WO2017212683A1 - Laser-driving light source device - Google Patents

Laser-driving light source device Download PDF

Info

Publication number
WO2017212683A1
WO2017212683A1 PCT/JP2017/004685 JP2017004685W WO2017212683A1 WO 2017212683 A1 WO2017212683 A1 WO 2017212683A1 JP 2017004685 W JP2017004685 W JP 2017004685W WO 2017212683 A1 WO2017212683 A1 WO 2017212683A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
plasma container
filter
plasma
Prior art date
Application number
PCT/JP2017/004685
Other languages
French (fr)
Japanese (ja)
Inventor
新一郎 野▲崎▼
利夫 横田
淳哉 朝山
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016152802A external-priority patent/JP2017220439A/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2017212683A1 publication Critical patent/WO2017212683A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present invention relates to a laser-driven light source device, and more particularly to a laser-driven light source device used as a light source for a semiconductor, a liquid crystal substrate or a color filter, or a light source for a projector.
  • a discharge lamp that emits ultraviolet rays has been widely used as a light source mounted on a semiconductor exposure apparatus or the like.
  • the discharge lamp has a pair of electrodes arranged opposite to each other in a bulb in which mercury and a rare gas are sealed, energizes between the electrodes to generate plasma, and maintains discharge by electric energy supplied through the electrodes. ing.
  • the light emitted from the discharge lamp is required to have higher brightness and higher output in order to shorten the processing time and cope with large area exposure.
  • the electrode itself becomes very high temperature, and the material constituting the electrode evaporates and scatters, causing blackening of the inner surface of the bulb.
  • Patent Document 1 laser light is condensed from the outside into a gas sealed in a chamber (quartz bulb) and excited by the laser light.
  • a chamber quartz bulb
  • the emission center position is determined by the focal position of the laser beam from the outside. It is expected as a light source that can always be maintained stably.
  • the laser drive light source device 30 includes a laser source 31 and a chamber (plasma container) 32, and the chamber 32 is provided with a concave reflecting mirror 33 such as a paraboloid so as to surround it.
  • Laser light A from the laser source 31 is condensed by the condensing optical system 34, and is collected and incident on the chamber 32 through the incident window 35 provided in the rear opening of the concave reflecting mirror 33.
  • the plasma P is generated in the chamber 32, the encapsulated light emitting element such as mercury or xenon is excited, and the excitation light EL having a wavelength corresponding to the light emitting element is emitted.
  • FIG. 10 discloses another embodiment.
  • the chamber 32 is provided with a pair of electrodes 32a and 32b as an ignition source, and a preliminary discharge is performed between the pair of electrodes 32a and 32b.
  • the plasma P is generated by irradiating the laser beam A.
  • the excitation light EL generated in the chamber (plasma container) 32 by the laser light A As the excitation light EL generated in the chamber (plasma container) 32 by the laser light A, light in a wide wavelength range including the used wavelength is generated.
  • the excitation light EL generated in the plasma container 32 is irradiated to the object, a part of the excitation light EL also returns to the laser source 31 side.
  • the light returning to the laser source 31 is incident on the laser source 31, which heats the laser source 31 and eventually damages the laser source 31.
  • the present invention provides a laser-driven light source device including a laser source and a plasma container that generates a plasma by condensing and entering a laser beam from the laser source. It is an object of the present invention to provide a laser-driven light source device that prevents the emitted excitation light from returning to the laser source again and prevents the laser source from being damaged.
  • a filter that blocks excitation light from the plasma container is disposed between the laser source and a laser beam condensing position in the plasma container. It is characterized by being.
  • the filter may be a long pass filter.
  • the filter may be a band pass filter that is configured by a combination of a long pass filter and a short pass filter and transmits only the laser beam.
  • the plasma container has a tube shape, and a concave reflecting mirror surrounding the plasma container is provided.
  • the plasma container includes a concave reflecting mirror, an incident window provided in a rear opening of the concave reflecting mirror, and an emission window provided in a front opening of the concave reflecting mirror, and the concave reflecting mirror and the A sealed space is formed by the entrance window and the exit window. Further, the filter is provided in the incident window.
  • a filter that blocks the excitation light is disposed between the laser source and the laser beam condensing position of the plasma container, so that the light is emitted from the plasma container and returns to the laser source side. Since the excitation light is blocked, the light does not enter the laser source and does not enter, and the laser source is not damaged.
  • FIG. 1 shows a laser-driven light source device 1 according to a first embodiment of the present invention.
  • the laser-driven light source device 1 includes a plasma container 2, a laser source 3, and a condensing means 4.
  • the condensing means 4 is composed of, for example, a condensing lens, and is provided on the optical path from the laser source 3 to the plasma container 2.
  • the plasma vessel 2 in this embodiment, it has a tube shape.
  • the tube shape means an arc tube shape such as a substantially spherical shape or a substantially elliptic rotating body shape in the lamp technology.
  • the laser beam A oscillated from the laser source 3 is condensed by the condensing means 4 and enters the plasma container 2 and is condensed inside the plasma container 2.
  • the inside of the plasma vessel 2 is filled with a luminescent element, but various luminescent elements are used depending on the application.
  • a luminescent element mercury is used as a light emitting element as a light source for exposure.
  • xenon gas is used as a light emitting element.
  • the plasma container 2 receives the laser light A from the laser source 3 and emits the excitation light EL from the light emitting element. Therefore, the plasma container 2 transmits the laser light A from the laser source 3 and excites the light emission gas. It is composed of a member that transmits light EL. Specifically, for example, in the case of an exposure light source, when the wavelength of the laser light A from the laser source 3 is 1064 nm, the light emitting element is mercury, and the wavelength 365 nm of the excitation light EL is used, The plasma container 2 is made of, for example, quartz glass that transmits a wavelength of 1064 nm and transmits a wavelength of 365 nm.
  • the laser source 3 includes a medium to be excited, a light source that injects energy into the medium, a resonator that resonates the excitation light when the medium is excited by the light source, and the like.
  • the light A is incident on the plasma container 2 while being condensed by the condensing means 4 and is condensed at the condensing position inside.
  • the condensing position of the laser beam A is not limited to the center point of the plasma container 2, and may be an arbitrary position inside the plasma container 2. However, it can be expected that the thermal influence of the plasma on the wall surface of the plasma container 2 is not locally biased and uniform because the condensing position is at the center position of the plasma container 2.
  • a filter 5 is disposed on the optical path from the laser source 3 to the plasma container 2.
  • the filter 5 is disposed between the laser source 3 and the condensing means 4.
  • the filter 5 is a filter that transmits laser light from the laser source 3 and blocks excitation light from the plasma container 2.
  • a filter 5 it is possible to use a filter in which an optical glass which is a low fluorescent glass (for example, BK7) is used as a substrate and a dielectric multilayer film and a metal vapor deposition film are formed on the substrate.
  • a long pass filter that cuts a shorter wavelength side than desired excitation light from the plasma container 2 can be used.
  • the filter 5 is disposed between the laser source 3 and the condensing unit 4, but may be disposed between the condensing unit 4 and the plasma container 2. .
  • FIG. 2 shows an example of a transmission spectrum showing the characteristics of the filter 5 used in the laser-driven light source device 1 of the present invention.
  • (A) and (B) are examples of a long-pass filter
  • (C) Is an example of a bandpass filter.
  • the long pass filter is an infrared transmission filter and cuts light having a wavelength of 800 nm or less.
