JPH04112589A - Optical control type optical frequency modulator - Google Patents

Optical control type optical frequency modulator

Info

Publication number
JPH04112589A
JPH04112589A JP2230516A JP23051690A JPH04112589A JP H04112589 A JPH04112589 A JP H04112589A JP 2230516 A JP2230516 A JP 2230516A JP 23051690 A JP23051690 A JP 23051690A JP H04112589 A JPH04112589 A JP H04112589A
Authority
JP
Japan
Prior art keywords
light
region
active region
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230516A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Kano
文良 狩野
Katsuaki Kiyoku
克明 曲
Hiroshi Yasaka
洋 八坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2230516A priority Critical patent/JPH04112589A/en
Publication of JPH04112589A publication Critical patent/JPH04112589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optical control type high-performance optical frequency modulation, in which oscillation frequency is changed by light, by varying the refractive index of an inactive region. CONSTITUTION:Signal light IM(lambda1) having a wavelength lambda1 from an intensity- modulated light source 6 for excitation is projected and absorbed to an inactive region 2, and carriers are generated in response to the intensity of the incident light. The refractive index of the region 2 is altered by the plasma effect of the carriers, a Bragg wavelength is varied and oscillation frequency is changed, and frequency-modulated light FM(lambda2) is emitted. The wavelength lambda1 of incident light is made shorter than the absorption end wavelength of the optical guide layer of the region 2 so that incident light is absorbed efficiently only in the region 2 and an active region 3 is not subject to an effect at that time. Accordingly, an optical control type optical frequency modulator, which does not depend upon the direction of the polarized wave of incident light, can be acquired easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ通信や光計測等に利用される周波
数変調された光を発生する光周波数変調装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical frequency modulation device that generates frequency-modulated light used for optical fiber communication, optical measurement, and the like.

(従来の技術) 光周波数変調(光FSK)通信方式や、周波数変調され
た光を利用する光センサ、誤差信号に応じて光周波数を
制御する発振周波数制御装置においては、単一モードで
発振しているレーザの光周波数を、与えられた信号、い
わゆる変調信号に応じて変化させることができる。
(Prior art) Optical frequency modulation (optical FSK) communication systems, optical sensors that use frequency-modulated light, and oscillation frequency control devices that control optical frequency according to error signals oscillate in a single mode. The optical frequency of the laser can be changed depending on the applied signal, a so-called modulation signal.

光周波数を制御する方法として、注入電流による方法と
注入光による方法とに大別できる。半導体レーザは、そ
の注入電流に変調電流を重畳することによって、発振光
周波数を変調できるという前者のタイプに属する。特に
、回折格子を内蔵した分布反射型半導体レーザ(以下、
DBRレーザという)や分布帰還型半導体レーザ(以下
、DFBレーザという)では、注入電流による周波数変
調時にも、安全な単一モードでの発振が可能である(例
えば、IEEE Journal of Quantu
m Electronicsvol QE−23,No
、6 pp、835−838.1987 S、Mura
ta et。
Methods for controlling optical frequency can be roughly divided into methods using injection current and methods using injection light. Semiconductor lasers belong to the former type, in which the oscillation optical frequency can be modulated by superimposing a modulation current on the injected current. In particular, distributed reflection semiconductor lasers (hereinafter referred to as
In DBR lasers) and distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers), safe single-mode oscillation is possible even when frequency modulation is performed by injection current (e.g., IEEE Journal of Quantum
m Electronicsvol QE-23, No.
, 6 pp, 835-838.1987 S, Mura
ta et.

al、、’ 5pectral Characteri
stics for a 1.5μmDBRLa5er
 with Frequency−Tuning Re
gion、’参照)。
al,,' 5pectral Characteri
sticks for a 1.5μmDBRLa5er
with Frequency-Tuning Re
gion, 'see).

一方、光によって発振波長を変化させる例としては、I
noue等による報告(Electronics Le
ttersvo!、25. No、20 pp、136
0−1362.1989 K、Inoue 5ndN、
Takato+ ’ Wavelength Conv
ersion for FM Ligtusing L
ight Injection Induced Fr
equency 5hiftin DFB−LD、’ 
)があり、これを第6図に示す。
On the other hand, as an example of changing the oscillation wavelength by light, I
A report by Noue et al. (Electronics Le
ttersvo! , 25. No, 20pp, 136
0-1362.1989 K, Inoue 5ndN,
Takato+' Wavelength Conv
version for FM Ligtasing L
light Injection Induced Fr
sequence 5hiftin DFB-LD,'
), which is shown in Figure 6.

