JPH04112683A - Electrostatic actuator - Google Patents

Electrostatic actuator

Info

Publication number
JPH04112683A
JPH04112683A JP22800890A JP22800890A JPH04112683A JP H04112683 A JPH04112683 A JP H04112683A JP 22800890 A JP22800890 A JP 22800890A JP 22800890 A JP22800890 A JP 22800890A JP H04112683 A JPH04112683 A JP H04112683A
Authority
JP
Japan
Prior art keywords
stator
mover
terminal
electrode
electret
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22800890A
Other languages
Japanese (ja)
Inventor
Tomoki Funakubo
朋樹 舟窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22800890A priority Critical patent/JPH04112683A/en
Publication of JPH04112683A publication Critical patent/JPH04112683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To extremely shorten the rise time and increase the driving force working on a mover and improve the accuracy in positioning by forming a dielectric region, which is permanently polarized, at the face, opposed to a stator, of a mover. CONSTITUTION:First, it is set so that the electret 22 of a mover 20 may come right above the specified stator electrode 12 of a stator 10. When the voltages applied to each terminal A-C of a stator electrode 12 are all made negative, the lines of electric force directed from the mover 20 side to the stator 10 side occur, and the mover 20 is attracted by the stator 10 (a). Next, positive voltage, to A terminal, and negative voltage, to B terminal, and 0 potential, to C terminal, are applied, respectively, and the lines of electric force directed from the side of the A terminal to the side of adjacent B terminal is formed (b). As a result, the positive charge of the electret 22 is subject to the force along the lines of electric force and floats, and shifts to the right by one pitch of electrode (c). Next, all stator electrodes 12 are made negative potential, and the lines of electric force are formed, and the mover 20 is attracted by the stator 10 (d).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静電気力を用いた駆動源として利用できる静
電アクチュエータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrostatic actuator that can be used as a drive source using electrostatic force.

〔従来の技術〕[Conventional technology]

最近、位置決め装置等の駆動源として、薄型。 Recently, thin models have been used as drive sources for positioning devices, etc.

小型、軽量化を図ることができる静電駆動方式の静電ア
クチュエータが用いられるようになってきた。
Electrostatic actuators of an electrostatic drive type, which can be made smaller and lighter, have come into use.

この種の静電アクチュエータは、一般に第7図に示すよ
うに、絶縁体内に帯状の電極1が複数形成された固定子
2と、この固定子2上に載置され絶縁体3と高抵抗体4
とからなる移動子5と、固定子2の各電極に多相電圧を
供給する電圧供給回路(不図示)とから構成されている
As shown in FIG. 7, this type of electrostatic actuator generally includes a stator 2 in which a plurality of band-shaped electrodes 1 are formed within an insulator, an insulator 3 placed on the stator 2, and a high-resistance material. 4
The movable element 5 includes a movable element 5, and a voltage supply circuit (not shown) that supplies multiphase voltage to each electrode of the stator 2.

このように構成された静電アクチュエータは、各固定子
電極1に第7図(a)に示すような例えば三相の電圧が
印加される。そして、電圧印加開始から所定時間経過す
ると、同図(b)に示すように、各固定子電極1にそれ
ぞれ対向した位置の抵抗体4と絶縁体3の界面に電荷が
誘導される。
In the electrostatic actuator configured in this manner, for example, three-phase voltages as shown in FIG. 7(a) are applied to each stator electrode 1. Then, after a predetermined period of time has elapsed since the start of voltage application, charges are induced at the interface between the resistor 4 and the insulator 3 at positions facing each stator electrode 1, as shown in FIG. 2B.