  • FIG. 2B shows an example in which the long pass filter is sapphire coated with ZnO 2 and cuts vacuum ultraviolet light having a wavelength of 200 nm or less.
  • FIG. 2C shows a band-pass filter that is a combination of a long-pass filter and a short-pass filter.
  • an Nd: YAG laser is used as the laser beam.
  • a band-pass filter having a half-width of 20 nm centered on the wavelength ⁇ 1064 nm, which is the center wavelength of the Nd: YAG laser, transmits only the laser light, includes the excitation light from the plasma vessel 2, and transmits other light do not do.
  • a band-pass filter configured by combining the above-described long-pass filter and short-pass filter is used as the filter 5.
  • the filter 5 is disposed between the condensing means 4 and the plasma container 2, and the filter 5 is a bandpass filter including a long pass filter 51 and a short pass filter 52, as shown in FIG.
  • only the laser beam is transmitted and other light is blocked.
  • the band-pass filter 5 blocks light by reflecting or absorbing light (excitation light) from the plasma container 2 and restricts return light to the laser source 3.
  • a concave reflecting mirror 6 is arranged around the plasma container 2.
  • the concave reflecting mirror 6 can be a parabolic mirror or an elliptical mirror.
  • a parabolic mirror is shown, and the condensing position of the laser beam A coincides with the focal position of the concave reflecting mirror 6.
  • an incident window 7 is provided in the rear opening of the concave reflecting mirror 6.
  • the laser light A from the laser source 3 is incident on the plasma container 2 through the incident window 7 of the concave reflecting mirror 6 while being condensed by the condensing means 4.
  • the excitation light EL generated by the plasma P generated in the plasma container 2 exits the plasma container 2, is reflected by the concave reflecting mirror 6 to the front opening side, and is emitted to the outside as parallel light.
  • FIG. 5 shows another fourth embodiment in which the plasma container 2 of each of the above embodiments has a tube shape, whereas in this embodiment, the shape mainly composed of the concave reflecting mirror 6 is shown. It is. That is, an entrance window 7 is provided at the rear opening of the concave reflecting mirror 6, and an exit window 8 is provided at the front opening.
  • the concave reflector 6, the entrance window 7, and the exit window 8 are hermetically sealed.
  • a space is formed to form the plasma container 2.
  • a light emitting element is enclosed in the plasma container 2.
  • the laser beam A from the laser source 3 enters the plasma container 2 through the incident window 7 while being collected, and is collected at the focal point of the concave reflecting mirror 6.
  • the excitation light EL generated by the plasma P generated in the plasma container 2 is reflected by the concave reflecting mirror 6 and emitted as parallel light to the outside from the emission window 8. Also in this embodiment, the excitation light from the plasma container 2 is blocked by the filter 5 and does not return to the laser source 3.
  • the filter 5 may be disposed between the laser source 3 and the condensing means 4.
  • the filter 5 is formed in the incident window 7 of the plasma container 2. That is, the filter 5 is formed by forming a dielectric multilayer film and a metal vapor deposition film on the surface of the incident window 7 as a base material. As a result, of the excitation light EL generated by the plasma P in the plasma container 2, the light that attempts to return to the laser source 3 through the incident window 7 is blocked by the filter 5 and prevented from returning to the laser source 3.
  • the plasma container 2 has a cylindrical main body 10, and a concave reflecting surface 11 is formed on the inner surface thereof.
  • the concave reflecting surface 11 is appropriately selected such as an elliptical shape or a parabolic shape.
  • the main body 10 is formed with a rear opening 10a and a front opening 10b.
  • An entrance window 12 is provided corresponding to the rear opening 10a, and an exit window 13 is provided corresponding to the front opening 10b.
  • the incident window 12 corresponding to the rear opening 10 a of the main body 10 is attached to a metal window frame member 14, and the window frame member 14 is attached to the main body 10 by a metal cylinder 15.
  • a sealed space is formed by the main body 10, the entrance window 12, and the exit window 13 to form the plasma container 2, and a light emitting element is enclosed in the sealed space.
  • the laser beam A from the laser source 3 enters the plasma container 2 through the incident window 12 while being collected, and is collected at the focal point of the concave reflecting mirror surface 11.
  • the excitation light EL generated by the generated plasma P is reflected by the concave reflecting surface 11 and is emitted from the front emission window 13 to the outside as parallel light.
  • the excitation light EL returning from the plasma container 2 to the laser source 3 through the incident window 12 is blocked by the filter 5 and is not returned to the laser source 3.
  • the filter 5 is formed in the incident window 7 of the plasma container 2, as in the fifth embodiment shown in FIG. 6.
  • the filter 5 is formed on the front surface (outer surface) side of the incident windows 7 and 12 in the laser beam traveling direction. You may form in the back surface (inner surface) side.
  • the main body 10 constituting the plasma vessel 2 can employ a ceramic material or a metal material such as aluminum, and can also be incident.
  • the window 12 is transmissive to laser light
  • the exit window 13 is transmissive to excitation light, both of which can employ a crystal material such as quartz or sapphire.
  • the main body 10 is made of a ceramic material, the outer peripheral surface at the rear end is metallized, and the metal cylinder 15 is joined thereto by brazing, and the metal window frame member 14 is welded to the metal cylinder 15. What is necessary is just to join.
  • the metal cylinder 15 may be weld-joined and the metal window frame member 14 may be weld-joined to this.
  • ceramics and metals other than quartz glass can be used as the plasma container constituent material, and high output UV from the plasma can be used. Even when irradiated with light or VUV light, ultraviolet distortion is not generated in the plasma container, and a laser-driven light source device with higher output and longer life can be realized.
  • the laser source 3 passes from the plasma container 2 through the incident windows 7 and 12. Excitation light EL that attempts to return to the side is blocked by the filter 5 formed in the incident windows 7 and 12 and is not emitted from the plasma container 2. Therefore, when the laser-driven light source device 1 of the present invention is used as a light source device in which xenon gas is sealed in the plasma container 2 and emits VUV light having a wavelength of 200 nm or less as excitation light, VUV light is emitted from the plasma container 2. There is no emission to the laser source 3 side, and no ozone prevention measures are required.
  • VUV light when VUV light is emitted from the plasma container 2 to the laser source 3 side, it is absorbed by oxygen in the atmosphere and ozone is generated.
  • the VUV light is emitted from the plasma container. Since it is not radiated
  • ozone countermeasures using VUV light emitted from the emission windows 8 and 13 are naturally necessary if the measures against the VUV light are used.
  • an inert gas such as nitrogen gas is filled in the light path on the emission side to prevent ozone from being generated by VUV light and to take measures to prevent attenuation of VUV light.
  • the laser-driven light source device that emits VUV light as described above, for example, sapphire coated with ZrO 2 or TiO 2 is used for the laser light incident windows 7 and 12, thereby, FIG. As shown in B), ultraviolet light in the region of VUV light having a wavelength of 200 nm or less is blocked.
  • the entrance windows 7 and 12 for blocking VUV light glass materials such as Ti-doped quartz glass, borosilicate glass, and aluminosilicate glass can be used in addition to the sapphire. When these glass materials are used as an entrance window, the entrance window itself has a filter function for blocking VUV light.
  • the filter that blocks the excitation light from the plasma container is disposed between the laser source and the laser beam condensing position in the plasma container.
  • the excitation light that returns from the plasma container to the laser source is blocked so that it does not return to the laser source, so that the laser source is prevented from being damaged by the return light.
  • the VUV light is not emitted from the plasma container toward the laser source by providing a filter function to the incident window of the plasma container. No need for ozone countermeasures.
  • a so-called electrodeless type plasma electrode without an electrode has been described.
  • the present invention can also be applied to an electrode having an electrode as an ignition source as in the conventional example shown in FIG. Needless to say.