第6図において、21はDFBレーザ、22は活性領域
、23は活性領域への電流注入用の電極、24は励起用
光源である。第6図においてDFBレーザ21の左側か
ら強度変調された励起用光源24の波長島の光IM(λ
1)が入射され、入射光は吸収され、その強度に応じて
キャリア濃度に変化し、そのため屈折率の変化が生じて
、DFBレーザの発振周波数が変化する。このようにし
て周波数変調された波長λ2の光IM(λ2)が出射さ
れる。ここで入射光が効率良く吸収されるように、入射
光の波長λ1は活性領域の活性層の吸収端波長より短波
長としている。
In FIG. 6, 21 is a DFB laser, 22 is an active region, 23 is an electrode for injecting current into the active region, and 24 is an excitation light source. In FIG. 6, the wavelength island light IM (λ
1) is incident, the incident light is absorbed, and the carrier concentration changes depending on its intensity, resulting in a change in the refractive index and a change in the oscillation frequency of the DFB laser. Light IM (λ2) of wavelength λ2 frequency-modulated in this manner is emitted. Here, in order to efficiently absorb the incident light, the wavelength λ1 of the incident light is set to be shorter than the absorption edge wavelength of the active layer of the active region.

(発明が解決しようとする課題) しかしながら、前記従来例においては、DFB レーザ
への入射光の偏波面を叶Bレーザの出射光の偏波面に対
して直角方向にしないと、入射光と出射光とが結合して
発振状態を不安定にし、多モード発振の可能性があり、
また、強度変調が重畳された周波数変調となり、光通信
において伝送品質を劣化させる要因となり得る。
(Problem to be Solved by the Invention) However, in the conventional example, unless the plane of polarization of the incident light to the DFB laser is perpendicular to the plane of polarization of the output light of the B laser, the incident light and the output light may combine with each other to make the oscillation state unstable, resulting in multimode oscillation.
In addition, frequency modulation with intensity modulation superimposed may become a factor that deteriorates transmission quality in optical communications.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、光によって発振周波数の変化す
る光制御型の高性能な光周波数変調装置を提供すること
にある。
The present invention has been made in view of these points, and its object is to provide an optically controlled high-performance optical frequency modulation device whose oscillation frequency is changed by light.

(課題を解決するだめの手段) このような目的を達成するため、本発明では、光を発生
する活性領域と発振波長に対して低損失な非活性領域と
で構成される集積型半導体レーザにおいて、非活性領域
に、非活性領域の光ガイド層の吸収端波長よりも短波長
の外部信号光を入射して、吸収させ、非活性領域の屈折
率を変化させることにより、活性領域に影響を与えるこ
となく、発振光周波数を変化させる。
(Means for Solving the Problem) In order to achieve such an object, the present invention provides an integrated semiconductor laser comprising an active region that generates light and an inactive region that has low loss with respect to the oscillation wavelength. , an external signal light having a wavelength shorter than the absorption edge wavelength of the optical guide layer in the non-active region is incident on the non-active region, and is absorbed, changing the refractive index of the non-active region, thereby affecting the active region. The oscillation light frequency is changed without giving any

(作 用) 本発明によれば、非活性領域に注入された光は、非活性
領域の光ガイド層に吸収され、非活性領域の光ガイド層
にキャリアが生成される。このキャリアの効果によって
非活性領域の屈折率が変化し、発振周波数の変化が生じ
る。この時、注入光はすべて非活性領域で吸収されてし
まうので、活性領域の発振状態に悪影響を与えることな
く、入射光の偏波方向にも依存しない。また、非活性領
域においては、キャリアの変化量を太き(することが可
能であり、このために屈折率の変化も大きくなって、発
振周波数の変化量も大きくなる。
(Function) According to the present invention, light injected into the non-active region is absorbed by the light guide layer in the non-active region, and carriers are generated in the light guide layer in the non-active region. The effect of this carrier changes the refractive index of the inactive region, causing a change in the oscillation frequency. At this time, all of the injected light is absorbed in the non-active region, so it does not adversely affect the oscillation state of the active region and does not depend on the polarization direction of the incident light. Furthermore, in the inactive region, it is possible to increase the amount of change in carriers, which increases the amount of change in refractive index and also increases the amount of change in oscillation frequency.

