される
The generated white pulsed light (5) is a plane reflection! (8), and is focused by a lens (6) onto an optical fiber (7).

なお、平面反射! (8)とレンズ(6)からなる分離
手段は、は第4図のように、凹面ffi (8)に代え
ることができる。
In addition, plane reflection! The separation means consisting of (8) and lens (6) can be replaced by a concave surface ffi (8) as shown in FIG.

「発明の効果」 本発明は上述のように構成したので、最も強く放射する
個所から白色パルス光を高効率で集光することができる
。また、短い焦点距離のレンズを介在すれば、ガラス面
を径の広いビームが透過し、ガラス面に損傷を与えるこ
とを防止できる。
"Effects of the Invention" Since the present invention is configured as described above, it is possible to collect white pulsed light with high efficiency from the location where the light is emitted most intensely. Further, by interposing a lens with a short focal length, a beam with a wide diameter can be transmitted through the glass surface, and damage to the glass surface can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による白色パルス光発生装置の第1実施
例を示す説明図、第2図はビームサンプラーの波長特性
図、第3図は本発明による白色パルス光発生装置の第2
実施例を示す説明図、第4図は本発明による白色パルス
光発生装置の第3実施例を示す説明図、第5図は従来装
置の説明図である。 (1)・・レンズ、(2)・・・光強度の大きな光、(
3)・・・被照射手段、(4)・・・電子放出金属、(
5)・・・白色パルス光、(6)・・レンズ、(7)・
・・光ファイバ、(8)・・・入射光と出射光の分離手
段、(9)・・・励起光、(10)・・・試料、(11
)・・・白色プローブ光、(12)・・・ストリークカ
メラ、(14)・・透明容器(ガラス面)、(15)・
・・通過孔。
FIG. 1 is an explanatory diagram showing a first embodiment of the white pulsed light generator according to the present invention, FIG. 2 is a wavelength characteristic diagram of a beam sampler, and FIG. 3 is a second embodiment of the white pulsed light generator according to the present invention.
FIG. 4 is an explanatory diagram showing a third embodiment of the white pulse light generating device according to the present invention, and FIG. 5 is an explanatory diagram of a conventional device. (1)...Lens, (2)...Light with high light intensity, (
3)...Irradiated means, (4)...Electron-emitting metal, (
5)...white pulsed light, (6)...lens, (7)...
... Optical fiber, (8) ... Separation means for incident light and outgoing light, (9) ... Excitation light, (10) ... Sample, (11
)...White probe light, (12)...Streak camera, (14)...Transparent container (glass surface), (15)...
... Passage hole.

Claims (5)

【特許請求の範囲】[Claims] (1)被照射手段のガス入り透明容器内に、電子の放出
し易い金属を設け、この電子放出金属に光強度の大きな
光を照射し、この電子放出金属から所定の白色パルス光
を発生せしめるようにした装置において、前記光強度の
大きな光の入射方向と略同一方向に、前記電子放出金属
から放射された白色パルス光を分離する分離手段を設け
てなることを特徴とする白色パルス光発生装置。
(1) A metal that easily emits electrons is provided in a gas-filled transparent container of the irradiation means, and the electron-emitting metal is irradiated with light of high light intensity to generate a predetermined white pulsed light from the electron-emitting metal. The white pulsed light generation device is characterized in that a separating means for separating the white pulsed light emitted from the electron emitting metal is provided in substantially the same direction as the incident direction of the high intensity light. Device.
(2)分離手段は、電子放出金属に照射する光強度の大
きな光を反射し、電子放出金属で発生した白色パルス光
を透過するビームサンプラーからなる請求項(1)記載
の白色パルス光発生装置。
(2) The white pulsed light generator according to claim 1, wherein the separating means comprises a beam sampler that reflects the high-intensity light irradiated onto the electron-emitting metal and transmits the white pulsed light generated by the electron-emitting metal. .
(3)ビームサンプラーは石英基板にZrO_2、Si
O_2を蒸着し、光強度の大きな光としての1064n
mのレーザを略100%反射し、発生した白色パルス光
を略100%透過するものからなる請求項(2)記載の
白色パルス光発生装置。
(3) The beam sampler is made of ZrO_2 and Si on a quartz substrate.
1064n as a light with high light intensity by vapor depositing O_2
3. The white pulsed light generating device according to claim 2, wherein the white pulsed light generating device is configured to reflect approximately 100% of the laser beam of m and transmit approximately 100% of the generated white pulsed light.
(4)分離手段と被照射手段の間に、光強度の大きな光
を電子放出金属に集光するための短い焦点距離のレンズ
を挿入してなる請求項(1)、(2)または(3)記載
の白色パルス光発生装置。
(4) Claim (1), (2) or (3) wherein a lens with a short focal length is inserted between the separation means and the irradiation means to focus the light with high intensity onto the electron emitting metal. ) The white pulsed light generator described in ).
(5)分離手段は、電子放出金属に照射する光強度の大
きな光を通過する通過孔を有し、かつ発生した白色パル
ス光を反射する反射鏡からなる請求項(1)記載の白色
パルス光発生装置。
(5) The white pulsed light according to claim 1, wherein the separating means comprises a reflecting mirror that has a passage hole through which the high-intensity light irradiated onto the electron-emitting metal and reflects the generated white pulsed light. Generator.
JP26788290A 1990-10-05 1990-10-05 White pulse light generator Expired - Fee Related JPH061688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26788290A JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26788290A JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Publications (2)