この電荷は図中点線で表した位置に置いた仮想的な電荷
で置き換えることができる(仮想電荷の原理)。次に、
電荷が誘導された状態で、各固定子電極コ−に印加する
電圧の極性を同図(c)に示すように変化させると、固
定子電極1の電荷は瞬時に変化するが、移動子5に誘導
されている電荷は抵抗体4の抵抗に妨げられて変化が遅
れる。その結果、同図(c)に示すように固定子2側と
移動子5側の対向位置に同極性の電荷が存在することに
なる。このような状態が生じると、固定子2と移動子5
は互いに反発して移動子5を浮上させる方向の力と移動
子5を図中右側へ移動させる力が作用して、同図(d)
に示すように移動子2が固定子電極11ピッチ分横へ移
動する。
This charge can be replaced with a virtual charge placed at the position indicated by the dotted line in the figure (principle of virtual charge). next,
When the polarity of the voltage applied to each stator electrode is changed as shown in FIG. The charge induced in the resistor 4 is hindered by the resistance of the resistor 4, and its change is delayed. As a result, charges of the same polarity exist at opposing positions on the stator 2 side and the mover 5 side, as shown in FIG. 2(c). When such a situation occurs, the stator 2 and mover 5
The force in the direction of repelling each other to make the mover 5 levitate and the force that moves the mover 5 to the right side in the figure act, and the force moves to the right in the figure.
As shown in the figure, the mover 2 moves laterally by 11 pitches of the stator electrodes.

以上のように動作す込静電アクチュエータは、インダク
タンスを必要としないことから構造が簡単で装置の小型
化を図ることができるといった利点がある。また、静止
状態での保持力が大きく、くし歯状電極を用いれば、オ
ープンループまたはクローズトループで容易に位置決め
装置として使用できる。
The sink-in electrostatic actuator that operates as described above has the advantage that it has a simple structure and can be miniaturized because it does not require an inductance. In addition, it has a large holding force in a stationary state, and if a comb-shaped electrode is used, it can be easily used as a positioning device in an open loop or closed loop.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した静電アクチュエータは、移動子
5の抵抗体4の抵抗が高いことから、第7図(a)に示
す初期状態から同図(b)に示す電荷誘導状態までの電
荷誘導時間が数秒から数十秒と長くかかるため、初期の
立上りか遅いという欠点がある。
However, in the electrostatic actuator described above, since the resistance of the resistor 4 of the mover 5 is high, the charge induction time from the initial state shown in FIG. 7(a) to the charge induction state shown in FIG. 7(b) is Since it takes a long time, from several seconds to several tens of seconds, there is a drawback that the initial startup is slow.

また、移動子5に生じる電荷は静電誘導によるものであ
ることから、移動子側電荷は固定子側の電位で決まり、
移動子に作用する駆動力および電荷分布が固定子電極で
制限されるので、十分な駆動力および位置決め精度を実
現するのが難しかった。
Furthermore, since the charge generated on the mover 5 is due to electrostatic induction, the charge on the mover side is determined by the potential on the stator side.
Since the driving force and charge distribution acting on the mover are limited by the stator electrodes, it has been difficult to achieve sufficient driving force and positioning accuracy.

本発明は以上のような実情に鑑みてなされたもので、立
上り時間が極めて速く、移動子に作用する駆動力を増大
てき、しかも位置決め精度を向上し得る静電アクチュエ
ータを提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide an electrostatic actuator that has an extremely fast rise time, can increase the driving force acting on the moving element, and can improve positioning accuracy. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明による静電アクチュ
エータは、表面に複数の電極が所定間隔で形成された絶
縁基板を有し、かつこれら各電極表面が絶縁処理されて
いる固定子と、前記固定子上に載置され、該固定子と対
向する面に永久分極された誘電体領域が形成され、該誘
電体領域が前記電極の間隔に応じた間隔で複数配置され
た移動子と、互いに対向する前記電極と前記誘電体領域
との間に、前記移動子を移動せしめる移動電界を形成す
るように、前記複数の電極に多相電圧を印加する駆動手
段とを具備してなるものとした。
In order to achieve the above object, an electrostatic actuator according to the present invention includes a stator having an insulating substrate on which a plurality of electrodes are formed at predetermined intervals, and the surface of each of these electrodes being insulated; A permanently polarized dielectric region is formed on a surface facing the stator and is placed on a stator, and a plurality of dielectric regions are arranged at intervals corresponding to the spacing of the electrodes. and driving means for applying a multiphase voltage to the plurality of electrodes so as to form a moving electric field for moving the mover between the opposing electrodes and the dielectric region. .

