JPH0365491A - Variable nozzle hole of water jet propulsion device - Google Patents

Variable nozzle hole of water jet propulsion device

Info

Publication number
JPH0365491A
JPH0365491A JP1201550A JP20155089A JPH0365491A JP H0365491 A JPH0365491 A JP H0365491A JP 1201550 A JP1201550 A JP 1201550A JP 20155089 A JP20155089 A JP 20155089A JP H0365491 A JPH0365491 A JP H0365491A
Authority
JP
Japan
Prior art keywords
nozzle
blades
diameter
rotated
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201550A
Other languages
Japanese (ja)
Inventor
Osamu Matsumoto
治 松本
Yoshihiro Kano
加納 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP1201550A priority Critical patent/JPH0365491A/en
Publication of JPH0365491A publication Critical patent/JPH0365491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Percussion Or Vibration Massage (AREA)

Abstract

PURPOSE:To simplify structure and to enable adjustment of the diameter with more stability by moving or rotating a plurality of blades in the radial direction through operation of a mechanical operating means so as to make the diameter of a nozzle hole variable. CONSTITUTION:When an interlocking lever 36 is rotated in the right and left direction, a connecting lever 34 is rotated in the radial direction of a nozzle 16, and for example, the connecting lever 34 is rotated in the outer radial direction. By this, as a wire 32 is withdrawn outside and the length of an outer circumference part of each of blades 29 is reduced. Then, those blades 29... are rotated in the inner radial direction together so as to change the diameter of a nozzle hole to a small diameter side. Also, when tension against the wire 32 is released, each of the blades 29... are pushed out in the outer radial direction and rotated by a jet flowing the inside of the blade 29, whereby changes the diameter of the nozzle hole so that it is made larger.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ウォータージェット推進装置の可変噴口ノ
ズルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a variable orifice nozzle for a water jet propulsion device.

従来の技術 ウォータージェット式の推進装置においては、噴流を発
生させるインペラの回転速度が一定であれば、そのノズ
ルから噴出される噴流の速度は噴[コ邪の径によって決
まる。この時の噴流速度Viは、船体速度をvSとする
と、V i = 1.5〜1.8Vsの時に最も推進効
率が良くなることが知られている。噴口径を固定した従
来のノズルにおいては、この噴流速度を、船体の用途に
応じて最も多用される速度域で最適の推進効率が得られ
るようにして設定されており、例えば高速艇においては
高速側に設定され、低速を多用する船では低速側に設定
されており、そのため、この設定された速度域を外れる
と著しく推進効率が低下するという欠点があった。この
ような問題を解消するため、従来、ノズルの内側にダイ
ヤフラムによって囲まれた膨張室を設け、この膨張室へ
供給される圧力流体の圧力を変化させることによって、
ノズルの噴口径を連体速度に応じて変化させるようにし
たものが考えられている(特公昭55−276号公報参
照)。
In conventional water jet type propulsion devices, if the rotational speed of the impeller that generates the jet is constant, the speed of the jet ejected from the nozzle is determined by the diameter of the jet. It is known that the propulsion efficiency is highest when the jet velocity Vi at this time is V i =1.5 to 1.8Vs, where vS is the hull speed. In conventional nozzles with a fixed jet diameter, the jet velocity is set so as to obtain the optimum propulsion efficiency in the speed range most frequently used depending on the purpose of the hull. This is set on the low speed side for ships that frequently use low speeds, which has the disadvantage that propulsion efficiency drops significantly when the speed is outside of this set speed range. In order to solve such problems, conventionally, an expansion chamber surrounded by a diaphragm is provided inside the nozzle, and the pressure of the pressure fluid supplied to this expansion chamber is changed.
A nozzle has been proposed in which the diameter of the nozzle is changed according to the speed of the cylinder (see Japanese Patent Publication No. 55-276).

発明が解決しようとする課題 上記のように膨張室へ供給される圧力流体の圧力を変え
、これによりその膨張室の体積を変化させて噴口径を船
体速度に応じて変化させれば、全範囲に渡って推進効率
の良好なものが得られるが、しかしながら、このように
膨張室へ圧力流体を供給するようなものでは、この流体
を供給するためのシリンダ等高価な装置が必要となって
、全体にコスト高となり、また、噴流によって上記ダイ
ヤプラムが振動するため、安定性に欠けるといった不都
合がある。この発明は、このような従来の可変噴口ノズ
ルの欠点を解消することを目的としてなされたものであ
る。
Problems to be Solved by the Invention As mentioned above, if the pressure of the pressure fluid supplied to the expansion chamber is changed, the volume of the expansion chamber is thereby changed, and the nozzle diameter is changed according to the hull speed, the entire range can be achieved. Good propulsion efficiency can be obtained over a period of time, but such systems that supply pressurized fluid to the expansion chamber require expensive equipment such as cylinders to supply this fluid. The overall cost is high, and the diaphragm vibrates due to the jet flow, resulting in a lack of stability. The present invention has been made with the aim of eliminating the drawbacks of such conventional variable spout nozzles.