Abstract

[Problem] To attempt to provide a laser-driving light source device provided with a laser source, and a plasma container on which laser light from the laser source is condensed and made to be incident to generate plasma, wherein excitation light emitted from the plasma container is inhibited from returning to the laser source once again, and the laser source is prevented from being damaged by being heated by the returning excitation light. [Solution] The present invention is characterized in that a filter which blocks the excitation light from the plasma container is disposed between the laser source and a laser light condensing position inside the plasma container.

Description

レーザ駆動光源装置Laser drive light source device
 本発明は、レーザ駆動光源装置に係わり、特に、半導体、液晶基板若しくはカラーフィルタの露光装置や、映写機などの光源として使用されるレーザ駆動光源装置に係わるものである。 The present invention relates to a laser-driven light source device, and more particularly to a laser-driven light source device used as a light source for a semiconductor, a liquid crystal substrate or a color filter, or a light source for a projector.
 従来、例えば、半導体露光装置等に搭載される光源としては、紫外線を放射する放電ランプが広く使われていた。放電ランプは、水銀と希ガスが封入されたバルブ内に対向配置した一対の電極を有し、電極間に通電してプラズマを発生させ、電極を介して供給される電気エネルギーによって放電を維持している。また、放電ランプから放射される光としては、処理時間の短縮化や大面積露光への対応等のために、より一層の高輝度、高出力が求められている。しかしながら、このようなプラズマを形成、維持するためには、電極自身が非常に高温になり、電極を構成する物質が蒸発、飛散して、バルブ内面の黒化を引き起こす、といった問題がある。 Conventionally, for example, as a light source mounted on a semiconductor exposure apparatus or the like, a discharge lamp that emits ultraviolet rays has been widely used. The discharge lamp has a pair of electrodes arranged opposite to each other in a bulb in which mercury and a rare gas are sealed, energizes between the electrodes to generate plasma, and maintains discharge by electric energy supplied through the electrodes. ing. Further, the light emitted from the discharge lamp is required to have higher brightness and higher output in order to shorten the processing time and cope with large area exposure. However, in order to form and maintain such plasma, there is a problem that the electrode itself becomes very high temperature, and the material constituting the electrode evaporates and scatters, causing blackening of the inner surface of the bulb.
 このような問題に対して、従来から様々な対策が検討されている。例えば、特表2009-532829号公報(特許文献1)に示されるレーザ駆動光源装置では、チャンバ(石英バルブ)内に封入されたガスに外部からレーザ光を集光して、レーザ光による励起で封入ガスの高温プラズマを発生させることにより、封入ガスの成分組成に応じたスペクトル分布の安定した発光強度が得られ、更には、発光中心位置が、外部からのレーザ光の焦点位置で定まるために常に安定に維持できる光源として期待されている。 Various countermeasures have been studied for such problems. For example, in the laser-driven light source device disclosed in Japanese Translation of PCT International Publication No. 2009-532829 (Patent Document 1), laser light is condensed from the outside into a gas sealed in a chamber (quartz bulb) and excited by the laser light. By generating a high-temperature plasma of the sealed gas, stable emission intensity with a spectral distribution according to the component composition of the sealed gas can be obtained, and furthermore, the emission center position is determined by the focal position of the laser beam from the outside. It is expected as a light source that can always be maintained stably.
 図9、図10にその従来技術の概略構造が示されている。 図9において、レーザ駆動光源装置30は、レーザ源31と、チャンバ(プラズマ容器)32とからなり、このチャンバ32にはこれを取り囲むよう放物面などの凹面反射鏡33が設けられている。 レーザ源31からのレーザ光Aは、集光光学系34によって集光されて、凹面反射鏡33の後部開口に設けられた入射窓35を介して、チャンバ32に集光入射する。 これにより、チャンバ32内にプラズマPが生成され、封入された水銀やキセノンなどの発光元素が励起されて、該発光元素に応じた波長の励起光ELが放射される。 9 and 10 show a schematic structure of the prior art. 9, the laser drive light source device 30 includes a laser source 31 and a chamber (plasma container) 32, and the chamber 32 is provided with a concave reflecting mirror 33 such as a paraboloid so as to surround it. Laser light A from the laser source 31 is condensed by the condensing optical system 34, and is collected and incident on the chamber 32 through the incident window 35 provided in the rear opening of the concave reflecting mirror 33. Thereby, the plasma P is generated in the chamber 32, the encapsulated light emitting element such as mercury or xenon is excited, and the excitation light EL having a wavelength corresponding to the light emitting element is emitted.
また、図10には他の実施形態が開示されていて、チャンバ32には点火源として一対の電極32a、32bが配置されていて、この一対の電極32a、32b間で予備放電がなされ、ここにレーザ光Aが照射されることでプラズマPが発生するものである。 FIG. 10 discloses another embodiment. The chamber 32 is provided with a pair of electrodes 32a and 32b as an ignition source, and a preliminary discharge is performed between the pair of electrodes 32a and 32b. The plasma P is generated by irradiating the laser beam A.
 このようなレーザ駆動光源装置30においては、レーザ光Aによってチャンバ(プラズマ容器)32内で生成される励起光ELとしては、使用波長を含めて、幅広い波長域の光が生成される。
 ところで、このプラズマ容器32で生成された励起光ELは、対象物に照射されることになるが、その一部は、レーザ源31側にも戻ることになる。このレーザ源31側に戻る光は、レーザ源31内に入射することになり、これを加熱し、最終的にはレーザ源31を破損してしまうという問題がある。
In such a laser-driven light source device 30, as the excitation light EL generated in the chamber (plasma container) 32 by the laser light A, light in a wide wavelength range including the used wavelength is generated.
By the way, although the excitation light EL generated in the plasma container 32 is irradiated to the object, a part of the excitation light EL also returns to the laser source 31 side. The light returning to the laser source 31 is incident on the laser source 31, which heats the laser source 31 and eventually damages the laser source 31.
特表2009-532829号公報Special table 2009-532829
 この発明は、上記従来技術の問題点に鑑みて、レーザ源と、該レーザ源からのレーザ光が集光入射されてプラズマを生成するプラズマ容器とを備えたレーザ駆動光源装置において、プラズマ容器から発せられた励起光が、再びレーザ源に戻ることを防止して、レーザ源を破損することのないようにしたレーザ駆動光源装置を提供せんとするものである。 In view of the above-described problems of the prior art, the present invention provides a laser-driven light source device including a laser source and a plasma container that generates a plasma by condensing and entering a laser beam from the laser source. It is an object of the present invention to provide a laser-driven light source device that prevents the emitted excitation light from returning to the laser source again and prevents the laser source from being damaged.
 上記課題を解決するために、この発明に係わるレーザ駆動光源装置は、前記レーザ源と前記プラズマ容器内のレーザ光集光位置との間に、前記プラズマ容器からの励起光を遮断するフィルタが配置されていることを特徴とする。
 また、前記フィルタが、ロングパスフィルタであることを特徴とする。
 また、前記フィルタが、ロングパスフィルタとショートパスフィルタの組み合わせで構成され、前記レーザ光のみを透過するバンドパスフィルタであることを特徴とする。
 また、前記プラズマ容器が管球形状であり、該プラズマ容器を取り囲む凹面反射鏡が設けられていることを特徴とする。 また、前記プラズマ容器が、凹面反射鏡と、該凹面反射鏡の後方開口に設けられた入射窓と、前記凹面反射鏡の前方開口に設けられた出射窓とからなり、前記凹面反射鏡と前記入射窓と前記出射窓によって密閉空間が形成されていることを特徴とする。 また、前記入射窓に前記フィルタを設けたことを特徴とする。 
In order to solve the above-described problems, in the laser drive light source device according to the present invention, a filter that blocks excitation light from the plasma container is disposed between the laser source and a laser beam condensing position in the plasma container. It is characterized by being.
The filter may be a long pass filter.
The filter may be a band pass filter that is configured by a combination of a long pass filter and a short pass filter and transmits only the laser beam.
Further, the plasma container has a tube shape, and a concave reflecting mirror surrounding the plasma container is provided. The plasma container includes a concave reflecting mirror, an incident window provided in a rear opening of the concave reflecting mirror, and an emission window provided in a front opening of the concave reflecting mirror, and the concave reflecting mirror and the A sealed space is formed by the entrance window and the exit window. Further, the filter is provided in the incident window.
本発明においては、レーザ源とプラズマ容器のレーザ光集光位置との間に、励起光を遮断するフィルタが配置されていることにより、プラズマ容器から発せられてレーザ源側に戻るように進行する励起光が遮断されるので、これらの光がレーザ源に戻って入射することがなく、レーザ源を破損することがないという効果を奏するものである。 In the present invention, a filter that blocks the excitation light is disposed between the laser source and the laser beam condensing position of the plasma container, so that the light is emitted from the plasma container and returns to the laser source side. Since the excitation light is blocked, the light does not enter the laser source and does not enter, and the laser source is not damaged.
本発明の第1実施例の説明図Explanatory drawing of 1st Example of this invention 本発明に用いられるフィルタの特性を示す透過スペクトルの一例Example of transmission spectrum showing characteristics of filter used in the present invention 本発明の第2実施例の説明図Explanatory drawing of 2nd Example of this invention 本発明の第3実施例の説明図Explanatory drawing of 3rd Example of this invention 本発明の第4実施例の説明図Explanatory drawing of 4th Example of this invention 本発明の第5実施例の説明図Explanatory drawing of 5th Example of this invention. 本発明の第6実施例の説明図Explanatory drawing of 6th Example of this invention. 本発明の第7実施例の説明図Explanatory drawing of 7th Example of this invention 従来技術の説明図Illustration of prior art 他の従来技術の説明図Illustration of other prior art
 図1に本発明の第1実施例のレーザ駆動光源装置1が示されていて、レーザ駆動光源装置1は、プラズマ容器2と、レーザ源3と、集光手段4とを備える。前記集光手段4は、例えば、集光レンズからなり、レーザ源3からプラズマ容器2への光路上の間に設けられている。
 前記プラズマ容器2は、種々の形態を採用できるが、この実施例では、管球形状をしている。ここで、管球形状とは、ランプ技術における、略球形状や略楕円回転体形状などの発光管形状を意味する。
 レーザ源3から発振されたレーザ光Aは、集光手段4によって集光されてプラズマ容器2に入射して、その内部で集光する。
FIG. 1 shows a laser-driven light source device 1 according to a first embodiment of the present invention. The laser-driven light source device 1 includes a plasma container 2, a laser source 3, and a condensing means 4. The condensing means 4 is composed of, for example, a condensing lens, and is provided on the optical path from the laser source 3 to the plasma container 2.
Although various forms can be adopted for the plasma vessel 2, in this embodiment, it has a tube shape. Here, the tube shape means an arc tube shape such as a substantially spherical shape or a substantially elliptic rotating body shape in the lamp technology.
The laser beam A oscillated from the laser source 3 is condensed by the condensing means 4 and enters the plasma container 2 and is condensed inside the plasma container 2.
 プラズマ容器2の内部には、発光元素が封入されるが、その用途によって、様々な発光元素が用いられる。例えば、露光用の光源としては、発光元素として水銀が用いられる。また、例えば、映写機用の光源としては、発光元素としてキセノンガスが用いられる。 The inside of the plasma vessel 2 is filled with a luminescent element, but various luminescent elements are used depending on the application. For example, mercury is used as a light emitting element as a light source for exposure. For example, as a light source for a projector, xenon gas is used as a light emitting element.
 このプラズマ容器2は、レーザ源3からのレーザ光Aが入射すると共に、発光元素からの励起光ELを出射することから、レーザ源3からのレーザ光Aを透過し、且つ、発光ガスの励起光ELを透過する部材で構成される。具体的には、例えば露光用光源の場合は、レーザ源3からのレーザ光Aの波長が1064nmであって、発光元素が水銀で、その励起光ELのうち波長365nmを利用する場合においては、プラズマ容器2は、1064nmの波長を透過し、且つ、365nmの波長を透過する、例えば石英ガラスで構成される。 The plasma container 2 receives the laser light A from the laser source 3 and emits the excitation light EL from the light emitting element. Therefore, the plasma container 2 transmits the laser light A from the laser source 3 and excites the light emission gas. It is composed of a member that transmits light EL. Specifically, for example, in the case of an exposure light source, when the wavelength of the laser light A from the laser source 3 is 1064 nm, the light emitting element is mercury, and the wavelength 365 nm of the excitation light EL is used, The plasma container 2 is made of, for example, quartz glass that transmits a wavelength of 1064 nm and transmits a wavelength of 365 nm.
 レーザ源3は、励起される媒質、これにエネルギーを注入する光源、前記媒質が該光源によって励起されたときにその励起光を共振させる共振器などを備えており、このレーザ源3からのレーザ光Aは、集光手段4によって集光されつつプラズマ容器2内に入射し、その内部で集光位置に集光する。
 なお、レーザ光Aの集光位置はプラズマ容器2の中心点に限定されるわけではなく、その内部の任意の位置であってよい。ただ、集光位置がプラズマ容器2の中心位置にあることで、プラズマ容器2の壁面に対するプラズマの熱的な影響が局所的に偏ることがなく、均一なものとなることが期待できる。
The laser source 3 includes a medium to be excited, a light source that injects energy into the medium, a resonator that resonates the excitation light when the medium is excited by the light source, and the like. The light A is incident on the plasma container 2 while being condensed by the condensing means 4 and is condensed at the condensing position inside.