〔作用〕[Effect]

本発明によれば、移動子の固定子に対向面に永久分極さ
れた誘電体領域を形成したので、電荷を誘導する必要が
なくなり、この時間を省くことができることからアクチ
ュエータを瞬時に駆動することができる。また、移動子
の電荷量は誘電体領域の誘電率を変えることによりコン
トロールできるので、駆動力が最大となる最適な電荷量
を実現でき、その結果、大きな駆動力を得ることができ
る。さらに、移動子の電荷分布は誘電体領域に応じて矩
形状の分布となることから、移動子の電荷分布領域と、
固定子側の電極形成領域とを正確に一致させることがで
き、その結果、高精度に位置決めできる。
According to the present invention, since a permanently polarized dielectric region is formed on the facing surface of the stator of the mover, there is no need to induce electric charges, and this time can be saved, so that the actuator can be driven instantly. I can do it. Furthermore, since the amount of charge on the mover can be controlled by changing the dielectric constant of the dielectric region, it is possible to achieve the optimum amount of charge that maximizes the driving force, and as a result, a large driving force can be obtained. Furthermore, since the charge distribution of the mover is a rectangular distribution depending on the dielectric region, the charge distribution area of the mover is
The electrode formation area on the stator side can be precisely aligned with the electrode formation area on the stator side, and as a result, positioning can be performed with high precision.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は本発明の一実施例に係る静電アクチュエータを
示す図であって、断面構造を示している。
FIG. 1 is a diagram showing an electrostatic actuator according to an embodiment of the present invention, and shows a cross-sectional structure.

本実施例の静電アクチュエータは、固定子10と、これ
に載置された移動子20と、アクチュエータを駆動する
ための駆動回路(不図示)とから構成されている。
The electrostatic actuator of this embodiment includes a stator 10, a mover 20 placed on the stator 10, and a drive circuit (not shown) for driving the actuator.

固定子10は、絶縁基板11表面に複数の固定子電極1
2が所定間隔で形成されていて、さらにこれら固定子電
極上12に絶縁膜13が成膜されている。また、各固定
子電極12には、電圧印加端子A−Cがそれぞれ設けら
れている。各固定子電極12には第2図に示す三相駆動
電圧が駆動回路から印加される。移動子20は、絶縁基
板21の固定子20との対向面に永久分極された誘電体
(以下、「エレクトレット」と呼ぶ)22が複数箇所に
形成されていて、もう一方の面には導電膜23が形成さ
れている。エレクトレット22は、固定子電極12の電
極幅と同一幅で、固定子電極12の3ピツチに一つ形成
されている。第3図に移動子10をエレクトレット形成
面側から見た斜視図を示し、第4図に固定子20を裏面
側から見た斜視図を示す。
The stator 10 has a plurality of stator electrodes 1 on the surface of an insulating substrate 11.
2 are formed at predetermined intervals, and an insulating film 13 is further formed on these stator electrodes 12. Further, each stator electrode 12 is provided with voltage application terminals A to C, respectively. A three-phase drive voltage shown in FIG. 2 is applied to each stator electrode 12 from a drive circuit. The mover 20 has a permanently polarized dielectric material (hereinafter referred to as "electret") 22 formed at multiple locations on the surface of an insulating substrate 21 facing the stator 20, and a conductive film on the other surface. 23 is formed. The electret 22 has the same width as the electrode width of the stator electrode 12, and one electret 22 is formed at three pitches of the stator electrode 12. FIG. 3 shows a perspective view of the mover 10 seen from the electret forming surface side, and FIG. 4 shows a perspective view of the stator 20 seen from the back side.

次に、以上のように構成された静電アクチュエータの製
造工程について説明する。
Next, the manufacturing process of the electrostatic actuator configured as above will be explained.

