JPS6032381A - Surface light emitting semiconductor laser device - Google Patents

Surface light emitting semiconductor laser device

Info

Publication number
JPS6032381A
JPS6032381A JP14133783A JP14133783A JPS6032381A JP S6032381 A JPS6032381 A JP S6032381A JP 14133783 A JP14133783 A JP 14133783A JP 14133783 A JP14133783 A JP 14133783A JP S6032381 A JPS6032381 A JP S6032381A
Authority
JP
Japan
Prior art keywords
wavelength
oscillating
semiconductor laser
current source
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14133783A
Other languages
Japanese (ja)
Inventor
Keisuke Koga
啓介 古賀
Toshihiro Fujita
俊弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14133783A priority Critical patent/JPS6032381A/en
Publication of JPS6032381A publication Critical patent/JPS6032381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0614Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by electric field, i.e. whereby an additional electric field is used to tune the bandgap, e.g. using the Stark-effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to arbitrarily select an oscillating wavelength in a gain range readily merely by altering the thickness of a periodic structure without depending upon the length of a resonator and to enable to alter the oscillating length to some degree near the oscillating mode wavelength by forming a distributed reflecting type having a periodic structure in an at least one resonator. CONSTITUTION:A material which has a laminated photowaveguide 9 including a diffraction grating function and electro-optical effect as photowaveguide layers 7, 8 such as a semiconductor material like InP or GaAs is used. In order to alter the oscillating wavelength of the semiconductor laser, a current source 6 is modulated. The original oscillating wavelength can be sufficiently stabilized by using a stabilized constant current source as an injection current source 1 to a semiconductor laser. The oscillating wavelength fine tuning or modulating of the laser is performed by the change DELTAn of refractive index by applying an electric field to the both ends of the photowaveguide layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は面発光半導体レーザの発振波長を任意にコント
ロールするレーザ装置に関するものである0 従来例の構成とその問題点 通常の半導体注入レーザは、共振器の反射鏡として、活
性層に垂直にへき開した面を用いておりレーザ光は活性
層に沿った方向に放射される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser device that arbitrarily controls the oscillation wavelength of a surface-emitting semiconductor laser. A surface cleaved perpendicular to the active layer is used as a reflector of the device, and laser light is emitted in a direction along the active layer.

これに対し、面発光レーザはレーザ光を基板表面と垂直
に出射する半導体レーザであり、第1図に示すように、
ファブリ・ペロー光共振器は、エピタキシャル結晶表面
3と基板面6あるいは両エピタキシャル結晶表面を反射
鏡面(共振器結晶面)として構成される。
On the other hand, a surface emitting laser is a semiconductor laser that emits laser light perpendicular to the substrate surface, and as shown in Figure 1,
The Fabry-Perot optical resonator is configured with an epitaxial crystal surface 3 and a substrate surface 6 or both epitaxial crystal surfaces as reflecting mirror surfaces (resonator crystal surfaces).

1は注入電源、2は出力光14は活性層である。Reference numeral 1 indicates an injected power source, and reference numeral 2 indicates an output light 14 of an active layer.

第1図のレーザは、(1)単一モード短共振器レーザ、
(巧犬放射面積、狭出射角レーザ5(→2次元レーザア
レイ、(4)モIJ IJシック光集積回路等への適用
が期待される。通常の縦モード制御を行なっていないフ
ァブリ・ペロー型半導体レーザでは、共振器長が200
〜300μmであるだめの、縦モード間隔は10A程度
となり、利得スペクトルに比べて小さいので利得の中心
からの同調ずれの影響は少ない。一方、縦モード制御を
行ガっていない共振器長10μm程度の雑兵振器面発光
レーザでは、縦モード間隔が400Aと広くなり、利得
スペクトルのピーク波長と共振波長とのずhが無視でき
なくなり、最悪の場合には発振しないことも考えられ得
る。
The laser in Figure 1 is (1) a single mode short cavity laser;
(Expected to be applied to 2-dimensional laser arrays, (4) MOIJ IJ thick optical integrated circuits, etc. Fabry-Perot type that does not perform normal longitudinal mode control. In semiconductor lasers, the cavity length is 200
Although it is ~300 μm, the longitudinal mode spacing is about 10 A, which is smaller than the gain spectrum, so that the influence of tuning deviation from the center of the gain is small. On the other hand, in a general cavity surface emitting laser with a resonator length of about 10 μm that does not perform longitudinal mode control, the longitudinal mode spacing is as wide as 400 A, and the difference h between the peak wavelength of the gain spectrum and the resonance wavelength cannot be ignored. , in the worst case, it may not oscillate.

発明の目的 ・従来の面発光半導体レーザは、発振モード波長が共振
器長に犬きく依存するために、分留りの向上の点で問題
があった。ところが、共振器の少なくとも一方を周期構
造をもつ分布反射型にすると、発振波長は共振器長に依
らず、主に周期構造の厚みだけで制御することができ、
温度安定性に優れた単一モード発振を実現できる。本発
明では、発振モード波長を共振器長に依らず、周期構造
の厚みを変えるだけで容易に利得範囲内で任意に選択す
ることができ、かつ、その発振モード波長の近傍である
程度発振波長を可変とすることができるたものである。
Purpose of the Invention - Conventional surface-emitting semiconductor lasers have had problems in improving fractionation because the oscillation mode wavelength is highly dependent on the resonator length. However, if at least one of the resonators is a distributed reflection type with a periodic structure, the oscillation wavelength can be controlled mainly by the thickness of the periodic structure, regardless of the resonator length.
Single mode oscillation with excellent temperature stability can be achieved. In the present invention, the oscillation mode wavelength can be easily selected within the gain range by simply changing the thickness of the periodic structure, regardless of the cavity length, and the oscillation wavelength can be adjusted to a certain extent in the vicinity of the oscillation mode wavelength. It is something that can be made variable.

発明の構成 第2図に本発明における面発光半導体レーザの共振器の
片端面をなす積層型の周期構造図を示す。
Structure of the Invention FIG. 2 shows a stacked periodic structure forming one end face of a resonator of a surface emitting semiconductor laser according to the invention.

所望の発振波長λは、層71層8の各々の屈折率。The desired oscillation wavelength λ is the refractive index of each of the layers 71 and 8.

厚み(n+ 、d+ ) 、 (n2.d2)を変える
ことによって任意に設計でき、かつ、電気光学効果を有
する積層構造の各層に電源部6によシミ界を加えること
により、発振波長の微調あるいは変調を可能せしめる構
成を有する。
It can be designed arbitrarily by changing the thicknesses (n+, d+), (n2.d2), and by applying a stain field to each layer of the laminated structure having an electro-optic effect through the power supply unit 6, fine tuning of the oscillation wavelength or It has a configuration that enables modulation.

実施例の説明 本発明における波長可変積層分布反射型半導体レーザ装
置の構造の一実施例を第3図に示す。ここでは、第1図
に示す従来の面発光レーザの共振器3のかわりに回折格
子機能をもつ積層型光導波路9を有し、かつ、その各光
導波層7,8として電気光学効果を有する材料、例えば
InP、GaAs等半導体材料を用いることを特徴とす
る。この半導体レーザの発振波長を変化させるためには
電流源6を変調することにより行なう。半導体レーザへ
の注入電流源1として安定化定電流源を用いることによ
り、もともとの発振波長を十分に安定化せしめる。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows an embodiment of the structure of a wavelength tunable layered distributed reflection type semiconductor laser device according to the present invention. Here, instead of the resonator 3 of the conventional surface emitting laser shown in FIG. 1, a stacked optical waveguide 9 having a diffraction grating function is provided, and each of the optical waveguide layers 7 and 8 has an electro-optic effect. It is characterized by using a material such as a semiconductor material such as InP or GaAs. The oscillation wavelength of this semiconductor laser is changed by modulating the current source 6. By using a stabilized constant current source as the current source 1 injected into the semiconductor laser, the original oscillation wavelength can be sufficiently stabilized.

尚、2は出力光、4は活性層、6は共符器基板面である
Note that 2 is an output light, 4 is an active layer, and 6 is a common encoder substrate surface.

半導体レーザの発振波長微調あるいは変調は、光導波層
の両端に電界を加えることによシ屈折率変化△nを与え
て行なう。第2図に示すような、電気光学効果を有する
光導波層7,8が交互に積み重なった周期構造を考える
。ブラッグ条件を満足する波長をλb、交互に存在する
層2′;層3′の屈折率、厚みをそれぞれ(rz 、d
+);(n2゜d2)、また、1次回折光を用いるとす
るとλb −・+=d+ (1) 1 」・(−−d2(2) 2 式0)9式(2)より n1d1−n2d2 (3) の関係が成立する。
Fine tuning or modulation of the oscillation wavelength of a semiconductor laser is performed by applying an electric field to both ends of the optical waveguide layer to change the refractive index Δn. Consider a periodic structure in which optical waveguide layers 7 and 8 having an electro-optic effect are stacked alternately as shown in FIG. Let λb be the wavelength that satisfies the Bragg condition, and let the refractive index and thickness of the alternating layers 2' and 3' be (rz, d
+); (n2゜d2), and if first-order diffracted light is used, λb −・+=d+ (1) 1 ”・(−−d2(2) 2 Equation 0) 9 From Equation (2), n1d1−n2d2 The relationship (3) holds true.

今、との光導波層の両端に電界Eを加えるとする。Suppose now that an electric field E is applied to both ends of the optical waveguide layer.

層79層8の屈折率N+、N2は、ポッケルス定数をγ
1.γ2として N1=n1+4n1’ γ1E (4)N2 + n2
 ++n’2 r2E(5)と表わせる。変調された波
長をλとすると同様に、N1d1=N2d2(8) を満足しなければならない。上記の条件よりn1γ1d
1:n2γ2d2 (9) となる。式(3)及び式(9)より、式はn1γ1−n
2γ2 (10) となり、式(1o)を満足するポッケルス材料で積層型
光導波路9を構成すれば、式(6)で表わされる波長λ
に微調あるいは変調することができる。
The refractive index N+, N2 of the layer 79 layer 8 is the Pockels constant γ
1. As γ2, N1=n1+4n1' γ1E (4) N2 + n2
It can be expressed as ++n'2 r2E(5). Similarly, if the modulated wavelength is λ, the following must be satisfied: N1d1=N2d2 (8). From the above conditions, n1γ1d
1:n2γ2d2 (9). From equations (3) and (9), the equation is n1γ1-n
2γ2 (10) If the laminated optical waveguide 9 is constructed of a Pockels material that satisfies the formula (1o), the wavelength λ expressed by the formula (6)
It can be finely tuned or modulated.

発明の効果 以上述べたように本発明は、将来の空間的光情報、信号
処理および光通信に大きな役割を果たすことが期待され
る、2次元アレイ化の可能性を有する面発光半導体装置
において、容易に所望の波長において単−縦モード安定
発振を実現せしめ、かつ、電界を加えることにより、発
振波長を微細にコノトロールすることが可能であり、か
つ、光の安定な周波数を利用するような通信システム例
えば、光へテロダイン検波システムなどにも用いること
が可能である。
Effects of the Invention As described above, the present invention provides surface-emitting semiconductor devices having the possibility of two-dimensional array formation, which are expected to play a major role in future spatial optical information, signal processing, and optical communications. Communication that makes it easy to realize stable single-longitudinal mode oscillation at a desired wavelength, that allows fine control of the oscillation wavelength by applying an electric field, and that utilizes the stable frequency of light. It can also be used in systems such as optical heterodyne detection systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の面発光半導体レーザ装置の概略図、第2
図は本発明の一実施例のレーザの積層型共振器を横方向
から見た断面図、第3図は本発明の一実施例の面発光半
導体レーザ装置の概略断面図である。 1・・・・・・安定化定電流源、2・・・・・・出力光
、6・・・・変調用電流源、4・・・・・・活性層、5
・・・・・・共振器基板面、7,8・・・・光導波層、
9−・・・・積層型共振器。
Figure 1 is a schematic diagram of a conventional surface emitting semiconductor laser device, Figure 2 is a schematic diagram of a conventional surface emitting semiconductor laser device;
The figure is a cross-sectional view of a stacked resonator of a laser according to an embodiment of the present invention, viewed from the side, and FIG. 3 is a schematic cross-sectional view of a surface-emitting semiconductor laser device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Stabilization constant current source, 2... Output light, 6... Modulation current source, 4... Active layer, 5
...Resonator substrate surface, 7, 8... Optical waveguide layer,
9-...Stacked resonator.

Claims (1)

【特許請求の範囲】[Claims] (1)基板の一生面上に活性層を形成し、前記活性層上
に複数の光導波層の積層された周期構造体導体レーザ装
置。 (巧 注入電源とは別の電気信号を光導波層に印加
(1) A periodic structure conductor laser device in which an active layer is formed on the entire surface of a substrate, and a plurality of optical waveguide layers are laminated on the active layer. (Takumi Applying an electrical signal separate from the injected power source to the optical waveguide layer
JP14133783A 1983-08-01 1983-08-01 Surface light emitting semiconductor laser device Pending JPS6032381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14133783A JPS6032381A (en) 1983-08-01 1983-08-01 Surface light emitting semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14133783A JPS6032381A (en) 1983-08-01 1983-08-01 Surface light emitting semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6032381A true JPS6032381A (en) 1985-02-19

Family

ID=15289604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14133783A Pending JPS6032381A (en) 1983-08-01 1983-08-01 Surface light emitting semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6032381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291192A (en) * 1986-06-11 1987-12-17 Matsushita Electric Ind Co Ltd Surface emission laser
JPS6421987A (en) * 1987-07-16 1989-01-25 Fujitsu Ltd Semiconductor light emitting device
EP0465145A2 (en) * 1990-07-05 1992-01-08 AT&T Corp. Vertical cavity laser with mirror having controllable reflectivity
EP2863495A1 (en) * 2013-10-16 2015-04-22 Seiko Epson Corporation Light emitting device and atomic oscillator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit
JPS5698888A (en) * 1980-01-09 1981-08-08 Tokyo Inst Of Technol Light emitting semiconductor laser
JPS57145385A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for generating light pulse train
JPS5936988A (en) * 1982-08-26 1984-02-29 Agency Of Ind Science & Technol Vertical oscillation type semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit
JPS5698888A (en) * 1980-01-09 1981-08-08 Tokyo Inst Of Technol Light emitting semiconductor laser
JPS57145385A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for generating light pulse train
JPS5936988A (en) * 1982-08-26 1984-02-29 Agency Of Ind Science & Technol Vertical oscillation type semiconductor laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291192A (en) * 1986-06-11 1987-12-17 Matsushita Electric Ind Co Ltd Surface emission laser
JPS6421987A (en) * 1987-07-16 1989-01-25 Fujitsu Ltd Semiconductor light emitting device
EP0465145A2 (en) * 1990-07-05 1992-01-08 AT&T Corp. Vertical cavity laser with mirror having controllable reflectivity
JPH04233293A (en) * 1990-07-05 1992-08-21 American Teleph & Telegr Co <Att> Semiconductor laser
EP2863495A1 (en) * 2013-10-16 2015-04-22 Seiko Epson Corporation Light emitting device and atomic oscillator
JP2015079831A (en) * 2013-10-16 2015-04-23 セイコーエプソン株式会社 Light-emitting device and atomic oscillator
US9300308B2 (en) 2013-10-16 2016-03-29 Seiko Epson Corporation Light emitting device and atomic oscillator

Similar Documents

Publication Publication Date Title
EP0314490B1 (en) Semiconductor laser
US4608697A (en) Spectral control arrangement for coupled cavity laser
US7835417B2 (en) Narrow spectrum light source
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
US4852108A (en) Wavelength tunable semiconductor laser with narrow band-pass active filter region
JPH03241885A (en) Interferometer semiconductor laser
JP4239440B2 (en) Optical clock pulse train generator
US5384799A (en) Frequency stabilized laser with electronic tunable external cavity
JP3198338B2 (en) Semiconductor light emitting device
JPH01184971A (en) Slab guiding light emission semiconductor laser
JPH0449793B2 (en)
US4573156A (en) Single mode laser emission
JP2018060974A (en) Semiconductor optical integrated element
JP2012074445A (en) Wavelength-variable laser
JPS6032381A (en) Surface light emitting semiconductor laser device
JPS61222189A (en) Semiconductor laser
US20070041081A1 (en) High performance compact external cavity laser( ecl) for telecomm applications
JPH0311554B2 (en)
US5043994A (en) Semiconductor laser device
JPH11233894A (en) Variable wavelength external resonator type laser
JPH0691297B2 (en) Semiconductor laser
JPS63299291A (en) Semiconductor laser
JPH04343283A (en) Integrated semiconductor laser ray source
JPH051989B2 (en)
JPS6159554B2 (en)