In addition, the condensing position of the laser beam A is not limited to the center point of the plasma container 2, and may be an arbitrary position inside the plasma container 2. However, it can be expected that the thermal influence of the plasma on the wall surface of the plasma container 2 is not locally biased and uniform because the condensing position is at the center position of the plasma container 2.
 レーザ源3からプラズマ容器2に至る光路上には、フィルタ5が配置されていて、この実施例では、レーザ源3と集光手段4の間に配設されている。
 このフィルタ5は、レーザ源3からのレーザ光を透過し、プラズマ容器2からの励起光を遮断するフィルタである。
 このようなフィルタ5としては、低蛍光性ガラス(例えばBK7)である光学ガラスを基板として、この基板上に誘電体多層膜と金属蒸着膜を形成したフィルタ等を使用することができる。
 こうしたフィルタ5としては、プラズマ容器2からの所望の励起光よりも短波長側をカットするロングパスフィルタを用いることができる。また、ロングパスフィルタとショートパスフィルタとの組み合わせで構成されて、レーザ光のみを透過するバンドパスフィルタを使用することもできる。
 なお、図1の第1実施例では、フィルタ5は、レーザ源3と集光手段4の間に配置したものを示したが、集光手段4とプラズマ容器2の間に配置してもよい。
A filter 5 is disposed on the optical path from the laser source 3 to the plasma container 2. In this embodiment, the filter 5 is disposed between the laser source 3 and the condensing means 4.
The filter 5 is a filter that transmits laser light from the laser source 3 and blocks excitation light from the plasma container 2.
As such a filter 5, it is possible to use a filter in which an optical glass which is a low fluorescent glass (for example, BK7) is used as a substrate and a dielectric multilayer film and a metal vapor deposition film are formed on the substrate.
As such a filter 5, a long pass filter that cuts a shorter wavelength side than desired excitation light from the plasma container 2 can be used. Further, it is possible to use a band-pass filter that is configured by a combination of a long-pass filter and a short-pass filter and transmits only laser light.
In the first embodiment of FIG. 1, the filter 5 is disposed between the laser source 3 and the condensing unit 4, but may be disposed between the condensing unit 4 and the plasma container 2. .
 図2に、本発明のレーザ駆動光源装置1に使用されるフィルタ5の特性を示す透過スペクトルの一例が示されていて、(A)(B)は、ロングパスフィルタの例であり、(C)は、バンドパスフィルタの例である。
 図2(A)は、ロングパスフィルタが赤外線透過フィルタであって、波長800nm以下の光をカットするものである。
 図2(B)は、ロングパスフィルタが、ZnOがコーティングされたサファイアの例であって、波長200nm以下の真空紫外光をカットするものである。
 図2(C)は、バンドパスフィルタであって、ロングパスフィルタとショートパスフィルタを組み合わせて構成したものである。この例は、レーザ光としてNd:YAGレーザを用いた場合である。
 Nd:YAGレーザの中心波長である波長λ=1064nmを中心に半値幅20nmのバンドパスフィルタであって、レーザ光のみを透過し、プラズマ容器2からの励起光を含んで、その他の光は透過しない。
FIG. 2 shows an example of a transmission spectrum showing the characteristics of the filter 5 used in the laser-driven light source device 1 of the present invention. (A) and (B) are examples of a long-pass filter, and (C) Is an example of a bandpass filter.
In FIG. 2A, the long pass filter is an infrared transmission filter and cuts light having a wavelength of 800 nm or less.
FIG. 2B shows an example in which the long pass filter is sapphire coated with ZnO 2 and cuts vacuum ultraviolet light having a wavelength of 200 nm or less.
FIG. 2C shows a band-pass filter that is a combination of a long-pass filter and a short-pass filter. In this example, an Nd: YAG laser is used as the laser beam.
A band-pass filter having a half-width of 20 nm centered on the wavelength λ = 1064 nm, which is the center wavelength of the Nd: YAG laser, transmits only the laser light, includes the excitation light from the plasma vessel 2, and transmits other light do not do.
 図3に示す第2実施例は、フィルタ5として、前述したロングパスフィルタとショートパスフィルタを組み合わせて構成したバンドパスフィルタを用いたものである。フィルタ5は、集光手段4とプラズマ容器2の間に配置されるとともに、当該フィルタ5は、ロングパスフィルタ51とショートパスフィルタ52とからなるバンドパスフィルタであり、図2(C)に示すように、レーザ光のみを透過し、それ以外の光を遮断するものである。
 このバンドパスフィルタ5により、プラズマ容器2からの光(励起光)を反射または吸収することによって遮断し、レーザ源3への戻り光が制限される。
In the second embodiment shown in FIG. 3, a band-pass filter configured by combining the above-described long-pass filter and short-pass filter is used as the filter 5. The filter 5 is disposed between the condensing means 4 and the plasma container 2, and the filter 5 is a bandpass filter including a long pass filter 51 and a short pass filter 52, as shown in FIG. In addition, only the laser beam is transmitted and other light is blocked.
The band-pass filter 5 blocks light by reflecting or absorbing light (excitation light) from the plasma container 2 and restricts return light to the laser source 3.
 図4に示す第3実施例は、プラズマ容器2の周りに凹面反射鏡6を配置したものである。
 この凹面反射鏡6は、放物面鏡や楕円鏡を使用でき、この例では放物面鏡が示されていて、レーザ光Aの集光位置が、凹面反射鏡6の焦点位置と一致して配置される。また、この例では、凹面反射鏡6の後方開口に入射窓7が備えられたものが示されている。
 レーザ源3からのレーザ光Aは、集光手段4により集光されつつ凹面反射鏡6の入射窓7を経て、プラズマ容器2に入射する。プラズマ容器2内に生成されるプラズマPによって発生した励起光ELは、プラズマ容器2を出射して凹面反射鏡6によって前面開口側に反射され、平行光となって外部に出射される。
In the third embodiment shown in FIG. 4, a concave reflecting mirror 6 is arranged around the plasma container 2.
The concave reflecting mirror 6 can be a parabolic mirror or an elliptical mirror. In this example, a parabolic mirror is shown, and the condensing position of the laser beam A coincides with the focal position of the concave reflecting mirror 6. Arranged. Also, in this example, an incident window 7 is provided in the rear opening of the concave reflecting mirror 6.
The laser light A from the laser source 3 is incident on the plasma container 2 through the incident window 7 of the concave reflecting mirror 6 while being condensed by the condensing means 4. The excitation light EL generated by the plasma P generated in the plasma container 2 exits the plasma container 2, is reflected by the concave reflecting mirror 6 to the front opening side, and is emitted to the outside as parallel light.
 また、プラズマ容器2から発せられる励起光ELの一部がレーザ源3側に戻されるが、フィルタ5によってこの励起光が遮断され、レーザ源3に戻ることがないことは、前記第1、第2実施例と同様である。 In addition, a part of the excitation light EL emitted from the plasma container 2 is returned to the laser source 3 side. However, the excitation light is blocked by the filter 5 and does not return to the laser source 3. This is the same as the second embodiment.