先ず、固定子10は、幅50 m m s厚さ1mmの
ポリイミドフィルムを基板とし、この基板表面にエツチ
ング法により幅50μm1ピット100μmの銅電極を
固定子電極12として形成する。
First, the stator 10 uses a polyimide film having a width of 50 mm and a thickness of 1 mm as a substrate, and a copper electrode having a width of 50 μm and 1 pit of 100 μm is formed as the stator electrode 12 on the surface of this substrate by etching.

次に、厚さ50μmのポリイミドフィルムを電極上に蒸
着して絶縁膜13とする。なお、固定子電極12は三相
駆動であることから互いに干渉しないように配線する。
Next, a polyimide film having a thickness of 50 μm is deposited on the electrode to form the insulating film 13. Note that since the stator electrodes 12 are three-phase driven, they are wired so as not to interfere with each other.

一方、移動子20は、幅50mm、厚さ1mmのテフロ
ン(F E P)を基板として用い、その基板の一方の
面に例えば真空蒸着法により銅を蒸着して導電膜23と
する。次に、基板の他方の面に、コロナ放電法によりエ
レクトレットを形成する。
On the other hand, the mover 20 uses Teflon (FEP) with a width of 50 mm and a thickness of 1 mm as a substrate, and a conductive film 23 is formed by depositing copper on one surface of the substrate by, for example, a vacuum evaporation method. Next, an electret is formed on the other surface of the substrate by a corona discharge method.

このエレクトレット化は、第5図に示すように、導電膜
23をアース電位とし、基板21の温度は150℃〜2
00℃に保持した状態で、エレクトレット形成予定位置
に針30を接触させて約10kVの電圧を印加する。こ
れによって所望領域にエレクトレット22が形成される
。エレクトレット化する領域は、幅50μmの帯状とし
、ピッチを300μmとする。すなわち、固定子電極1
2の形状と同一形状とする。
In this electret formation, as shown in FIG.
While maintaining the temperature at 00° C., the needle 30 is brought into contact with the position where the electret is to be formed, and a voltage of about 10 kV is applied. As a result, the electret 22 is formed in the desired area. The region to be made into an electret has a band shape with a width of 50 μm, and a pitch of 300 μm. That is, stator electrode 1
The shape is the same as the shape of 2.

次に、本実施例の動作について第6図を参照して説明す
る。
Next, the operation of this embodiment will be explained with reference to FIG.

先ず、移動子20のエレクトレット22が固定子10の
所定の固定子電極12の真上にくるように設定する。こ
の状態で、固定子電極12の各端子A−Cに印加する電
圧を全て負電圧にすると、第6図(a)に示すように、
移動子20側から固定子10側へ向かう電気力線が生じ
、移動子20が固定子10に吸着される(ステップ1)
First, the electret 22 of the mover 20 is set to be directly above a predetermined stator electrode 12 of the stator 10. In this state, if all the voltages applied to each terminal A to C of the stator electrode 12 are set to negative voltages, as shown in FIG. 6(a),
Lines of electric force are generated from the mover 20 side toward the stator 10 side, and the mover 20 is attracted to the stator 10 (step 1).
.

次に、A端子に正電圧、B端子に負電圧、C端子に0電
位がそれぞれ印加され、同図(b)に示すような、A端
子電極側から隣接したB端子電極側へ向かう電気力線が
形成される(ステップ2)。
Next, a positive voltage is applied to the A terminal, a negative voltage is applied to the B terminal, and a 0 potential is applied to the C terminal, and an electric force flows from the A terminal electrode side to the adjacent B terminal electrode side as shown in the same figure (b). A line is formed (step 2).

その結果、エレクトレット22の正電荷は電気力線に沿
った力を受けて、浮上し、かつ図中右方向へ電極1ピッ
チ分移動する。同図(c)は移動後の状態である。
As a result, the positive charge of the electret 22 receives a force along the lines of electric force, floats, and moves rightward in the figure by one electrode pitch. The figure (c) shows the state after the movement.