さらに、非活性領域への電圧印加や電流注入によって、
発振周波数のチューニングが可能であり、発振周波数を
任意に設定しながら光周波数変調を行うことが可能であ
る。
Furthermore, by applying voltage or injecting current to the non-active region,
The oscillation frequency can be tuned, and optical frequency modulation can be performed while arbitrarily setting the oscillation frequency.

(実施例) 第1図は本発明に係わる光制御型光周波数変調装置の第
1の実施例を示す構成図である。第1図において、1は
DBRレーザであって、誘導放出によって光を生じる活
性領域3と、回折格子によって波長選択的に反射光を生
じる非活性領域(分布反射領域)2と、活性領域3に電
流1aを注入するための電極5と、非活性領域2に電圧
印加、または電流注入を行うための電極4とを有してい
る。
(Embodiment) FIG. 1 is a block diagram showing a first embodiment of an optically controlled optical frequency modulation device according to the present invention. In FIG. 1, 1 is a DBR laser, which includes an active region 3 that generates light by stimulated emission, a non-active region (distributed reflection region) 2 that wavelength-selectively reflects light by a diffraction grating, and an active region 3. It has an electrode 5 for injecting a current 1a, and an electrode 4 for applying a voltage or injecting a current to the non-active region 2.

また、6はDBRレーザ1の非活性領域2のハンド端波
長よりも短波長の光を放出する励起用光源(例えばDF
Bレーザ)である。第1図において、強度変調された励
起用光源6の波長λ1の信号光IM (λI)が非活性
領域2に入射し、吸収され、その入射光の強度に応じて
キャリアが生成される。
Further, reference numeral 6 denotes a pumping light source (for example, a DF
B laser). In FIG. 1, intensity-modulated signal light IM (λI) of wavelength λ1 from excitation light source 6 is incident on inactive region 2 and absorbed, and carriers are generated according to the intensity of the incident light.

生成されたキャリアのプラズマ効果によって、非活性領
域2の屈折率が変化し、ブラッグ波長が変化して発振周
波数が変化し、周波数変調された光FM (λ2)が出
射され、光制御型の光周波数変調装置が実現される。こ
こで、入射光が効率良く非活性領域2のみで吸収され、
活性領域3に影響を与えないために、入射光の波長λ、
は非活性領域2の光ガイド層の吸収端波長より短波長と
している。
Due to the plasma effect of the generated carriers, the refractive index of the non-active region 2 changes, the Bragg wavelength changes, the oscillation frequency changes, frequency-modulated light FM (λ2) is emitted, and optically controlled light is generated. A frequency modulation device is realized. Here, the incident light is efficiently absorbed only in the non-active region 2,
In order not to affect the active region 3, the wavelength of the incident light λ,
is set to a wavelength shorter than the absorption edge wavelength of the optical guide layer in the non-active region 2.

また、電極4を通じて非活性領域2に電流注入または電
圧印加を行うことにより、発振周波数のチューニングを
行うことができる。
Further, by injecting current or applying voltage to the non-active region 2 through the electrode 4, the oscillation frequency can be tuned.

第2図は、第1図の装置において入射光の強度を変化さ
せたときのDBRレーザの出射光の周波数変化を示す図
である。第2図から明らかなように、入射光の強度を変
えることによって、DBRレーザの発振周波数を変化さ
せることができる。
FIG. 2 is a diagram showing the frequency change of the output light of the DBR laser when the intensity of the incident light is changed in the apparatus of FIG. 1. As is clear from FIG. 2, the oscillation frequency of the DBR laser can be changed by changing the intensity of the incident light.

第3図は本発明に係わる光制御型光周波数変調装置の第
2の実施例を示す構成図である。この第2の実施例と前
記第1の実施例の異なる点は、非活性領域8が、回折格
子を内蔵する分布反射領域8aと、回折格子を内蔵しな
い位相整合領域8bとに分割されたDBRレーザを用い
ている点である。このようなりBRレーザを用いること
により、非活性領域8に電圧印加、または電流注入を行
い発振周波数のチューニングを行う場合、分布反射領域
8aと位相整合領域8bとに印加される電圧、または注
入される電流を適当に調節することによって、広い範囲
にわたって、発振周波数を変化させることができる(例
えば、日経エレクトロニクス、1987゜6、15.(
no、423)、I)p、149−161 、小林他、
′半導体レーザの波長を連続的に変える′)。
FIG. 3 is a configuration diagram showing a second embodiment of the optically controlled optical frequency modulation device according to the present invention. The difference between this second embodiment and the first embodiment is that the non-active region 8 is divided into a distributed reflection region 8a containing a diffraction grating and a phase matching region 8b not containing a diffraction grating. The point is that it uses a laser. As described above, when using a BR laser and tuning the oscillation frequency by applying a voltage or injecting a current to the non-active region 8, the voltage applied to the distributed reflection region 8a and the phase matching region 8b or the injection current is applied to the non-active region 8. The oscillation frequency can be varied over a wide range by appropriately adjusting the current flowing through it (for example, Nikkei Electronics, 1987゜6, 15.
no, 423), I) p, 149-161, Kobayashi et al.
``Continuously changing the wavelength of the semiconductor laser'').

なお第3図では位相整合領域8bが、活性領域3と分布
反射領域8aの間に配置されているが、これを活性領域
3の右側に設けても同様な効果を有する光制御型の光周
波数変調装置を構成することが可能である。
Note that in FIG. 3, the phase matching region 8b is arranged between the active region 3 and the distributed reflection region 8a, but even if it is provided on the right side of the active region 3, the same effect can be achieved by optically controlling the optical frequency. It is possible to configure a modulation device.

第4図は本発明に係わる光制御型光周波数変調装置の第
3の実施例を示す構成図である。この第3の実施例と前
記第1の実施例と異なる点は、第1の実施例はDBRレ
ーザを用いているのに対して、第3の実施例は位相整合
領域付きDFBレーザを用いて構成したことにある。第
4図において、11は位相整合領域付きDFBレーザで
あって、回折格子の内蔵された、誘導放出によって光を
生じる活性領域12と、非活性領域(位相整合領域)1
3と、活性領域に電流1aを注入するための電極15と
、非活性領域に電圧印加、または電流注入を行うための
電極14とを有している。このような構成においても、
入射光による発振周波数の変化は、第1の実施例と同様
の効果を得ることができる。また、電極14を通じて非
活性領域13に電流注入または電圧印加を行うことによ
り、発振周波数のチューニングを行うことができる。
FIG. 4 is a configuration diagram showing a third embodiment of the optically controlled optical frequency modulation device according to the present invention. The difference between this third embodiment and the first embodiment is that the first embodiment uses a DBR laser, whereas the third embodiment uses a DFB laser with a phase matching region. It's because it's configured. In FIG. 4, reference numeral 11 denotes a DFB laser with a phase matching region, which includes an active region 12 that has a built-in diffraction grating and generates light by stimulated emission, and an inactive region (phase matching region) 1.
3, an electrode 15 for injecting current 1a into the active region, and an electrode 14 for applying voltage or injecting current to the non-active region. Even in such a configuration,
The change in oscillation frequency due to incident light can produce the same effects as in the first embodiment. Further, by injecting current or applying voltage to the non-active region 13 through the electrode 14, the oscillation frequency can be tuned.

なお第4図では電極15は一つであるが、これを複数の
電極に分割し、活性領域に電流1aを不均一に注入する
ような位相整合領域付きDFBを用いた場合においても
、同様な効果を有する光制御型の光周波数変調装置を構
成することが可能である。
Although there is only one electrode 15 in FIG. 4, the same result can be obtained even when a DFB with a phase matching region is used in which the electrode 15 is divided into a plurality of electrodes and the current 1a is non-uniformly injected into the active region. It is possible to construct an optically controlled optical frequency modulation device that is effective.

第5図は本発明の第4の実施例を示す構成図である。第
5図において、16は前記の第1の実施例においてDB
Rレーザと励起用光源(例えば叶Bレーザ)を同一基板
上に集積化した集積化光制御型光周波数変調装置であっ
て、DBRレーザ部1部上7起用光源部18とを有して
いる。ここで、励起用光源部18は、叶Bレーザであっ
てもよく、また発光ダイオードであってもよい。電極2
0を通じて励起用光源部18の活性領域19に変調信号
の重畳された電流を注入し、DBRレーザ部1部上7活
性領域2のバンド端波長よりも短波長の強度変調された
光を発生させる。その光を非活性領域で吸収することに
よって、DBRレーザ部1部上7周波数変調された光F
M(λ、)の出力が可能となる。
FIG. 5 is a block diagram showing a fourth embodiment of the present invention. In FIG. 5, 16 is the DB in the first embodiment.
This is an integrated optical control type optical frequency modulation device in which an R laser and an excitation light source (for example, a Kano B laser) are integrated on the same substrate, and includes a DBR laser section 1 and an excitation light source section 18. . Here, the excitation light source section 18 may be a Kano B laser or a light emitting diode. Electrode 2
A current on which a modulation signal is superimposed is injected into the active region 19 of the excitation light source section 18 through the DBR laser section 1, and intensity-modulated light having a wavelength shorter than the band edge wavelength of the active region 2 on the DBR laser section 1 is generated. . By absorbing the light in the non-active region, 7 frequency modulated light F on the DBR laser section 1 is generated.
It becomes possible to output M(λ,).

なお第5図においてDBRレーザ部1部上7前記の実施
例2.3のように、位相整合領域付きDBRレーザまた
は位相整合領域付きDFBレーザに置き換えても、同様
の効果を有する集積化光制御型光周波数変調装置を構成
することが可能である。
In addition, in FIG. 5, even if the DBR laser section 1 is replaced with a DBR laser with a phase matching region or a DFB laser with a phase matching region as in Example 2.3 above, the integrated optical control can have the same effect. It is possible to construct a type optical frequency modulation device.

(発明の効果) 以上説明したように、本発明の光制御型光周波数変調装
置は、発振波長のチューニング機能を持ち、入射光の偏
波方向に依存しない光制御型の光周波数変調装置を容易
に得ることができる。また、入射光の偏波方向に依存し
ないので、上記装置を光ファイバを用いて容易に構成す
ることができる。
(Effects of the Invention) As explained above, the optically controlled optical frequency modulator of the present invention has a tuning function of the oscillation wavelength, and facilitates the production of an optically controlled optical frequency modulator that does not depend on the polarization direction of incident light. can be obtained. Furthermore, since it does not depend on the polarization direction of the incident light, the above device can be easily constructed using optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光制御型光周波数変調装置の第
1の実施例を示す構成図、 第2図は第1の実施例において、入射光強度と発振周波
数の変化量を示すグラフ、 第3図は本発明に係わる光制御型光周波数変調装置の第
2の実施例を示す構成図、 第4図は本発明に係わる光制御型光周波数変調装置の第
3の実施例を示す構成図、 第5図は本発明に係わる光制御型光周波数変調装置の第
4の実施例を示す構成図、 第6図は叶Bレーザを用いた従来の光制御型光周波数変
調装置の構成図である。 1.7・・・DBRレーザ 2.8a・・・分布反射領域 3、12.19.22・・・活性領域 4、 5. 9.10.14.15.20.23・・・
電極6.24・・・励起用光源 8b、 13・・・位相整合領域 11・・・位相整合領域付き叶Bレーザ16・・・集積
化光制御型光周波数変調装置17・・・DBRレーザ部 18・・・励起用光源部 21・・・DFBレーザ。
FIG. 1 is a configuration diagram showing a first embodiment of an optically controlled optical frequency modulation device according to the present invention; FIG. 2 is a graph showing the amount of change in incident light intensity and oscillation frequency in the first embodiment; FIG. 3 is a configuration diagram showing a second embodiment of the optically controlled optical frequency modulator according to the present invention, and FIG. 4 is a configuration diagram showing a third embodiment of the optically controlled optical frequency modulator according to the present invention. Fig. 5 is a block diagram showing a fourth embodiment of the light-controlled optical frequency modulation device according to the present invention, and Fig. 6 is a block diagram of a conventional light-controlled optical frequency modulation device using a Kano B laser. It is. 1.7...DBR laser 2.8a...Distributed reflection region 3, 12.19.22...Active region 4, 5. 9.10.14.15.20.23...
Electrodes 6.24... Excitation light source 8b, 13... Phase matching region 11... Leaf B laser with phase matching region 16... Integrated optically controlled optical frequency modulator 17... DBR laser section 18... Excitation light source section 21... DFB laser.

Claims (1)

【特許請求の範囲】 1、光を発生する活性領域と発振波長に対して低損失な
非活性領域とで構成される集積型半導体レーザと、前記
の集積型半導体レーザの非活性領域に非活性領域のバン
ド端波長よりも短波長の光を入力するための励起用光源
とを備え、前記の集積型半導体レーザの活性領域側より
周波数変調された光を出力することを特徴とする光制御
型光周波数変調装置。 2、光を発生する活性領域と発振波長に対して低損失な
非活性領域とで構成される集積型半導体レーザと非活性
領域のバンド端波長よりも短波長の光を放出する発光ダ
イオードまたは半導体レーザとが同一の半導体基板上に
集積化されたことを特徴とする請求項1記載の光制御型
光周波数変調装置。
[Scope of Claims] 1. An integrated semiconductor laser composed of an active region that generates light and an inactive region that has low loss with respect to the oscillation wavelength; a light control type, characterized in that it is equipped with an excitation light source for inputting light with a wavelength shorter than the band edge wavelength of the region, and outputs frequency-modulated light from the active region side of the integrated semiconductor laser. Optical frequency modulator. 2. An integrated semiconductor laser consisting of an active region that generates light and a non-active region with low loss relative to the oscillation wavelength, and a light-emitting diode or semiconductor that emits light at a wavelength shorter than the band edge wavelength of the non-active region. 2. The optically controlled optical frequency modulator according to claim 1, wherein the laser is integrated on the same semiconductor substrate.
JP2230516A 1990-09-03 1990-09-03 Optical control type optical frequency modulator Pending JPH04112589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230516A JPH04112589A (en) 1990-09-03 1990-09-03 Optical control type optical frequency modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230516A JPH04112589A (en) 1990-09-03 1990-09-03 Optical control type optical frequency modulator

Publications (1)

Publication Number Publication Date
JPH04112589A true JPH04112589A (en) 1992-04-14

Family

ID=16908976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230516A Pending JPH04112589A (en) 1990-09-03 1990-09-03 Optical control type optical frequency modulator

Country Status (1)

Country Link
JP (1) JPH04112589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050614A (en) * 2004-08-05 2006-02-16 Samsung Electronics Co Ltd Device and method for optical transmission of frequency shift modulation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050614A (en) * 2004-08-05 2006-02-16 Samsung Electronics Co Ltd Device and method for optical transmission of frequency shift modulation system
US7450860B2 (en) 2004-08-05 2008-11-11 Samsung Electronics Co., Ltd. Apparatus and method for frequency-shift-keying optical transmission
JP4532367B2 (en) * 2004-08-05 2010-08-25 三星電子株式会社 Optical transmission apparatus and method using frequency shift keying

Similar Documents

Publication Publication Date Title
EP0314490B1 (en) Semiconductor laser
US20090046748A1 (en) Light-emitting device with precisely tuned and narrowed spectral width of optical output and an optical signal source providing the same
JPS6155981A (en) Semiconductor light-emitting element
US6822980B2 (en) Tunable semiconductor laser with integrated wideband reflector
KR970007117B1 (en) Semiconductor laser
US5384799A (en) Frequency stabilized laser with electronic tunable external cavity
US6014390A (en) Tunable transmitter with Mach-Zehnder modulator
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JP6274322B2 (en) LASER DEVICE AND LASER DEVICE CONTROL METHOD
JP2018060974A (en) Semiconductor optical integrated element
EP3070792B1 (en) Laser
JP6245656B2 (en) Semiconductor laser element
JPS61222189A (en) Semiconductor laser
JPH11312846A (en) Distribution feedback type semiconductor laser comprising phase shift region of polarization dependence and optical transmitter and optical communication system using the same
JPS61163685A (en) Direct frequency modulating method of laser light
JPS60187078A (en) Semiconductor laser device
JPH04112589A (en) Optical control type optical frequency modulator
JP3537058B2 (en) Multiplexed optical frequency comb generator
JP3227701B2 (en) Mode-locked semiconductor laser
JPS59154086A (en) Frequency stabilized semiconductor laser
JPS6032381A (en) Surface light emitting semiconductor laser device
JPH04343283A (en) Integrated semiconductor laser ray source
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP3072123B2 (en) Optically integrated tunable semiconductor laser device
JP3072124B2 (en) Optically integrated semiconductor laser device