 図5には別の第4実施例が示されていて、前記各実施例のプラズマ容器2が管球形状であったのに対して、この実施例では、凹面反射鏡6を主体とする形状である。即ち、凹面反射鏡6の後方開口には入射窓7が設けられ、前方開口には出射窓8が設けられていて、これらの凹面反射鏡6と、入射窓7と、出射窓8とによって密閉空間が形成されてプラズマ容器2とされているものである。そして、このプラズマ容器2内に発光元素が封入されている。
 この実施例の場合も、レーザ源3からのレーザ光Aは、集光されつつ入射窓7からプラズマ容器2内に入射し、凹面反射鏡6の焦点において集光する。
 プラズマ容器2内で生成されたプラズマPによって発生した励起光ELは、凹面反射鏡6によって反射され、平行光となって出射窓8から外部に出射される。
 この実施例でも、プラズマ容器2からの励起光がフィルタ5によって遮断されて、レーザ源3に戻らないことは同様である。
FIG. 5 shows another fourth embodiment in which the plasma container 2 of each of the above embodiments has a tube shape, whereas in this embodiment, the shape mainly composed of the concave reflecting mirror 6 is shown. It is. That is, an entrance window 7 is provided at the rear opening of the concave reflecting mirror 6, and an exit window 8 is provided at the front opening. The concave reflector 6, the entrance window 7, and the exit window 8 are hermetically sealed. A space is formed to form the plasma container 2. A light emitting element is enclosed in the plasma container 2.
Also in this embodiment, the laser beam A from the laser source 3 enters the plasma container 2 through the incident window 7 while being collected, and is collected at the focal point of the concave reflecting mirror 6.
The excitation light EL generated by the plasma P generated in the plasma container 2 is reflected by the concave reflecting mirror 6 and emitted as parallel light to the outside from the emission window 8.
Also in this embodiment, the excitation light from the plasma container 2 is blocked by the filter 5 and does not return to the laser source 3.
 なお、図3~5に示す第2~4実施例においても、フィルタ5は、レーザ源3と集光手段4の間に配置してもよいことは勿論である。 Of course, also in the second to fourth embodiments shown in FIGS. 3 to 5, the filter 5 may be disposed between the laser source 3 and the condensing means 4.
 図6に示す別の第5実施例では、フィルタ5がプラズマ容器2の入射窓7に形成されている。即ち、入射窓7を基材として、その表面に誘電体多層膜と金属蒸着膜を形成してフィルタ5とするものである。
 これにより、プラズマ容器2内のプラズマPによる励起光ELうち、入射窓7を経てレーザ源3に戻ろうとする光が、このフィルタ5によって遮断され、レーザ源3に戻ることが防止される。
In another fifth embodiment shown in FIG. 6, the filter 5 is formed in the incident window 7 of the plasma container 2. That is, the filter 5 is formed by forming a dielectric multilayer film and a metal vapor deposition film on the surface of the incident window 7 as a base material.
As a result, of the excitation light EL generated by the plasma P in the plasma container 2, the light that attempts to return to the laser source 3 through the incident window 7 is blocked by the filter 5 and prevented from returning to the laser source 3.
 図7に示す第6実施例では、管球形状以外の構造を有するプラズマ容器2の構造が図5に示す実施例とは異なっている。
 プラズマ容器2は、円柱形状の本体10を有しており、その内面に凹面反射面11が形成されている。この凹面反射面11は、楕円形状、放物面形状等適宜に選択される。
 本体10には後方開口10aと前方開口10bが形成されていて、後方開口10aに対応して入射窓12が設けられ、前方開口10bに対応して出射窓13が設けられている。
 そして、本体10の後方開口10aに対応した入射窓12は、金属製の窓枠部材14に装着されていて、この窓枠部材14が、金属筒体15によって本体10に取り付けられている。これら本体10と、入射窓12と、出射窓13とによって密閉空間が形成されてプラズマ容器2とされているものであり、この密閉空間内に発光元素が封入されている。
In the sixth embodiment shown in FIG. 7, the structure of the plasma vessel 2 having a structure other than the tube shape is different from the embodiment shown in FIG.
The plasma container 2 has a cylindrical main body 10, and a concave reflecting surface 11 is formed on the inner surface thereof. The concave reflecting surface 11 is appropriately selected such as an elliptical shape or a parabolic shape.
The main body 10 is formed with a rear opening 10a and a front opening 10b. An entrance window 12 is provided corresponding to the rear opening 10a, and an exit window 13 is provided corresponding to the front opening 10b.
The incident window 12 corresponding to the rear opening 10 a of the main body 10 is attached to a metal window frame member 14, and the window frame member 14 is attached to the main body 10 by a metal cylinder 15. A sealed space is formed by the main body 10, the entrance window 12, and the exit window 13 to form the plasma container 2, and a light emitting element is enclosed in the sealed space.
 この第6実施例の場合も、レーザ源3からのレーザ光Aは、集光されつつ入射窓12からプラズマ容器2内に入射し、凹面反射鏡面11の焦点において集光する。
 生成されたプラズマPによって発生した励起光ELは、凹面反射面11によって反射され、平行光となって前方の出射窓13から外部に出射される。
 この実施例でも、プラズマ容器2から入射窓12を経てレーザ源3側に戻る励起光ELはフィルタ5によって遮断されて、レーザ源3に戻らないことは同様である。
Also in the case of the sixth embodiment, the laser beam A from the laser source 3 enters the plasma container 2 through the incident window 12 while being collected, and is collected at the focal point of the concave reflecting mirror surface 11.
The excitation light EL generated by the generated plasma P is reflected by the concave reflecting surface 11 and is emitted from the front emission window 13 to the outside as parallel light.
Also in this embodiment, the excitation light EL returning from the plasma container 2 to the laser source 3 through the incident window 12 is blocked by the filter 5 and is not returned to the laser source 3.
 図8に示す第7実施例では、図6に示す第5実施例と同様に、フィルタ5がプラズマ容器2の入射窓7に形成されているものである。
 なお、図6の第5実施例および図8の第7実施例では、入射窓7、12におけるレーザ光進行方向の手前側の前面(外面)側にフィルタ5を形成したものを示したが、後面(内面)側に形成してもよい。
In the seventh embodiment shown in FIG. 8, the filter 5 is formed in the incident window 7 of the plasma container 2, as in the fifth embodiment shown in FIG. 6.
In the fifth embodiment of FIG. 6 and the seventh embodiment of FIG. 8, the filter 5 is formed on the front surface (outer surface) side of the incident windows 7 and 12 in the laser beam traveling direction. You may form in the back surface (inner surface) side.
 上記図7に示された第6実施例および図8に示された第7実施例においては、プラズマ容器2を構成する本体10はセラミックス材料や、アルミニウムなどの金属材料を採用でき、また、入射窓12はレーザ光透過性であり、出射窓13は励起光透過性であって、ともに水晶やサファイアなどの結晶材を採用できる。
 そして、本体部10がセラミックス材料の場合、その後端の外周面をメタライズ加工して、これに金属筒体15をロウ付けにより接合し、この金属筒体15に金属製の窓枠部材14を溶接接合すればよい。
 また、本体部10が金属製の場合、金属筒体15を溶接接合し、これに金属製の窓枠部材14を溶接接合すればよい。
In the sixth embodiment shown in FIG. 7 and the seventh embodiment shown in FIG. 8, the main body 10 constituting the plasma vessel 2 can employ a ceramic material or a metal material such as aluminum, and can also be incident. The window 12 is transmissive to laser light, and the exit window 13 is transmissive to excitation light, both of which can employ a crystal material such as quartz or sapphire.
When the main body 10 is made of a ceramic material, the outer peripheral surface at the rear end is metallized, and the metal cylinder 15 is joined thereto by brazing, and the metal window frame member 14 is welded to the metal cylinder 15. What is necessary is just to join.
Moreover, when the main-body part 10 is metal, the metal cylinder 15 may be weld-joined and the metal window frame member 14 may be weld-joined to this.
 このように、図7の第6実施例および図8の第7実施例によれば、プラズマ容器構成材料として、石英ガラス以外のセラミックスや金属を使用することができ、プラズマからの高出力のUV光やVUV光の照射を受けても、プラズマ容器に紫外線ひずみが生じることがなく、より高出力で長寿命のレーザ駆動光源装置を実現することができる。 Thus, according to the sixth embodiment of FIG. 7 and the seventh embodiment of FIG. 8, ceramics and metals other than quartz glass can be used as the plasma container constituent material, and high output UV from the plasma can be used. Even when irradiated with light or VUV light, ultraviolet distortion is not generated in the plasma container, and a laser-driven light source device with higher output and longer life can be realized.
 また、プラズマ容器2の入射窓7、12にフィルタ5を形成した図6の第5実施例および図8の第7実施例によれば、プラズマ容器2から入射窓7、12を経てレーザ源3側に戻ろうとする励起光ELは、入射窓7、12に形成されたフィルタ5によって遮断されてプラズマ容器2から放射されることがない。
 そのため、本発明のレーザ駆動光源装置1を、プラズマ容器2内にキセノンガスが封入され、励起光として波長200nm以下のVUV光を放射する光源装置として利用するときに、プラズマ容器2からVUV光がレーザ源3側に放射されることがなく、オゾン防止対策が不要となる。
 つまり、VUV光がプラズマ容器2からレーザ源3側に放射されると、大気中の酸素に吸収されてオゾンが発生するが、上記第5、第7実施例によれば、VUV光はプラズマ容器2から外部に放射されないので、その対策が不要となるものである。
 尚付言すれば、出射窓8、13から出射されるVUV光によるオゾン対策は、そのVUV光を利用するものであってみれば、当然に必要とされるものであることはいうまでもない。例えば、出射側の光路に窒素ガスなどの不活性ガスを充填して、VUV光によるオゾンの発生を防止するとともに、VUV光の減衰を防止する対策が取られる。
Further, according to the fifth embodiment of FIG. 6 and the seventh embodiment of FIG. 8 in which the filter 5 is formed in the incident windows 7 and 12 of the plasma container 2, the laser source 3 passes from the plasma container 2 through the incident windows 7 and 12. Excitation light EL that attempts to return to the side is blocked by the filter 5 formed in the incident windows 7 and 12 and is not emitted from the plasma container 2.
Therefore, when the laser-driven light source device 1 of the present invention is used as a light source device in which xenon gas is sealed in the plasma container 2 and emits VUV light having a wavelength of 200 nm or less as excitation light, VUV light is emitted from the plasma container 2. There is no emission to the laser source 3 side, and no ozone prevention measures are required.
That is, when VUV light is emitted from the plasma container 2 to the laser source 3 side, it is absorbed by oxygen in the atmosphere and ozone is generated. According to the fifth and seventh embodiments, the VUV light is emitted from the plasma container. Since it is not radiated | emitted from 2 outside, the countermeasure becomes unnecessary.
In addition, it goes without saying that ozone countermeasures using VUV light emitted from the emission windows 8 and 13 are naturally necessary if the measures against the VUV light are used. For example, an inert gas such as nitrogen gas is filled in the light path on the emission side to prevent ozone from being generated by VUV light and to take measures to prevent attenuation of VUV light.
 上記のような、VUV光を出射するレーザ駆動光源装置では、レーザ光の入射窓7、12には、例えば、ZrOやTiOがコーティングされたサファイアなどが使用され、これにより、図2(B)に示すような、波長200nm以下のVUV光の領域の紫外光が遮断される。
 また、VUV光を遮断する入射窓7、12としては、上記サファイア以外に、Tiドープされた石英ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス等のガラス材が使用できる。これらのガラス材を入射窓として使用する場合、当該入射窓自体にVUV光を遮断するフィルタ機能が備わっているものである。
In the laser-driven light source device that emits VUV light as described above, for example, sapphire coated with ZrO 2 or TiO 2 is used for the laser light incident windows 7 and 12, thereby, FIG. As shown in B), ultraviolet light in the region of VUV light having a wavelength of 200 nm or less is blocked.
Further, as the entrance windows 7 and 12 for blocking VUV light, glass materials such as Ti-doped quartz glass, borosilicate glass, and aluminosilicate glass can be used in addition to the sapphire. When these glass materials are used as an entrance window, the entrance window itself has a filter function for blocking VUV light.
 以上説明したように、本発明のレーザ駆動光源装置によれば、レーザ源とプラズマ容器内のレーザ光集光位置との間に、前記プラズマ容器からの励起光を遮断するフィルタが配置されていることにより、プラズマ容器からレーザ源に戻ろうとする励起光を遮断して、レーザ源に戻ることがないようにしたので、レーザ源がこの戻り光によって破損することが防止されるものである。
 また、励起光としてVUV光を利用するものにあっては、プラズマ容器の入射窓にフィルタ機能を持たせる構成とすることによって、VUV光がプラズマ容器からレーザ源に向けて出射されることがなく、オゾン対策の必要がない。
 なお、各実施例の説明においては、プラズマ容器として電極を有しない、いわゆる無電極タイプのものを説明したが、図10に示す従来例のように、点火源として電極を有するものにも適用できることはいうまでもない。
As described above, according to the laser-driven light source device of the present invention, the filter that blocks the excitation light from the plasma container is disposed between the laser source and the laser beam condensing position in the plasma container. As a result, the excitation light that returns from the plasma container to the laser source is blocked so that it does not return to the laser source, so that the laser source is prevented from being damaged by the return light.
In addition, in the case of using VUV light as excitation light, the VUV light is not emitted from the plasma container toward the laser source by providing a filter function to the incident window of the plasma container. No need for ozone countermeasures.
In the description of each embodiment, a so-called electrodeless type plasma electrode without an electrode has been described. However, the present invention can also be applied to an electrode having an electrode as an ignition source as in the conventional example shown in FIG. Needless to say.
 1   レーザ駆動光源装置
 2   プラズマ容器
 3   レーザ源
 4   集光手段
 5   フィルタ
 51  ロングパスフィルタ
 52  ショートパスフィルタ
 6   凹面反射鏡
 7   入射窓
 8   出射窓
 10  本体
 11  凹面反射面
 12  入射窓
 13  出射窓
 14  窓枠部材
 15  金属筒体
 A   レーザ光
 EL  励起光
 P   プラズマ
 