次に、全ての固定子電極12が負電位とされて、同図(
d)に示すような電気力線が形成され、移動子20が固
定子10に吸着される(ステップ3)以下、第2図に示
すシーケンスで上記ステップ1〜ステツプ3を繰返すこ
とにより、移動子20が図中右方向へ移動する。
Next, all the stator electrodes 12 are set to negative potential, and the same figure (
Electric lines of force as shown in d) are formed, and the mover 20 is attracted to the stator 10 (Step 3).Then, by repeating steps 1 to 3 above in the sequence shown in FIG. 20 moves to the right in the figure.

なお、移動子20を図中左方向へ移動させる場合は、第
6図(b)および(c)に示す電気力線の向きが逆にな
るように電圧を印加すれば良い。
In addition, when moving the mover 20 to the left in the drawing, voltage may be applied so that the directions of the electric lines of force shown in FIGS. 6(b) and 6(c) are reversed.

このように本実施例によれば、移動子に誘導される電荷
を利用するのではなく、エレクトレット22に永久分極
されている電荷を利用するため、立上がり時間を非常に
高速化することができる。
As described above, according to this embodiment, the rise time can be significantly increased because the permanently polarized charges in the electret 22 are used instead of the charges induced in the movable element.

また、移動子20の電荷量となるエレクトレット22の
電荷量は任意に与えることが可能であることから、駆動
力が最大となるような最適の電荷量を与えることができ
、極めて大きな駆動力を得ることができる。
Furthermore, since the amount of charge on the electret 22, which corresponds to the amount of charge on the mover 20, can be arbitrarily given, it is possible to give an optimal amount of charge that maximizes the driving force, and an extremely large driving force can be obtained. Obtainable.

さらに、移動子20に誘導される電荷分布パターンは、
従来は略正弦波状のものであり、かつその位置も固定子
や移動子の材質1寸法によって変わってしまっていたが
、エレクトレット22の電荷は略矩形状であることから
電荷の位置3幅およびピッチを固定子電極12の幅、ピ
ッチに正確に一致させることができ、高精度な位置決め
が可能となる。
Furthermore, the charge distribution pattern induced in the mover 20 is
Conventionally, the waveform was approximately sinusoidal, and its position varied depending on the material and dimension of the stator and mover, but since the charge of the electret 22 is approximately rectangular, the position of the charge3 width and pitch can be made to accurately match the width and pitch of the stator electrodes 12, allowing highly accurate positioning.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、立上り時間が極め
て速く、移動子に作用する駆動力を増大でき、しかも位
置決め精度を向上し得る静電アクチュエータを提供でき
る。
As detailed above, according to the present invention, it is possible to provide an electrostatic actuator that has an extremely fast rise time, can increase the driving force acting on the moving element, and can improve positioning accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例となる静電アクチュエータの
断面図、第2図は同実施例で用いられる三相駆動電圧の
波形図、第3図は移動子の斜視図、第4図は固定子の斜
視図、第5図はエレクトレット形成工程を説明するため
の図、第6図は同実施例の動作説明図、第7図は従来の
静電アクチュエータの構成および動作を説明するための
図である。 10・・・固定子、11・・・絶縁基板、12・・・固
定子電極、13・・・絶縁膜、20・・・移動子、21
・・・絶縁基板、22・・・エレクトレット、23・・
・導電膜。 出願人代理人 弁理士 坪井  淳 第 、、(C) v!J(d) 第 図
Fig. 1 is a cross-sectional view of an electrostatic actuator according to an embodiment of the present invention, Fig. 2 is a waveform diagram of three-phase drive voltage used in the same embodiment, Fig. 3 is a perspective view of a mover, and Fig. 4 is a perspective view of a stator, FIG. 5 is a diagram for explaining the electret forming process, FIG. 6 is a diagram for explaining the operation of the same embodiment, and FIG. 7 is for explaining the configuration and operation of a conventional electrostatic actuator. This is a diagram. DESCRIPTION OF SYMBOLS 10... Stator, 11... Insulating substrate, 12... Stator electrode, 13... Insulating film, 20... Mover, 21
...Insulating substrate, 22...Electret, 23...
・Conductive film. Applicant's representative Patent attorney Jundai Tsuboi, (C) v! J(d) Figure