Publication Number Publication Date
JPH04144053A true JPH04144053A (en) 1992-05-18
JPH061688B2 JPH061688B2 (en) 1994-01-05

Family

ID=17450943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26788290A Expired - Fee Related JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Country Status (1)

Country Link
JP (1) JPH061688B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230924A (en) * 2006-03-31 2012-11-22 Energetic Technology Inc Laser-driven light source and method
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
WO2015083463A1 (en) * 2013-12-06 2015-06-11 浜松ホトニクス株式会社 Light-emitting sealed body
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US9646816B2 (en) 2013-12-06 2017-05-09 Hamamatsu Photonics K.K. Light source device
US9678262B2 (en) 2013-09-20 2017-06-13 Qloptiq Photonics GmbH & Co. KG Laser-operated light source
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US9748086B2 (en) 2014-05-15 2017-08-29 Excelitas Technologies Corp. Laser driven sealed beam lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10078167B2 (en) 2013-09-20 2018-09-18 Asml Netherlands B.V. Laser-operated light source
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609732B2 (en) 2006-03-31 2017-03-28 Energetiq Technology, Inc. Laser-driven light source for generating light from a plasma in an pressurized chamber
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
US8969841B2 (en) 2006-03-31 2015-03-03 Energetiq Technology, Inc. Light source for generating light from a laser sustained plasma in a above-atmospheric pressure chamber
US9048000B2 (en) 2006-03-31 2015-06-02 Energetiq Technology, Inc. High brightness laser-driven light source
JP2012230924A (en) * 2006-03-31 2012-11-22 Energetic Technology Inc Laser-driven light source and method
US9185786B2 (en) 2006-03-31 2015-11-10 Energetiq Technology, Inc. Laser-driven light source
US10845523B2 (en) 2013-09-20 2020-11-24 Asml Netherlands B.V. Laser-operated light source
US9678262B2 (en) 2013-09-20 2017-06-13 Qloptiq Photonics GmbH & Co. KG Laser-operated light source
US10078167B2 (en) 2013-09-20 2018-09-18 Asml Netherlands B.V. Laser-operated light source
US9984865B2 (en) 2013-12-06 2018-05-29 Hamamatsu Photonics K.K. Light-emitting sealed body
US9646816B2 (en) 2013-12-06 2017-05-09 Hamamatsu Photonics K.K. Light source device
WO2015083463A1 (en) * 2013-12-06 2015-06-11 浜松ホトニクス株式会社 Light-emitting sealed body
US9824879B2 (en) 2013-12-06 2017-11-21 Hamamatsu Photonics K.K. Light source device
US10032622B2 (en) 2013-12-06 2018-07-24 Hamamatsu Photonics K.K. Light source device
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US9922814B2 (en) 2014-05-15 2018-03-20 Excelitas Technologies Corp. Apparatus and a method for operating a sealed beam lamp containing an ionizable medium
US9748086B2 (en) 2014-05-15 2017-08-29 Excelitas Technologies Corp. Laser driven sealed beam lamp
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10497555B2 (en) 2015-05-14 2019-12-03 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same

Also Published As

Publication number Publication date
JPH061688B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US9922814B2 (en) Apparatus and a method for operating a sealed beam lamp containing an ionizable medium
Bortz et al. Optical reflectivity measurements using a laser plasma light source
US7141927B2 (en) ARC lamp with integrated sapphire rod
RU2539970C2 (en) Laser-pumped light source and method for generation of light emission
JP6887388B2 (en) Electrodeless single CW laser driven xenon lamp
JPH04144053A (en) Device for generating white pulse light
US8643840B2 (en) Cell for light source
US8651701B2 (en) Light source device
RU2001121681A (en) DEVICE FOR ELEMENT ANALYSIS BY SPECTROMETRY OF OPTICAL EMISSION ON A PLASMA OBTAINED WITH THE USE OF A LASER
US20170040153A1 (en) Apparatus and a Method for Operating a Variable Pressure Sealed Beam Lamp
JP2020505733A (en) Electrodeless single low power CW laser driven plasma lamp
JP2000213983A (en) Power measuring device of vacuum ultraviolet laser
US6274970B1 (en) Arc lamp
US6236147B1 (en) Arc lamp
US5210765A (en) Laser microscopy
US4714825A (en) System for calibrating the time axis of an X-ray streak tube
US3397362A (en) Optical laser configuration
KR20200017137A (en) EUV generation device
JP2017220439A (en) Laser-driving light source device
WO2017212710A1 (en) Laser-driving light source device
US20080152090A1 (en) Euv Light Source
WO2017212683A1 (en) Laser-driving light source device
JPH06221917A (en) Beam pattern measuring method for laser flux
JPH04306549A (en) Microscopic laser mass spectrometer
JPS58219439A (en) Spectrochemical analysis device using laser light

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees