JPH0395703A - Magnetic recording and reproducing device - Google Patents

Magnetic recording and reproducing device

Info

Publication number
JPH0395703A
JPH0395703A JP10293690A JP10293690A JPH0395703A JP H0395703 A JPH0395703 A JP H0395703A JP 10293690 A JP10293690 A JP 10293690A JP 10293690 A JP10293690 A JP 10293690A JP H0395703 A JPH0395703 A JP H0395703A
Authority
JP
Japan
Prior art keywords
frequency
recording
audio signal
signal
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10293690A
Other languages
Japanese (ja)
Other versions
JPH0690769B2 (en
Inventor
Shigeyuki Ito
滋行 伊藤
Yoshizumi Wataya
綿谷 由純
Takao Arai
孝雄 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2102936A priority Critical patent/JPH0690769B2/en
Publication of JPH0395703A publication Critical patent/JPH0395703A/en
Publication of JPH0690769B2 publication Critical patent/JPH0690769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent sound quality from being degraded due to modulation by increasing the frequency deviation amount of a pre-emphasized sound signal, changing the amplitude or amplitude-frequency property of the signal corresponding to the amplitude of the sound signal, afterwards, executing FM modulation, recording the signal, retrieving the original property which is changed on the FM modulation, when the signal is reproduced and de-emphasized. CONSTITUTION:A magnetic recording and reproducing device is composed of a pre-emphasis circuit 2 to pre-emphasize the sound signal, compressor 3, frequency modulation circuit 5, mixing means 7, filter 11, demodulation circuit 12, expander 15 and de-emphasis circuit 17 to de-emphasize the expanded sound signal. The compression ratio of the compressor 3 is selected so as to generate frequency deviation by the frequency modulation so that the frequency difference between the instantaneous frequencies of the two reproduced signal simultaneously read from two adjacent sound recording tracks can exceed an audible frequency, and the expansion ratio of the expander 15 is selected to be equal with the compression ratio of the compressor 3. Thus, with simple circuit configuration, the sound quality can be prevented from being degraded by the over modulation.

Description

【発明の詳細な説明】 (発明の利用分野〕 本発明は周波数変調(FM変調)音/1信号と映像信号
とを重畳して記録する磁気記録再生装置において周波数
変調音声信号の過変調を防止する磁気記録再生装置に関
するものである6 〔発明の背景〕 従来より、輝度信号を周波数変調(FM変調)し、色度
信号を上記FM変調輝度信号の下側に周波数変換して記
録する磁気記録再生装置(以下、VTRと言う。)にお
ける音声信号の記録方法の1つとして、FM変調した音
声信号と上記映像信号とを回転ヘッドにて同一磁気テー
プ上に重畳記録する方法(以下、音声FM重畳方式とい
う。)が知られている。ところで、近年の記録密度向上
は目覚ましいものがあり、約十年前のVTRに比べて1
7倍もの高密度記録を達成している。そして、このよう
な高密度記録技術の進歩にともない、カセッ1−の小型
化や回転シリンダ径の小型化などにより、コンパクト化
を計ったVTRが開発され始めている。これら小型VT
Rでは,小型・軽量化や磁気テープ走行速度の低速度化
等のため、今までの固定ヘッドを用いる音声信号記録方
式では、ヮウ・フラッタ特性、再生S/Nや再生周波数
帯域等の点で十分な性能を得る事が困難となってきてお
り、上述した音声FM重畳方式などの新たな音声記録再
生方式を採用する必要性が増している。
Detailed Description of the Invention (Field of Application of the Invention) The present invention prevents overmodulation of a frequency modulated audio signal in a magnetic recording/reproducing device that records a frequency modulated (FM modulated) sound/1 signal and a video signal in a superimposed manner. 6 [Background of the Invention] Conventionally, magnetic recording is performed in which a luminance signal is frequency-modulated (FM modulated) and a chromaticity signal is frequency-converted and recorded below the FM-modulated luminance signal. One of the methods for recording audio signals in a playback device (hereinafter referred to as VTR) is a method in which an FM-modulated audio signal and the above-mentioned video signal are superimposed and recorded on the same magnetic tape using a rotating head (hereinafter referred to as audio FM). By the way, there has been a remarkable improvement in recording density in recent years, and compared to VTRs of about 10 years ago,
Achieved 7 times higher density recording. With the progress of such high-density recording technology, VTRs that are more compact have begun to be developed by reducing the size of the cassette 1- and the diameter of the rotating cylinder. These small VT
In order to reduce the size and weight of the R, as well as to reduce the running speed of the magnetic tape, the conventional audio signal recording method using a fixed head has been improved in terms of wow/flutter characteristics, playback S/N, playback frequency band, etc. It is becoming difficult to obtain sufficient performance in the FM system, and there is an increasing need to adopt new audio recording and reproducing methods such as the above-mentioned audio FM superimposition method.

音声FM重畳方式の特徴としては、 (1)テープ走行速度むらによる時間軸変動の影響を受
けにくいのでワラ・フラッタ特性が良い。
The characteristics of the audio FM superimposition method are as follows: (1) It is less susceptible to time axis fluctuations due to unevenness in tape running speed, so it has good flutter and flutter characteristics.

(2)再生周波数帯域がテープ層高速度に依存しておら
ず、広帯域化が可能である。
(2) The playback frequency band does not depend on the high speed of the tape layer and can be widened.

などがあげられる。etc.

ここで、上述した音声信号を音声F M−!iX畳方式
にて記録再生するVTRの記録周波数スペクトラムにつ
いて考えてみる。
Here, the above-mentioned audio signal is converted into audio FM-! Let us consider the recording frequency spectrum of a VTR that records and plays back using the iX tatami method.

音声信号搬送波の中心周波数は、輝度信号及び色度信号
に与える影響が最小になるように決めなくてはならない
。また、小型VTR、特に回転シリンダ径の小さいVT
Rでは、テープとヘッドの相対速度が低くなるため記録
周波数帯域が狭く、輝度信W 12送波の中心周波数を
あまり高く設定できない。そこで、音声信号搬送波の中
心周波数は、FM変調輝度信号の下側で、できるだけ低
い周波数とせざるをえない。
The center frequency of the audio signal carrier must be determined so as to minimize its influence on the luminance and chromaticity signals. In addition, small VTRs, especially VTs with a small rotating cylinder diameter.
In R, the relative speed between the tape and the head is low, so the recording frequency band is narrow, and the center frequency of the luminance signal W12 transmission cannot be set very high. Therefore, the center frequency of the audio signal carrier must be as low as possible below the FM modulated luminance signal.

第1図および第2図に映像信号とFM音声信号との記録
時の周波数スペクトラムの一例を示す。
FIGS. 1 and 2 show examples of frequency spectra when recording video signals and FM audio signals.

第1図は、FM変調輝度信号Y1と周波数変換色度信号
Clの間にFM変調音声信号A1を配した一例、第2図
は周波数変換色度信号C1の下側にFM変調音声信号A
2を配した一例である。
FIG. 1 shows an example in which an FM modulated audio signal A1 is arranged between an FM modulated luminance signal Y1 and a frequency-converted chromaticity signal Cl, and FIG.
This is an example in which 2 is arranged.

一般にVTRでは、1〜ラッキングの余裕度を得るため
と,記録時テープ速度と異なるテープ速度にて再生する
、いわゆる可変速再生を行うために、ビデオトラック幅
に対してヘッド幅を広くした幅広ヘッドを用いる。した
がって音声FM重畳方式では上記幅広ヘッド及びトラッ
キングずれ等のた?隣接ビデオトラックの信号をも再坐
すると、該隣接ビデオトランクのFM音声信号の影響(
以下,隣接妨害という。)により、再生音声信号中に大
変耳障りな雑音が生じてしまうという問題がある。
In general, VTRs use a wide head with a wider head width than the video track width, in order to obtain racking margin and to perform so-called variable-speed playback, in which the tape is played back at a tape speed different from the tape speed during recording. Use. Therefore, in the audio FM superimposition method, problems such as the above-mentioned wide head and tracking deviation occur. Resetting the signal of the adjacent video track also affects the FM audio signal of the adjacent video trunk (
Hereinafter, this is referred to as adjacent interference. ), there is a problem in that very harsh noise is generated in the reproduced audio signal.

特に、高記録密度化をはかる場合、ビデオ1へラック幅
が狭くなるため、トラノキングずれ等による隣接妨害が
大きな問題である。
In particular, when increasing the recording density, the rack width for the video 1 becomes narrower, so adjacent disturbances due to tracking displacement etc. are a big problem.

第3図は磁気テープ21に形威されるビデオ1〜ラック
T■,T2と、ビデオヘッドHの位置を模式図に示す平
面図である。
FIG. 3 is a plan view schematically showing the positions of the video heads H and the video racks T2 and T2, which are formed on the magnetic tape 21.

ここで、上記隣接妨害により生ずる雑音D(t)は、第
3図に示すごとくトラッキングがずれた場合、ビデオへ
ノドHがトレースしようとしているビデオトラックT.
から得られる第1のFM音声信号(第3図Aの部分より
得られる信号で、以下、希望FM音声信号という。)の
レベルをa.隣接ビデオトラックT2から得られる第2
のFM音声信号(第3図Bの部分より得られる信号で、
以下、妨害FM音声信号という゛。)のレベルをbとし
、希望FM音声信号と妨害FM音声信号との差周波数を
Δωとすると、 b D(t)cc−Δω(cosΔω0   ・・・・・・
・・・(1)a と表わされる。ここでtは時間を表わす。すなわち,隣
接妨害雑音D(t)は、希望FM音声信号と妨書FM音
声信号との差周波数Δωくビー1・周波数)の正弦波と
して出力され、その振幅は妨害FM訝声信号と希望FM
音声信号との振幅比b / aとその差周波数Δωとに
比例するものと考えられる。そこで上述のVTRにおけ
る隣接妨害を軽減するため、幾つかの方法が考えられて
おり、その工つの方法としてビデオトラックとその隣接
ビデオトラックとの間に無記録部分(ガードバンド)を
形成する方法がある。しかしながら、ガードバンドを形
成する方法では、磁気テープの利用効率が極めて低く、
高密度記録を計ることは不可能である。他の方法として
,1本のビデオトラックを描く↓走査毎にベッドギャッ
プの傾き(アジマス角度T)の異なる回転ヘッドにより
映像信号を記録し、アジマス損失を利用してガードバン
ド及び隣接妨害雑音をなくす方法(アジマス記録力式冫
がある。ここで、アジマス損失Laは、テープ上のビデ
オトラソクIiiW、アジマス角度T、記録波長λとす
ると、 と表わせる。ここで、πは円周率を表わす。したがって
、このアジマス記録方式では、記録波長が短くなるほど
、また一般的にビデオヘッドが隣接トラックをトレース
する幅が狭いほど、そしてアジマス角度Tを大きくする
ほど、アジマス損失Laが大きくなり隣接妨害を軽減で
きる。ここで、第4図にアジマス記録方式により隣接妨
害が軽減されることを示すアジマス角度、周波数対アジ
マス損失の特性の一特性例を示す。これはトラック幅T
Wが58μm,相対速度Vが5.8m/Sの場合で、記
録信号の周波数が629KHzと3.4MHzの特性例
である。ところで、音声FM重畳方式における音声搬送
波の中心周波数は、上述したごとくあまり高い周波数に
設定できず、かつ、高記録密度化を?るためにはビデオ
ヘッドがトレースしてしまう隣接ビデオトラックの幅を
あまり狭く出来ないので、実用上問題のないレベルまで
隣接妨害を減じるには,上述したごとくアジマス角度ψ
を大きくするしかなく,上記数値例のVTRにおいて、
FM音声搬送波周波数を1 . 3 M I−{ zと
した場合、アジマス角は20度以上必要である。しかし
ながら、アジマス角度ψをあまり大きくすると、磁気テ
ープとヘッド間の相対的な出力がcos ’p倍となっ
て、再生能力が減少してしまうこと、歩留り等のビデオ
ヘッド製造上の問題、及びトラッキングずれによりヘッ
ド切換時点等の再生信号の時間軸不連続、いわゆるスキ
ューが生じてしまう。
Here, when the tracking deviates as shown in FIG. 3, the noise D(t) caused by the above-mentioned adjacent interference is the video track T. which the node H is trying to trace to the video.
The level of the first FM audio signal obtained from a. The second video obtained from the adjacent video track T2
FM audio signal (signal obtained from part B in Figure 3,
Hereinafter, this will be referred to as the interfering FM audio signal. ) level is b, and the difference frequency between the desired FM audio signal and the interfering FM audio signal is Δω, then b D(t)cc−Δω(cosΔω0 ......
...(1) It is expressed as a. Here t represents time. In other words, the adjacent interference noise D(t) is output as a sine wave with a difference frequency Δω × 1 × frequency between the desired FM voice signal and the interference FM voice signal, and its amplitude is equal to the difference between the interference FM voice signal and the desired FM voice signal.
It is considered that it is proportional to the amplitude ratio b/a to the audio signal and the difference frequency Δω. Therefore, several methods have been considered to reduce the above-mentioned adjacent interference in VTRs, one of which is to form a non-recorded portion (guard band) between a video track and its adjacent video track. be. However, with the method of forming a guard band, the efficiency of using magnetic tape is extremely low.
It is impossible to measure high-density recording. Another method is to draw one video track ↓ record the video signal with a rotating head with a different bed gap inclination (azimuth angle T) for each scan, and use azimuth loss to eliminate guard bands and adjacent interference noise. Method (There is an azimuth recording power formula. Here, the azimuth loss La is expressed as follows, where the video traverse on the tape is IiiiW, the azimuth angle T, and the recording wavelength λ. Here, π represents pi. Therefore, in this azimuth recording method, the shorter the recording wavelength, the narrower the width of the video head tracing the adjacent track, and the larger the azimuth angle T, the larger the azimuth loss La becomes and the more the adjacent interference is prevented. Figure 4 shows an example of the characteristics of azimuth angle and frequency versus azimuth loss, which shows that adjacent interference is reduced by the azimuth recording method.
This is an example of characteristics when W is 58 μm, relative velocity V is 5.8 m/S, and the recording signal frequencies are 629 KHz and 3.4 MHz. By the way, as mentioned above, the center frequency of the audio carrier wave in the audio FM superimposition method cannot be set to a very high frequency, and it is difficult to increase the recording density. In order to reduce the width of the adjacent video track traced by the video head, the width of the adjacent video track traced by the video head cannot be reduced too much. Therefore, in order to reduce adjacent interference to a level that poses no problem in practice, the azimuth angle ψ must be adjusted as described above.
There is no choice but to increase the value, and in the VTR of the numerical example above,
Set the FM audio carrier frequency to 1. 3 M I-{ z, the azimuth angle needs to be 20 degrees or more. However, if the azimuth angle ψ is made too large, the relative output between the magnetic tape and the head becomes cos 'p times, which reduces the playback ability, causes problems in video head manufacturing such as yield, and tracking. This deviation causes discontinuity in the time axis of the reproduced signal at the time of head switching, so-called skew.

ここで、スキュー量tは、トラッキングずれ量X,アジ
マス角P,ヘッド・テープ間相対速度vhとすると x/2tanq’ L=■    ・・・・・・(3) vh と表わせ、アジマス角によって大きく変化する。
Here, the skew amount t is expressed as x/2tanq' L=■ (3) vh, where the tracking deviation amount Change.

また、特に、テープ速度を高速にして再生する、いわゆ
るサーチ再生時は、画面上に数多くのスキューが発生し
,画質劣化が大きく問題となる。ゆえに、アジマス記録
方式で音声FM重畳方式における隣接妨害を減じるには
限度があり、実用上十分なレベルであるとは言えない。
In addition, particularly during so-called search playback, in which the tape is played back at a high speed, many skews occur on the screen, causing a serious problem of image quality deterioration. Therefore, there is a limit to the ability of the azimuth recording method to reduce adjacent interference in the audio FM superimposition method, and it cannot be said to be at a practically sufficient level.

また、もう1つの他の方法としては、ビデオトラック幅
と同じヘッド幅をもつ再生ヘッドにて再生する方法があ
る。この方法の問題点は高密度記録化によりビデオトラ
ッ幅が小さくなるにつれて実用上十分なレベルまで隣接
妨害を低減するためにはトラッキング精度を非常に高め
なくてはならない点と記録時の磁気テープ走行速度と異
むる走行速度にて再生する、いわゆる可変速再生が困難
なことである。
Another method is to use a reproducing head having the same head width as the video track width. The problem with this method is that as the video track width becomes smaller due to high-density recording, tracking accuracy must be extremely high in order to reduce adjacent interference to a practically sufficient level, and the magnetic tape travels during recording. It is difficult to perform so-called variable speed regeneration, which is regeneration at a different traveling speed.

上記2つの問題点を解決する手段としては、ビデオトラ
ック上をビデオヘッドが自動的に正確にトレースするオ
ート1−ラッキング方法を導入することが考えられる。
One possible solution to the above two problems is to introduce an auto-1-racking method in which the video head automatically and accurately traces the video track.

このオートトラッキング方法では,ビデオトラック上の
どこをトレースしているかを検出する検出ヘッドや,ト
ラッキングずれを起した場合にビデオヘッド位置を修正
するための電気一機械変換素子、例えば、バイモルフ等
が必要となり、機械及び回路が極めて複雑になるだけで
なく、信頼性も低下するなど大きな問題がある。
This auto-tracking method requires a detection head to detect where on the video track is being traced, and an electro-mechanical conversion element such as a bimorph to correct the position of the video head in the event of tracking deviation. This poses major problems, such as not only the machines and circuits becoming extremely complex, but also reliability decreasing.

以上説明した三方法は、妨害FM音声信号と希望FM音
声信g・との振幅比を小さくして、隣接妨害雑音D(t
)を減少させようとしたが、他の方法として、音声信号
をFM変調するときの周波数偏移量を増加することによ
って、再生音声信号レベルを大きくし、隣接妨害雑音を
抑圧する方法が考えられる。この方法は、周波数偏移量
を増加させても、第(L)式に示すように隣接妨害雑音
は希望波と妨害波との差周波数に比例するが、一方、差
周波数の成分を持っているため可聴周波数帯域外に出し
てしまい、可聴帯域内の戒分はほとんど増加しないとい
う事を利用している。すなわち、音声信号の周波数偏B
量を2倍に増やせば再生音声出力信号レベルは2倍とな
るが、可聴帯域内の隣接妨害雑音はほぼ一定であるため
、隣接妨害は実質上6dB減ったことになるのである。
The three methods explained above reduce the amplitude ratio between the interfering FM audio signal and the desired FM audio signal g, and the adjacent interfering noise D(t
), but another possible method is to increase the frequency deviation when FM modulating the audio signal, thereby increasing the reproduced audio signal level and suppressing adjacent interference noise. . In this method, even if the amount of frequency deviation is increased, the adjacent interference noise is proportional to the difference frequency between the desired wave and the interference wave, as shown in equation (L), but on the other hand, it has a component of the difference frequency. This takes advantage of the fact that the precepts within the audible frequency band hardly increase because the frequency is outside the audible frequency band. In other words, the frequency deviation B of the audio signal
If the amount is doubled, the reproduced audio output signal level will be doubled, but since the adjacent interference noise within the audible band is approximately constant, this means that the adjacent interference has actually been reduced by 6 dB.

しかしながら、上述のごとく音声信号の周波数偏移量を
増加させるためには、周波数偏移量増加分だけ、音声信
号記録に必要な周波数帯域を広げなくてはならず、第1
.2図に示したFM変調輝度信号Yエあるいは周波数変
換色度信号C1の占有帯域を減少させるか、または、輝
度信号搬送波の中心周波数より高い周波数に設定しなけ
ればならない。
However, in order to increase the amount of frequency deviation of the audio signal as described above, it is necessary to widen the frequency band necessary for audio signal recording by the increased amount of frequency deviation.
.. The occupied band of the FM modulated luminance signal YE or the frequency-converted chromaticity signal C1 shown in FIG. 2 must be reduced or set to a frequency higher than the center frequency of the luminance signal carrier wave.

上記FM変調輝度信号あるいは周波数変換色度信号の占
有帯域を減少させることは、画像の鮮鋭度の劣化や過渡
特性劣化に色のにじみなどの画質劣化を招くことになる
。また、輝度信号搬送波の中心周波数の引き上げは,記
録波長の短波長化を招き、それを避けるためには回転シ
リンダ径を増大させねばならず、小型化する上での大き
な問題点となってしまう可能性がある。
Reducing the occupied band of the FM modulated luminance signal or the frequency-converted chromaticity signal causes image quality deterioration such as deterioration of image sharpness, deterioration of transient characteristics, and color blurring. In addition, raising the center frequency of the luminance signal carrier wave causes the recording wavelength to become shorter, and to avoid this, the diameter of the rotating cylinder must be increased, which becomes a major problem in miniaturization. there is a possibility.

さらに、音声信号占有帯域が広くなると、FM変調輝度
信号及び周波数変換色度信号の側柳波など映像信号から
の妨害を受けやすくなり、いわゆるバズ音の発生による
音質劣化も生じやすい。
Furthermore, as the audio signal occupies a wider band, it becomes more susceptible to interference from the video signal such as side willow waves of the FM modulated luminance signal and the frequency-converted chromaticity signal, and the sound quality is more likely to deteriorate due to the generation of so-called buzz sounds.

以上、述べたように各種方法にはそれぞれ欠点があり、
単独の方法では上記音質FM重畳方式において実用上十
分なレベルまで隣接妨害を軽減し、なおかつ、高記録密
度と可変速再生などの多機能化及び機構上、回路上の小
型化を計ることが困難である。
As mentioned above, each method has its own drawbacks.
With a single method, it is difficult to reduce adjacent interference to a practically sufficient level in the above-mentioned sound quality FM superimposition method, and also to achieve multi-functionality such as high recording density and variable speed playback, and miniaturization of the mechanism and circuit. It is.

そこで、上述の各種方式の欠点を補う方法として、FM
変調音声信号と映像信号とを重畳してアジマス記録する
ことの効果と、音声信号の周波数偏移量を実効的に増加
させ、」二述の差周波数をほぼ可聴帯域外となす手段と
して、記録時に音声信号の振幅に応して振幅や振幅周波
数特性などを変化させ、再生時には変化させた特性を元
に戻すことによって雑音を抑制する雑音除去回路を付加
することの効果との相乗効果により、隣接妨害雑音を実
用上十分なレベルまで低減し、かつ、高密度記録と可変
速再生などの多機能化及び機構系,回路系の小型化とを
同時に実現できる方法が考えられる。この方法は、アジ
マス記録方式によるアジマス損失での隣接妨害の低減効
果と、音声信号の周波数偏移量を増加させるとlっは差
周波数が可聴帯域外に出してしまい、可@帯域内の成分
はほとんど増加しない性質と隣接妨害雑音の成分が高城
に移動し.聴感上の不快感が減少することとを利用して
隣接妨害雑音を抑圧する効果との相乗効果により隣接妨
害雑音を低減しており,かつ,アジマス記録方式を採用
しているので、高密度記録は無論可能である。
Therefore, as a method to compensate for the shortcomings of the various methods mentioned above, FM
The effect of superimposing and azimuthally recording a modulated audio signal and video signal, and the recording method as a means of effectively increasing the amount of frequency deviation of the audio signal and making the difference frequency described above almost outside the audible band. Due to the synergistic effect of adding a noise removal circuit that suppresses noise by changing the amplitude and amplitude frequency characteristics depending on the amplitude of the audio signal, and returning the changed characteristics to the original values during playback. A method can be considered that can reduce adjacent interference noise to a practically sufficient level, and simultaneously realize multifunctionality such as high-density recording and variable speed playback, and miniaturization of mechanical systems and circuit systems. This method is based on the effect of reducing adjacent interference due to azimuth loss caused by the azimuth recording method, and also because increasing the amount of frequency deviation of the audio signal causes the difference frequency to go outside the audible band, and prevents components within the audible band. The property is that there is almost no increase, and the component of adjacent interference noise moves to Takagi. Adjacent interference noise is reduced by the synergistic effect of reducing auditory discomfort and the effect of suppressing adjacent interference noise, and since the azimuth recording method is adopted, high-density recording is possible. is of course possible.

さらに、この方法には以下のような特徴をも備えている
Furthermore, this method also has the following features:

lつに隣接妨害低減分だけビデオトランク幅をさらに狭
く出来るため高密度記録が行えること、2つに隣接妨害
雑音以外のノイズも低減できること,3つに実際の音声
信号の周波数偏移量が小さくても良いために記録に必要
な周波数帯域が少なくてよいこと,4つに上記FM変調
音声信号の記録時使用周波数帯域が小さくてよいことが
ら周波数偏移量をただ増大させる方法に比八で、輝度信
号の記録波長を長くできるため、回転シリンダ径を小さ
く出来、小型化が計れること、5つにバイセルフ素子(
電気機械変換素子)などを用いたオート・トラッキング
などの複雑な機構・回路を用いなくても可変速再生が行
えることなど数多くの利点が生ずる。しかしながら、音
声FM重畳方式の記録再生系は、FM変調特有のノイズ
レベルがノイズ周波数に比例する、いわゆる三角ノイズ
をノイズレベル一定の白色雑音とするためにプリエンフ
アシス回路及びディエンファシス回路を備えている。そ
のため、単に音声信号入力端に上記周波数偏移量を実効
的に増加させる手段を付加したのでは、該周波数偏移量
を実効的に増加させる手段で音声信号の振幅や振幅周波
数特性を変化させたのち、さらにブリエンフ7シス回路
の作用で高周波部分を強調するため.FM変調器への入
力が大きくなりすぎて過変調を生じ易くなり、その結果
、過変調による音質劣化を生じてしまう欠点がある。こ
れを防止するには、入力音声信号のレベルを絞ることが
考えられるが,これでは,平均的な周波数偏移量が下が
ってしまい、上記1!J3接妨害雑音を低減する効果が
薄れてしまうことになり問題である。
First, the video trunk width can be further narrowed by the amount of adjacent interference reduction, allowing high-density recording. Second, noise other than adjacent interference noise can also be reduced. Third, the amount of frequency deviation of the actual audio signal is small. This method is superior to the method of simply increasing the amount of frequency deviation because the frequency band required for recording is small, and the frequency band used when recording the FM modulated audio signal is small. , since the recording wavelength of the luminance signal can be made longer, the diameter of the rotating cylinder can be made smaller, allowing for miniaturization.
There are many advantages such as the ability to perform variable speed playback without using complicated mechanisms and circuits such as auto-tracking using electromechanical transducers (electromechanical transducers). However, the audio FM superimposition recording and reproducing system is equipped with a pre-emphasis circuit and a de-emphasis circuit in order to convert so-called triangular noise, in which the noise level peculiar to FM modulation is proportional to the noise frequency, into white noise with a constant noise level. Therefore, simply adding a means to effectively increase the amount of frequency deviation to the audio signal input terminal will not change the amplitude or amplitude frequency characteristics of the audio signal by means of effectively increasing the amount of frequency deviation. Afterwards, the high frequency part was further emphasized by the action of the Brienff 7sis circuit. There is a drawback that the input to the FM modulator becomes too large and tends to cause overmodulation, resulting in deterioration of sound quality due to overmodulation. To prevent this, it may be possible to reduce the level of the input audio signal, but this would reduce the average frequency deviation amount, and as mentioned in 1! This is a problem because the effect of reducing J3 interference noise will be weakened.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、周波数変調音声信号の過変調を防止す
る磁気記録再生装置を得るものである。
An object of the present invention is to obtain a magnetic recording and reproducing device that prevents overmodulation of frequency modulated audio signals.

〔発明の概要〕[Summary of the invention]

本発明は、記録時に音声13サをプリエンファシスし、
プリエンファシスされた音声信号の周波数偏移量を実効
的に増加させさらに音声信号の振幅に応して音声信号の
振幅や振幅周波数特性を変化させたのちFM変調して記
録し、再生時にはFM変調後変化させた特性を元に戻し
たのちディエンファシスすることによって、過変調によ
る音質劣化が生じにくくするものである。
The present invention pre-emphasizes audio 13 during recording,
After effectively increasing the amount of frequency deviation of the pre-emphasized audio signal and changing the amplitude and amplitude frequency characteristics of the audio signal according to the amplitude of the audio signal, FM modulation is performed and recorded, and FM modulation is performed during playback. By restoring the changed characteristics and then de-emphasizing them, deterioration in sound quality due to overmodulation is less likely to occur.

上述のごとく、音声FM重畳方式における隣接妨害雑音
の低減方法として、記録時に音声信号の振幅に応じて振
幅や振幅周波数特性を変化させて、実効的な周波数偏移
量を増加させてFM変調記録し、再生時はFM復調後変
化させた特性を元に戻すことにより雑音を抑圧する方法
と、アジマス記録方式とを併用する方法は大変有効であ
るが、単に音声FM重畳方式の入力端子に付加するプリ
エンフアシス特性との関係で過変調を生じ易くなってし
まう。そこで、本発明では、記録時にまず音声信号をプ
リエンファシスし、その後、該音声信号の振幅や振幅周
波数特性を変化させ、実効的に周波数偏移量を増加させ
てFM変調したのち映像信号に重畳してアジマス記録を
行い、再生時はFM復調したのち、上記変化させた特性
を元に戻したのち、ディエンファシスする方法を用いて
、過変調を生じにくくするものである。
As mentioned above, as a method for reducing adjacent interference noise in the audio FM superimposition method, FM modulation recording is performed by changing the amplitude and amplitude frequency characteristics according to the amplitude of the audio signal during recording to increase the effective frequency deviation amount. However, during playback, it is very effective to suppress noise by restoring the changed characteristics after FM demodulation, and to use the azimuth recording method in combination. Overmodulation is likely to occur due to the pre-emphasis characteristics. Therefore, in the present invention, the audio signal is first pre-emphasized during recording, and then the amplitude and amplitude frequency characteristics of the audio signal are changed to effectively increase the amount of frequency deviation to perform FM modulation, and then superimposed on the video signal. In this method, azimuthal recording is performed, and during reproduction, after FM demodulation, the changed characteristics are restored to their original state, and then de-emphasis is performed, thereby making overmodulation less likely to occur.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図に示す実施例によって説明する。 The present invention will be explained below with reference to embodiments shown in the drawings.

第5図は本発明の磁気記録再生装置によって音声信号を
記録する回転ヘッド形VTRの音声信号記録回路の一実
施例を示す回路構成図である。また第6図は、本発明の
記録方法によって記録された磁気テープを再生するVT
Rの音声信号再生回路の一実施例を示す回路構成図であ
る。第5図において、入力端子1から入力された音声信
号はプ1 リエンスファシス回路2を通ったのち、丁圧縮回路3に
て第7図に示す圧縮一伸張特性に従い、圧縮一伸張のク
ロス点よりも大きな振幅部分は小さいレベルに、小さい
振幅部分はノイズレベルよりも大きくなるようにレベル
が変化される。ここで、1/2圧縮回路3はプリエンフ
ァシスされた音声信2を入力とする検出回路4の出力信
診で利得が制御され、プリエンファシスされた音声信号
のダイナミックレンジを1/2に圧縮する。1/2圧縮
回路3の出力信号は.FM変調器5でFM変調される。
FIG. 5 is a circuit diagram showing an embodiment of an audio signal recording circuit of a rotary head type VTR which records audio signals using the magnetic recording/reproducing apparatus of the present invention. Further, FIG. 6 shows a VT for reproducing a magnetic tape recorded by the recording method of the present invention.
FIG. 2 is a circuit configuration diagram showing an example of an R audio signal reproducing circuit. In FIG. 5, the audio signal input from the input terminal 1 passes through the compression circuit 2 and then passes through the compression circuit 3 from the compression-expansion cross point according to the compression-expansion characteristics shown in FIG. The level of the large amplitude portion is changed to a small level, and the level of the small amplitude portion is changed to be higher than the noise level. Here, the gain of the 1/2 compression circuit 3 is controlled by the output signal of the detection circuit 4 which receives the pre-emphasized audio signal 2 as input, and compresses the dynamic range of the pre-emphasized audio signal to 1/2. . The output signal of the 1/2 compression circuit 3 is . FM modulation is performed by an FM modulator 5.

FM変調器5の出力は低域通過フィルタ(LPF)6に
て不要帯域成分を除去されたのち,加算器7で入力端子
8より入力される映像信サと加算され、磁気ヘッド9に
て磁気テープ10上にアジマス記録される。
The output of the FM modulator 5 has unnecessary band components removed by a low-pass filter (LPF) 6, and then added to the video signal input from the input terminal 8 by an adder 7. Azimuth is recorded on the tape 10.

上記したように、この記録系では、プリエンファシスさ
れた音声信号のダイナミックレンジが1/2に圧縮され
、1/2圧縮された信じーがFM変調器に入力されるた
め、単に上述の周波数偏移量を実効的に増加させる手段
を入力端に付加する方法に比へて、過変調を生じにくく
なり、かつ、平均的周波数偏移量も大きく記録できる。
As mentioned above, in this recording system, the dynamic range of the pre-emphasized audio signal is compressed to 1/2, and the 1/2 compressed signal is input to the FM modulator. Compared to a method in which means for effectively increasing the shift amount is added to the input end, overmodulation is less likely to occur, and a large average frequency shift amount can be recorded.

次に第6図の音声信号再生回路において、磁気テープI
Oより磁気ヘッド9にて再生された信号は、・jIF域
通過フィルタ(BI)F)11に入力される。B1)F
ilは、再生信じ・よりFM音声信号を抽出する。
Next, in the audio signal reproducing circuit shown in FIG.
The signal reproduced from the magnetic head 9 by the magnetic head 9 is input to the jIF pass filter (BI) 11. B1)F
il extracts the FM audio signal from the playback system.

ここで、抽出されたFM音声信9中の希望FM音声信号
と妨害FM音声信号とのレベル比は、たとえば、アジマ
ス角±17度,音声搬送波周波数1.3MHz,hラッ
ク中冨18.5μm,ビデオヘッド中425μmとする
と約22dBである。また、磁気ヘッド9にて再生され
た信号は、出力端子19より映像信号再生回路(図示せ
ず)へも出力される。抽出されたFM音声信号は、FM
復調器l2にて音声信号に復調される。復調された音声
信号はLPFi3にてFMijl送波のもれ等を除去さ
れたのち、ホールド回路14で、ヘッド切替に伴う雑音
を前値保持にて処理される。ここで,ホールド回路14
は入力端子20より入力されるヘッド切替信号に同期し
た制御信号にて,一定期間、前値保持動作を行う。
Here, the level ratio between the desired FM audio signal and the interfering FM audio signal in the extracted FM audio signal 9 is, for example, an azimuth angle of ±17 degrees, an audio carrier frequency of 1.3 MHz, an h-rack width of 18.5 μm, and a video signal. If it is 425 μm in the head, it is about 22 dB. Further, the signal reproduced by the magnetic head 9 is also outputted from an output terminal 19 to a video signal reproduction circuit (not shown). The extracted FM audio signal is
It is demodulated into an audio signal by demodulator l2. The demodulated audio signal is processed by the LPFi3 to remove FMijl transmission leakage, etc., and then processed by the hold circuit 14 by holding the previous value of noise caused by head switching. Here, hold circuit 14
performs a previous value holding operation for a certain period of time using a control signal synchronized with the head switching signal inputted from the input terminal 20.

ホールト回路l4の出力信号は、ダイナミックレンジ1
/2に圧縮されたままなので、2倍伸張回路15にて元
のダイナミックレンジに伸張する。ここで、2倍伸彫回
路15は、ホールド回路14の,′13カ信4を入力と
する検出回路16の出力信号で利得制御され、復調され
た音声信号のダイナミックレンジを2倍に伸張する。伸
張された信号は、ディエンファシス回路17を通って、
出力端子18より出力される。2倍伸張回路15で伸張
された再生音声信号は,ノイズレベルも同じ伸張動作を
受け、小さい雑音レベルとなるので、隣接妨害雑音の抑
えられた音声信号として出力される。
The output signal of the halt circuit l4 has a dynamic range of 1
Since the signal remains compressed to /2, the 2x expansion circuit 15 expands it to the original dynamic range. Here, the double expansion circuit 15 is gain-controlled by the output signal of the detection circuit 16 which receives the input signal 4 of the hold circuit 14, and doubles the dynamic range of the demodulated audio signal. . The expanded signal passes through the de-emphasis circuit 17,
It is output from the output terminal 18. The reproduced audio signal expanded by the double expansion circuit 15 undergoes the same expansion operation for its noise level and has a low noise level, so that it is output as an audio signal with suppressed adjacent interference noise.

すなわち、例えば、FM変調5は音声入力信号がOdB
のとき±100KH7.の周波数偏移が生じるように動
作し、プリエンファシスされた音声入力信号が−20d
Bであったとすると、この−20dBの音声入力信号が
圧縮回路3により圧縮されずにそのままFM変調器5に
よりFM変調されると±lO−20 KHz (:±100 X 10 −H K I{ Z
)の周波数偏移が生ずる。このFM変調信号が隣接する
ビデオ1・ラックTl,T2として記録され、ビデオヘ
ット■工により同時に再生されると、ビデオトラックT
l,T2から読出された2つの再生信号の瞬時周波数の
差周波数はOから20KHzの範囲となり、す尺での隣
接妨害雑音が20KHz以下の可聴周波数帯域内となる
。しかし、−20dBの音声入力信号が172圧縮回路
3により−10cif3の信号に圧縮されてFM変調さ
れるとその周波数偏移は±31.5KIlzの周波数偏
移となり、隣接妨害雑音の周波数(2つの再生信ゆの瞬
時周波数の差周波数)は0から63KHzの範囲に分布
することになり、大半の隣接妨害雉音を20KI−Iz
以上の可聴周波数帯域外の周波数にすることができる。
That is, for example, in FM modulation 5, the audio input signal is OdB
When ±100KH7. The pre-emphasized audio input signal has a frequency shift of -20d.
B, if this -20 dB audio input signal is not compressed by the compression circuit 3 but is directly FM modulated by the FM modulator 5, it becomes ±lO-20 KHz (: ±100 X 10 -H K I{ Z
) frequency shift occurs. When this FM modulation signal is recorded as the adjacent video 1 racks Tl and T2 and simultaneously played back by the video header, the video track T
The difference frequency between the instantaneous frequencies of the two reproduced signals read from T2 and T2 is in the range from 0 to 20 KHz, and the adjacent interference noise on a square scale is within the audible frequency band of 20 KHz or less. However, when a -20 dB audio input signal is compressed into a -10 cif3 signal by the 172 compression circuit 3 and FM modulated, its frequency deviation becomes a frequency deviation of ±31.5 KIlz, and the frequency of the adjacent interference noise (two The difference frequency of the instantaneous frequency of the reproduced signal is distributed in the range of 0 to 63 KHz, and most of the adjacent interference noise is 20 KHz.
The frequency can be set to a frequency outside the audible frequency band.

換言すれば、Oから20KHzに分布する隣接妨害雑音
が0から63 K I−I zの範囲に分布する隣接妨
害雑音に周波数的に拡散されるので、可聴周波数帯域内
の雑音エネルギが減少して隣接妨害雑音はほとんど感知
されなくなる。仮りに個の場合差周波数が正弦波状に変
化したとすると全期間の約80%が可聴周波数以上とな
る。これを一般的に表すと、入力信号がOdBのときの
周波数偏移が±O K I−I zであるFM変調醪9
に対して、周波数偏移がすべて±10KHz以内(差周
波数が20KHz以下)となる上限の入力レベに圧縮さ
れてFM変調器5に入力されるとその周1    10 波数では2 x O x 10 −Hlog−H K 
H z以下)となる。
In other words, the adjacent interference noise distributed from 0 to 20 KHz is spread in frequency to the adjacent interference noise distributed from 0 to 63 KHz, so that the noise energy within the audible frequency band is reduced. Adjacent interference noise becomes almost undetectable. If the difference frequency changes sinusoidally in each case, approximately 80% of the total period will be equal to or higher than the audible frequency. Expressing this generally, the FM modulation factor 9 has a frequency deviation of ±OKI-Iz when the input signal is OdB.
On the other hand, if the signal is compressed to the upper limit input level where all frequency deviations are within ±10 KHz (difference frequency is 20 KHz or less) and input to the FM modulator 5, the frequency is 2 x O x 10 − at the frequency 1 10 wave number. Hlog-HK
Hz).

したがって、圧縮されないときは差周波数すへて入力信
号レベルでも圧縮されてFM変調器5に入力されると、
隣接するビデオ1〜ラックTl,T2から同時に再生さ
れた2つの信じ・の瞬時周波数の差周波数が可聴周波数
20KHz以上となるような周波数偏移がFM変調信号
に生しることになり、隣接妨害が軽減される。
Therefore, when the difference frequency is not compressed, the input signal level is also compressed and input to the FM modulator 5.
A frequency shift occurs in the FM modulation signal such that the difference frequency between the instantaneous frequencies of the two signals played simultaneously from adjacent video 1 to racks Tl and T2 becomes an audible frequency of 20 KHz or more, resulting in adjacent interference. is reduced.

ここで、上記VTRにてFM音声信嵩を再生した場合の
隣接妨害雑音の雑音周波数スペクトラムの一特性例を,
1/2圧縮回路3及び2倍伸張回路l5よりなる雑音除
去回路を用いた場合と用いない場合とに分けて第8図に
示す。第8図において、■は雑音除去回路がない場合、
■は雑音除去回路を用いた場合をそれぞれ示す。第8図
より明らかなように、雑音除去回路を用いた場合は、隣
接妨害雑音を約20dl3程度改善できることがわかる
Here, an example of the characteristics of the noise frequency spectrum of adjacent interference noise when FM audio signals are reproduced on the above-mentioned VTR is as follows.
FIG. 8 shows cases in which a noise removal circuit consisting of a 1/2 compression circuit 3 and a 2-fold expansion circuit 15 is used and cases in which it is not used. In Figure 8, ■ is when there is no noise removal circuit;
(2) shows the case where a noise removal circuit is used. As is clear from FIG. 8, it can be seen that when the noise removal circuit is used, the adjacent interference noise can be improved by about 20 dl3.

本発明は、過変調による音質劣化が生じに<<,かつ、
実用上十分なレベルまで隣接妨害を低減でき,その上、
前述した数多くの利点も合わせて生ずる。なお、本実施
例で説明した雑音除去回路は、振幅周波数特性を変化さ
せるものではなく,単にダイナミックレンジを圧縮伸張
するものであるが、その他の方法、例えば振幅周波数特
性をも変化させて雑音除去の動作をするものなどでも良
い。また、記録時に音声信号の特定の帯域の信号レベル
に応して、振幅,振幅周波数特性を変化させて雑音除去
の動作を行うものでも、本発明に使用することができる
。さらに、雑音除去回路として記録時に音声信号の振幅
および振幅周波数特性の両方を変化させる場合は、振幅
周波数特性をまず変化させ、その後振幅を変化させるの
が、過変調を防止する上で最良である。再生時は変化さ
せた持性を元に戻せばよい。
The present invention prevents sound quality deterioration due to overmodulation, and
Adjacent interference can be reduced to a practically sufficient level, and in addition,
A number of the advantages mentioned above also result. Note that the noise removal circuit described in this example does not change the amplitude-frequency characteristics, but simply compresses and expands the dynamic range. However, other methods, such as changing the amplitude-frequency characteristics, can also be used to remove noise. It may also be something that performs the following actions. Further, a device that performs a noise removal operation by changing the amplitude and amplitude frequency characteristics according to the signal level of a specific band of the audio signal during recording can also be used in the present invention. Furthermore, when changing both the amplitude and amplitude frequency characteristics of an audio signal during recording as a noise removal circuit, it is best to change the amplitude frequency characteristics first and then change the amplitude in order to prevent overmodulation. . When regenerating, all you have to do is restore the changed characteristics to their original state.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明を用いれば、以下に示すよ
うに、 1.簡単な回路構成にて、過変調による跨質劣化を防止
することができる。
As explained above, if the present invention is used, as shown below, 1. With a simple circuit configuration, it is possible to prevent quality degradation due to overmodulation.

2.ビデオトラック中冨をさらに5夫くすることができ
るため高密度記録が行える。
2. Since the number of video tracks can be further increased to five, high-density recording is possible.

3.見かけ上の音声信号の周波数a!移量を増加させる
方法であるので、記録に必要な周波数912域申gが小
さくてよい。
3. Apparent audio signal frequency a! Since this is a method of increasing the amount of transfer, the amount of frequency in the 912 frequency range required for recording may be small.

4.必要な周波数帯域幅が小さくてよいことから、回転
シリンダ径を小さくできる。
4. Since the required frequency bandwidth is small, the diameter of the rotating cylinder can be made small.

5.複雑な機構,回路を用いなくとも良好な音質の可変
速再生が行える。
5. Variable speed playback with good sound quality can be achieved without using complicated mechanisms or circuits.

など数多くの特徴を有し、VTRの小形化に対してその
効果は大である。
It has many features such as these, and is highly effective in reducing the size of VTRs.

4

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、音声FM多重方式における信号周
波数スペクトルの例を示す周波数スペクトル図、第3図
は+g接妨害の説明のための磁気テープの平面図、第4
図はアジマス角度、記録波長対アジマス損失の特性を示
す特性図、第5図及び第6図は本発明を用いて音声信号
記録再生回路の一実施例を示す回路構或図、第7図は1
/2圧縮回路及び2倍伸張回路の入出力特性図、第8図
は隣接妨害雑音減少の効果を示す隣接妨害雑音振幅の周
波数特性図である。 l・・・プリエンフアシス回路, 3・・・1/2圧縮回路.4.16・・・検出回路、1
5・・2倍伸張回路、 l7・・ディエンファシス回路。 篤 3 回 TI T2 周狡数一 アンマ7,角度 デは) 第 7 図 −10 −40 −20 0 λカ レベ゛2レ
1 and 2 are frequency spectrum diagrams showing examples of signal frequency spectra in the audio FM multiplexing system, FIG. 3 is a plan view of a magnetic tape for explaining +g interference, and FIG.
The figure is a characteristic diagram showing the characteristics of azimuth angle and recording wavelength versus azimuth loss, Figures 5 and 6 are circuit configuration diagrams showing one embodiment of an audio signal recording and reproducing circuit using the present invention, and Figure 7 is a characteristic diagram showing the characteristics of azimuth angle and recording wavelength versus azimuth loss. 1
FIG. 8 is an input/output characteristic diagram of the /2 compression circuit and the double expansion circuit, and a frequency characteristic diagram of adjacent interference noise amplitude showing the effect of adjacent interference noise reduction. l...Pre-emphasis circuit, 3...1/2 compression circuit. 4.16...Detection circuit, 1
5: 2x expansion circuit, l7: De-emphasis circuit. Atsushi 3 times TI T2 Circular number 1 amma 7, angle de is) Fig. 7 -10 -40 -20 0 λ angle level 2

Claims (1)

【特許請求の範囲】 1、音声信号をプリエンフアシスするプリエンフアシス
回路と、プリエンフアシスされた音声信号を圧縮する圧
縮器と、圧縮された音声信号を周波数変調する周波数変
調器と、周波数変調器の出力と映像信号成分とを混合す
る混合手段と、混合手段の出力を磁気テープ上にその長
手方向に対して所定の角度傾斜した記録軌跡として順次
記録しまたこれを再生する記録再生手段と、記録再生手
段から読出された再生信号から周波数変調音声信号を抽
出するフィルタと、フィルタからの周波数変調音声信号
を周波数復調する復調器と、復調器からの復調信号を伸
張する伸張器と、伸張された音声信号をディエンファシ
スするディエンファシス回路とからなり、隣接する2つ
の音声記録軌跡から同時に読出された2つの記録信号の
瞬時周波数の差周波数が可聴周波数以上となるような周
波数偏移が上記周波数変調により生じるように上記圧器
の圧縮縮比が選ばれ、上記伸張器の伸張比は上記圧縮器
の圧縮比に等しく選ばれることを特徴とする磁気記録再
生装置。 2、上記圧縮器の圧縮比および上記伸張器の伸張比が2
に選ばれることを特徴とする特許請求の範囲第1項記載
の磁気記録再生装置。 3、上記圧縮器および伸張器の振幅周波数特性が互いに
逆特性となるように変化されていることを特徴とする特
許請求の範囲第1項記載の磁気記録再生装置。 4、上記記録再生手段はアジマス角が異なる複数のヘッ
ドを備えた回転ヘッドからなることを特徴とする特許請
求の範囲第1項記載の磁気記録再生装置。 5、音声信号をプリエンフアシスするプリエンファシス
回路と、プリエンファシスされた音声信号を圧縮する圧
縮器と、圧縮された音声信号を周波数変調する周波数変
調器と、周波数変調器の出力と映像信号成分とを混合す
る混合手段と、混合手段の出力を磁気テープ上にその長
手方向に対して所定の角度傾斜した記録軌跡として順次
記録しまたこれを再生する記録再生手段と、記録再生手
段から読出された再生信号から周波数変調音声信号を抽
出するフィルタと、フィルタからの周波数変調音声信号
を周波数復調する復調器と復調器からの復調信号を伸張
する伸張器と、伸張された音声信号をディエンフアシス
するディエンフアシス回路とからなり、上記圧縮器の圧
縮比および上記伸張器の伸張比が2に選ばれることを特
徴とする磁気記録再生装置。 6、音声信号をプリエンファシスするプリエンファシス
回路と、プリエンファシスされた音声信号を圧縮する圧
縮器と、圧縮された音声信号を周波数変調する周波数変
調器と、周波数変調器の出力と映像信号成分とを混合す
る混合手段と、混合手段の出力を磁気テープ上にその長
手方向に対して所定の角度傾斜した記録軌跡として順次
記録する記録手段とからなり、隣接する2つの記録軌跡
から同時に読出された2つの周波数変調音声信号の瞬時
周波数の差周波数が可聴周波数以上となるような周波数
偏移が上記周波数変調により生じるように上記圧縮器の
圧縮比が選ばれることを特徴とする磁気記録再生装置。 7、上記圧縮器の圧縮比が2であることを特徴とする特
許請求の範囲第6項記載の磁気記録再生装置。 8、上記圧縮器の振幅周波数特性が変化されていること
を特徴とする特許請求の範囲第6項記載の磁気記録再生
装置。 9、上記記録手段はアジマス角が異なる複数のヘッドを
備えた回転ヘッドからなることを特徴とする特許請求の
範囲第6項記載の磁気記録装置。 10、音声信号をプリエンフアシスするプリエンファシ
ス回路と、プリエンフアシスされた音声信号を圧縮する
圧縮器と、圧縮された音声信号を周波数変調する周波数
変調器と、周波数変調器の出力と映像信号成分とを混合
する混合手段と、混合手段の出力を磁気テープ上にその
長手方向にその長手方向に対して所定の角度傾斜した記
録軌跡として順次記録する記録手段とからなり、上記圧
縮器の圧縮比が2であることを特徴とする磁気記録装置
[Claims] 1. A pre-emphasis circuit that pre-emphasizes an audio signal, a compressor that compresses the pre-emphasized audio signal, a frequency modulator that frequency modulates the compressed audio signal, and an output of the frequency modulator and an image. a mixing means for mixing the signal components; a recording and reproducing means for sequentially recording the output of the mixing means on a magnetic tape as a recording locus inclined at a predetermined angle with respect to the longitudinal direction of the magnetic tape; and a recording and reproducing means for reproducing the same; A filter that extracts a frequency modulated audio signal from the read reproduction signal, a demodulator that frequency demodulates the frequency modulated audio signal from the filter, an expander that expands the demodulated signal from the demodulator, and a decompressor that expands the demodulated signal from the demodulator. It consists of a de-emphasis circuit that performs de-emphasis, and the frequency modulation generates a frequency shift such that the difference frequency between the instantaneous frequencies of two recorded signals read simultaneously from two adjacent audio recording trajectories becomes equal to or higher than the audible frequency. The compression ratio of the compressor is selected to be equal to the compression ratio of the compressor, and the expansion ratio of the expander is selected to be equal to the compression ratio of the compressor. 2. The compression ratio of the compressor and the expansion ratio of the expander are 2.
2. A magnetic recording and reproducing device according to claim 1, wherein the magnetic recording and reproducing device is selected from the following. 3. The magnetic recording and reproducing apparatus according to claim 1, wherein the amplitude frequency characteristics of the compressor and the expander are changed so that they are opposite to each other. 4. The magnetic recording and reproducing apparatus according to claim 1, wherein the recording and reproducing means comprises a rotary head having a plurality of heads having different azimuth angles. 5. A pre-emphasis circuit that pre-emphasizes an audio signal, a compressor that compresses the pre-emphasized audio signal, a frequency modulator that frequency-modulates the compressed audio signal, and an output of the frequency modulator and a video signal component. a mixing means for mixing; a recording/reproducing means for sequentially recording the output of the mixing means on a magnetic tape as a recording locus inclined at a predetermined angle with respect to the longitudinal direction of the magnetic tape; and a recording/reproducing means for reproducing the same; A filter that extracts a frequency modulated audio signal from a signal, a demodulator that frequency demodulates the frequency modulated audio signal from the filter, an expander that expands the demodulated signal from the demodulator, and a de-enhancer that de-emphasizes the expanded audio signal. 1. A magnetic recording and reproducing device comprising a phasis circuit, wherein the compression ratio of the compressor and the expansion ratio of the expander are selected to be 2. 6. A pre-emphasis circuit that pre-emphasizes an audio signal, a compressor that compresses the pre-emphasized audio signal, a frequency modulator that frequency modulates the compressed audio signal, and an output of the frequency modulator and a video signal component. and a recording means that sequentially records the output of the mixing means on a magnetic tape as recording trajectories inclined at a predetermined angle with respect to the longitudinal direction of the magnetic tape. A magnetic recording and reproducing device characterized in that the compression ratio of the compressor is selected so that the frequency modulation causes a frequency shift such that the difference frequency between the instantaneous frequencies of two frequency modulated audio signals is equal to or higher than an audible frequency. 7. The magnetic recording and reproducing apparatus according to claim 6, wherein the compression ratio of the compressor is 2. 8. The magnetic recording and reproducing apparatus according to claim 6, wherein the amplitude frequency characteristic of the compressor is changed. 9. The magnetic recording apparatus according to claim 6, wherein the recording means comprises a rotary head having a plurality of heads having different azimuth angles. 10. A pre-emphasis circuit that pre-emphasizes the audio signal, a compressor that compresses the pre-emphasized audio signal, a frequency modulator that frequency modulates the compressed audio signal, and mixes the output of the frequency modulator and the video signal component. and a recording means for sequentially recording the output of the mixing means on a magnetic tape in the longitudinal direction as a recording trajectory inclined at a predetermined angle with respect to the longitudinal direction, and the compression ratio of the compressor is 2. A magnetic recording device characterized by the following.
JP2102936A 1990-04-20 1990-04-20 Magnetic recording / reproducing device Expired - Lifetime JPH0690769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102936A JPH0690769B2 (en) 1990-04-20 1990-04-20 Magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102936A JPH0690769B2 (en) 1990-04-20 1990-04-20 Magnetic recording / reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56073553A Division JPS57190477A (en) 1981-05-18 1981-05-18 Noise suppressing circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7281299A Division JP2581482B2 (en) 1995-10-30 1995-10-30 Magnetic tape

Publications (2)

Publication Number Publication Date
JPH0395703A true JPH0395703A (en) 1991-04-22
JPH0690769B2 JPH0690769B2 (en) 1994-11-14

Family

ID=14340726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102936A Expired - Lifetime JPH0690769B2 (en) 1990-04-20 1990-04-20 Magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JPH0690769B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265616A (en) * 1975-11-26 1977-05-31 Toshiba Corp Signal recording and reproducing unit
US4119812A (en) * 1977-04-20 1978-10-10 Rca Corporation Signal defect detection and compensation with signal de-emphasis
JPS55163613A (en) * 1979-06-06 1980-12-19 Hitachi Ltd Aural signal recording/reproducing system
JPS57190477A (en) * 1981-05-18 1982-11-24 Hitachi Ltd Noise suppressing circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265616A (en) * 1975-11-26 1977-05-31 Toshiba Corp Signal recording and reproducing unit
US4119812A (en) * 1977-04-20 1978-10-10 Rca Corporation Signal defect detection and compensation with signal de-emphasis
JPS55163613A (en) * 1979-06-06 1980-12-19 Hitachi Ltd Aural signal recording/reproducing system
JPS57190477A (en) * 1981-05-18 1982-11-24 Hitachi Ltd Noise suppressing circuit

Also Published As

Publication number Publication date
JPH0690769B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0125127B2 (en)
KR920003521B1 (en) Magnetic recording/reproducing device
JPH0395703A (en) Magnetic recording and reproducing device
JPH0125128B2 (en)
JPH0234238B2 (en)
JP2581482B2 (en) Magnetic tape
JPH0130209B2 (en)
JPH0395702A (en) Magnetic recording and reproducing device
JPH0316004A (en) Audio noise suppressor
JP3021809B2 (en) Index signal recording device
JPH041404B2 (en)
JPH0130207B2 (en)
JPH022201B2 (en)
JPS6025702Y2 (en) Magnetic tape dubbing device
JPH0130208B2 (en)
JP2627967B2 (en) Video tape recorder
JPH0355881B2 (en)
JPH01100706A (en) Magnetic recording/reproducing device
JPH0442750B2 (en)
JPS63160059A (en) Signal recording and reproducing device
JPS61244188A (en) Magnetic recording and reproducing device
JPS5937794A (en) Video and sound multiplex recording device
JPS6139784A (en) Magnetic recording and reproducing method
JPH0366001A (en) Magnetic tape recording and reproducing device
JPS59113551A (en) Magnetic recording and reproducing device