Claims (1)

【特許請求の範囲】 表面に複数の電極が所定間隔で形成された絶縁基板を有
し、かつこれら各電極表面が絶縁処理された固定子と、 前記絶縁基板表面に対向して前記固定子上に載置され、
前記絶縁基板表面に対向する面に永久分極された誘電体
領域が形成され、該誘電体領域が前記電極の間隔に応じ
た間隔で複数配置された移動子と、 互いに対向する前記電極と前記誘電体領域との間に、前
記移動子を移動せしめる移動電界を形成するように、前
記複数の電極に多相電圧を印加する駆動手段と、 を具備したことを特徴とする静電アクチュエータ。
[Scope of Claims] A stator comprising an insulating substrate on the surface of which a plurality of electrodes are formed at predetermined intervals, and each electrode surface is insulated; It is placed in
a mover in which permanently polarized dielectric regions are formed on a surface facing the insulating substrate surface, and a plurality of the dielectric regions are arranged at intervals corresponding to the intervals between the electrodes; An electrostatic actuator comprising: driving means for applying a multiphase voltage to the plurality of electrodes so as to form a moving electric field for moving the moving element between the moving element and the body region.
JP22800890A 1990-08-31 1990-08-31 Electrostatic actuator Pending JPH04112683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22800890A JPH04112683A (en) 1990-08-31 1990-08-31 Electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22800890A JPH04112683A (en) 1990-08-31 1990-08-31 Electrostatic actuator

Publications (1)

Publication Number Publication Date
JPH04112683A true JPH04112683A (en) 1992-04-14

Family

ID=16869735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22800890A Pending JPH04112683A (en) 1990-08-31 1990-08-31 Electrostatic actuator

Country Status (1)

Country Link
JP (1) JPH04112683A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333716A (en) * 2004-05-19 2005-12-02 Olympus Corp Method of manufacturing electret film for electrostatic actuator
JP2006025578A (en) * 2004-07-09 2006-01-26 Olympus Corp Electret actuator
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
WO2008053794A1 (en) * 2006-10-30 2008-05-08 Sanyo Electric Co., Ltd. Electrostatic acting device
US7452143B2 (en) 2003-08-21 2008-11-18 Olympus Corporation Electrostatic actuator, shutter device, imaging module, and camera
CN100460983C (en) * 2003-08-21 2009-02-11 奥林巴斯株式会社 Electrostatic actuator, shutter device, imaging module, and camera
JP2009219353A (en) * 2006-11-28 2009-09-24 Sanyo Electric Co Ltd Electrostatic induction type generator
US20100019616A1 (en) * 2006-08-31 2010-01-28 Sanyo Electric Co., Ltd. Electrostatic operation device
US8212450B2 (en) 2006-11-28 2012-07-03 Sanyo Electric Co., Ltd. Generator including an electret member
JP2015012791A (en) * 2013-07-02 2015-01-19 株式会社リコー Electrostatic motor
JP2015012774A (en) * 2013-07-02 2015-01-19 株式会社リコー Electrostatic motor
JP2015061507A (en) * 2013-09-19 2015-03-30 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Charged patterning using rectifier, which is guided to outside
WO2018174077A1 (en) 2017-03-22 2018-09-27 シチズン時計株式会社 Electrostatic motor
US11681260B2 (en) 2018-09-10 2023-06-20 Citizen Watch Co., Ltd. Electronic watch