 
 
DESCRIPTION OF SYMBOLS 1 Laser drive light source device 2 Plasma container 3 Laser source 4 Condensing means 5 Filter 51 Long pass filter 52 Short pass filter 6 Concave reflection mirror 7 Incident window 8 Emission window 10 Main body 11 Concave reflection surface 12 Incident window 13 Emission window 14 Window frame member 15 Metal cylinder A Laser light EL Excitation light P Plasma

Claims (6)

  1.  レーザ源と、該レーザ源からのレーザ光が集光入射されてプラズマを生成するプラズマ容器と、を備えたレーザ駆動光源装置において、 前記レーザ源と前記プラズマ容器内のレーザ光集光位置との間に、前記プラズマ容器からの励起光を遮断するフィルタが配置されていることを特徴とするレーザ駆動光源装置。 A laser-driven light source device comprising: a laser source; and a plasma container that generates plasma by condensing and entering a laser beam from the laser source. The laser source and a laser beam condensing position in the plasma container A laser-driven light source device characterized in that a filter for blocking excitation light from the plasma container is disposed therebetween.
  2.  前記フィルタが、ロングパスフィルタであることを特徴とする請求項1に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 1, wherein the filter is a long pass filter.
  3.  前記フィルタが、ロングパスフィルタとショートパスフィルタの組み合わせで構成され、前記レーザ光のみを透過するバンドパスフィルタであることを特徴とする請求項1に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 1, wherein the filter is a band-pass filter configured by a combination of a long-pass filter and a short-pass filter and transmitting only the laser beam.
  4.  前記プラズマ容器が管球形状であり、該プラズマ容器を取り囲む凹面反射鏡が設けられていることを特徴とする請求項1~3のいずれかに記載のレーザ駆動光源装置。 The laser-driven light source device according to any one of claims 1 to 3, wherein the plasma container has a tube shape and is provided with a concave reflecting mirror surrounding the plasma container.
  5. 前記プラズマ容器が、凹面反射鏡と、該凹面反射鏡の後方開口に設けられた入射窓と、前記凹面反射鏡の前方開口に設けられた出射窓とからなり、前記凹面反射鏡と前記入射窓と前記出射窓によって密閉空間が形成されていることを特徴とする請求項1~3のいずれかに記載のレーザ駆動光源装置。 The plasma container includes a concave reflecting mirror, an incident window provided in a rear opening of the concave reflecting mirror, and an exit window provided in a front opening of the concave reflecting mirror, and the concave reflecting mirror and the incident window The laser-driven light source device according to any one of claims 1 to 3, wherein a sealed space is formed by the emission window.
  6. 前記入射窓に前記フィルタを設けたことを特徴とする請求項5に記載のレーザ駆動光源装置。    The laser-driven light source device according to claim 5, wherein the filter is provided in the incident window.
PCT/JP2017/004685 2016-06-06 2017-02-09 Laser-driving light source device WO2017212683A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016112403 2016-06-06
JP2016-112403 2016-06-06
JP2016-152802 2016-08-03
JP2016152802A JP2017220439A (en) 2016-06-06 2016-08-03 Laser-driving light source device

Publications (1)

Publication Number Publication Date
WO2017212683A1 true WO2017212683A1 (en) 2017-12-14

Family

ID=60578424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004685 WO2017212683A1 (en) 2016-06-06 2017-02-09 Laser-driving light source device

Country Status (1)

Country Link
WO (1) WO2017212683A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204834A (en) * 1990-11-30 1992-07-27 Ngk Insulators Ltd Wavelength convertor and wavelength converting type laser light source device
JPH11163789A (en) * 1997-11-28 1999-06-18 Nippon Seiki Co Ltd Light-receiving part structure
JP2008283107A (en) * 2007-05-14 2008-11-20 Komatsu Ltd Extreme ultraviolet light source device
JP2010103104A (en) * 2008-09-26 2010-05-06 Komatsu Ltd Extreme ultraviolet light source device, laser light source device for extreme ultraviolet light source device, and saturable absorber control method to be used for extreme ultraviolet light source device
JP2013207004A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204834A (en) * 1990-11-30 1992-07-27 Ngk Insulators Ltd Wavelength convertor and wavelength converting type laser light source device
JPH11163789A (en) * 1997-11-28 1999-06-18 Nippon Seiki Co Ltd Light-receiving part structure
JP2008283107A (en) * 2007-05-14 2008-11-20 Komatsu Ltd Extreme ultraviolet light source device
JP2010103104A (en) * 2008-09-26 2010-05-06 Komatsu Ltd Extreme ultraviolet light source device, laser light source device for extreme ultraviolet light source device, and saturable absorber control method to be used for extreme ultraviolet light source device
JP2013207004A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device

Similar Documents

Publication Publication Date Title
US9922814B2 (en) Apparatus and a method for operating a sealed beam lamp containing an ionizable medium
US8242695B2 (en) Laser driven light source
US10504714B2 (en) Dual parabolic laser driven sealed beam lamp
US10244613B2 (en) System and method for electrodeless plasma ignition in laser-sustained plasma light source
US10561008B2 (en) Laser driven lamp
JP2021141073A (en) Electrodeless single CW laser driven xenon lamp
JP2010170994A (en) Light source device
KR102228496B1 (en) System and method for inhibiting VUV radiation emission of laser-sustained plasma source
JP5182958B2 (en) Light source device
US20170135192A1 (en) Electrodeless Single Low Power CW Laser Driven Plasma Lamp
JP2021170548A (en) Optical device
US20170040153A1 (en) Apparatus and a Method for Operating a Variable Pressure Sealed Beam Lamp
JP2019021432A (en) Laser driving light source device
KR20010110145A (en) Discharge lamp, lamp unit and image display apparatus
JP2017220319A (en) Laser drive light source device
JP2017220439A (en) Laser-driving light source device
JP2018060640A (en) Laser-driven light source
JP6233616B2 (en) Laser drive lamp
WO2017212683A1 (en) Laser-driving light source device
WO2017212710A1 (en) Laser-driving light source device
JP6440102B2 (en) Laser drive lamp
JP6390863B2 (en) Laser drive light source device
JP6776837B2 (en) Laser driven lamp
EP3533079A1 (en) Apparatus and a method for operating a variable pressure sealed beam lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809867

Country of ref document: EP

Kind code of ref document: A1