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452143B2 (en) 2003-08-21 2008-11-18 Olympus Corporation Electrostatic actuator, shutter device, imaging module, and camera
CN100460983C (en) * 2003-08-21 2009-02-11 奥林巴斯株式会社 Electrostatic actuator, shutter device, imaging module, and camera
JP2005333716A (en) * 2004-05-19 2005-12-02 Olympus Corp Method of manufacturing electret film for electrostatic actuator
JP2006025578A (en) * 2004-07-09 2006-01-26 Olympus Corp Electret actuator
US7332847B2 (en) * 2004-07-09 2008-02-19 Olympus Corporation Electret actuator
JP4670050B2 (en) * 2004-11-26 2011-04-13 国立大学法人 東京大学 Electret and electrostatic induction type conversion element
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
JP5216590B2 (en) * 2006-08-31 2013-06-19 三洋電機株式会社 Electrostatic operation device
US8466600B2 (en) 2006-08-31 2013-06-18 Sanyo Electric Co., Ltd. Electrostatic operation device
US20100019616A1 (en) * 2006-08-31 2010-01-28 Sanyo Electric Co., Ltd. Electrostatic operation device
US8102097B2 (en) 2006-10-30 2012-01-24 Sanyo Electric Co., Ltd. Electrostatic acting device including an electret film
WO2008053794A1 (en) * 2006-10-30 2008-05-08 Sanyo Electric Co., Ltd. Electrostatic acting device
US8089194B2 (en) 2006-10-30 2012-01-03 Sanyo Electric Co., Ltd. Electrostatic acting device including an electret film and an electrostatic power generator including an electret film
WO2008053793A1 (en) * 2006-10-30 2008-05-08 Sanyo Electric Co., Ltd. Electrostatic acting device
JP5081833B2 (en) * 2006-10-30 2012-11-28 三洋電機株式会社 Electrostatic operation device
JP5081832B2 (en) * 2006-10-30 2012-11-28 三洋電機株式会社 Electrostatic operation device
US8212450B2 (en) 2006-11-28 2012-07-03 Sanyo Electric Co., Ltd. Generator including an electret member
JP2009219353A (en) * 2006-11-28 2009-09-24 Sanyo Electric Co Ltd Electrostatic induction type generator
JP2015012791A (en) * 2013-07-02 2015-01-19 株式会社リコー Electrostatic motor
JP2015012774A (en) * 2013-07-02 2015-01-19 株式会社リコー Electrostatic motor
JP2015061507A (en) * 2013-09-19 2015-03-30 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Charged patterning using rectifier, which is guided to outside
WO2018174077A1 (en) 2017-03-22 2018-09-27 シチズン時計株式会社 Electrostatic motor
US11303225B2 (en) 2017-03-22 2022-04-12 Citizen Watch Co., Ltd. Electrostatic motor
US11681260B2 (en) 2018-09-10 2023-06-20 Citizen Watch Co., Ltd. Electronic watch

Similar Documents

Publication Publication Date Title
US6806661B2 (en) Electrostatic actuator and method of driving the same
CA1078917A (en) Two-directional fine adjusting device
JPH04112683A (en) Electrostatic actuator
CA2218876C (en) Elastomeric micro electro mechanical systems
US5239222A (en) Electrostatic actuator using films
KR960035595A (en) Thin film magnetic head slider and electrostatic actuator for driving the head element
US5002900A (en) Method of producing semiconductor motor
JP3966704B2 (en) Electrostatic actuator, driving method of electrostatic actuator, and camera module using the same
JP2000011556A (en) Microactuator, magnetic head device and magnetic recording device
JPH07147786A (en) Electrostatic actuator
JP3095642B2 (en) Electrostatic actuator and driving method thereof
JP2719035B2 (en) Driving device for thin sheet material using electrostatic force
JPH04271284A (en) Electrostatic actuator
JP4616156B2 (en) Electrostatic actuator
JPH06284750A (en) Laminated electrostatic actuator
JPWO2008114330A1 (en) MEMS device and optical switch
JPS63265572A (en) Electrostatic motor
EP1026718A2 (en) Electrostatically controlled micro-relay device
JP3183319B2 (en) Electrostatic actuator
JP6964983B2 (en) Manufacturing method of electret board
JP6221420B2 (en) Electrostatic motor
JPH04222471A (en) Cylindrical actuator
JPH03103085A (en) Manufacture of dielectric movable element for power generator using electrostatic force
JPH06153535A (en) Electrostatic film actuator
KR19990009628A (en) Microactuator