課題を解決するための手段 上記の課題を解決するため、この発明では、ノズルの噴
口部に複数のブレードを円周方向に配列するとともに、
機械的操作手段の操作によりこれらブレードを半径方向
に移動若しくは回動させて、噴口径を可変としたことを
特徴とする。
Means for Solving the Problems In order to solve the above problems, in the present invention, a plurality of blades are arranged in the circumferential direction at the spout portion of the nozzle, and
It is characterized in that the diameter of the nozzle can be varied by moving or rotating these blades in the radial direction by operating a mechanical operating means.

作   用 機械的操作手段によってブレードを半径方向に移動若し
くは回動させると、これによって、これらのブレードに
よって構成されている噴口径が変わる。
Operation When the blades are radially moved or rotated by the mechanical operating means, this changes the orifice diameter defined by these blades.

実施例 以下、この発明の実施例について説明すると、第4図に
おいて、(11)は船体であり、この船体(11)の底
部後端部分に形成した傾斜状部分に、側面から見て概略
三角形状の水胴ケーシング(12)が取付けられている
。この水胴ケーシング(12)は、その底部に吸水口(
13)を備え、後部面に吐水口(14)を有している。
Embodiment Hereinafter, an embodiment of the present invention will be described. In FIG. 4, (11) is a hull, and the sloping part formed at the rear end of the bottom of the hull (11) has a roughly triangular shape when viewed from the side. A shaped water barrel casing (12) is attached. This water body casing (12) has a water intake port (
13), and has a water spout (14) on the rear surface.

ケーシング(12)の後端面には前記吐水口(14)に
連続するようにしてインペラケース(15)が取付けら
れ、更にこのインペラケース(15)の後端部にノズル
(16〉が取付けられている。(17)は、船体(11
)内に設置されたエンジンであり、このエンジン(17
)の出力部に連結されたドライブシャフト(18)が、
前記ケーシング(12)の傾斜状上部壁からこのケーシ
ング(12)内の通路を貫通してインペラケース(15
)へ突出されるとともに、このインペラケース(15〉
内においてポンプ作用を行なうためのインペラ(19)
が取付けられている。(20〉は、ノズル(16)の後
端部において、そのノズル(16)の後部先端を被覆す
るようにして取付けた操舵用のデフレクタ、(22)は
、そのデフレクタ(20〉とノズル〈16)との間に配
置した、上下一対の後進用パケットであって、このバケ
ツ) (22)をノズル(16〉の後方部を覆うように
回動させると、水流が前方に向けて噴出するよう方向転
換させられて、後進状態となるものである。
An impeller case (15) is attached to the rear end surface of the casing (12) so as to be continuous with the water outlet (14), and a nozzle (16>) is attached to the rear end of the impeller case (15). (17) is the hull (11).
), and this engine (17
) A drive shaft (18) connected to the output part of the
The impeller case (15) passes through a passage in the casing (12) from the inclined upper wall of the casing (12).
) and this impeller case (15〉
Impeller (19) for pumping within the
is installed. (20> is a deflector for steering attached to the rear end of the nozzle (16) so as to cover the rear tip of the nozzle (16), and (22) is a deflector (20> and the nozzle (16)). ) is a pair of upper and lower backward travel packets placed between the bucket and the nozzle (16), and when the bucket) (22) is rotated so as to cover the rear part of the nozzle (16>), a stream of water is ejected forward. The vehicle is forced to change direction and go backwards.

第1図は、前記ノズル(16)内部の構造を示しており
、ノズル(16)は、前記インペラケース(15)へ取
付けられる環状の前部部材(25)とその前部部材(2
5)の後部側にポル) (26)を介して取付けられる
後部部材(27)とから構成されて、全体が後方に向か
って小径となる円錐形状とされている。前部部材(25
)は、第2図のように円周方向に3分割されて、それら
の合わせ面である7ランジ(28)間において、この発
明のブレード(29)  < 29)・・・が、軸(3
0)によって、その後部側の先端が半径方向に回動する
ようにして枢着されている。この実施例において、ブレ
ード(29)  (29〉・・・は3枚からなり、これ
らが、ノズル(16)の内壁に沿って円周方向に配列さ
れるとともに、この3枚のブレード(29)  (29
)・・・によって円形の噴口を形成するよう夫々円周方
向に円弧状に屈曲されている。また、第2図で示すよう
に、ブレード(29)  (29)・・・の各円周方向
の端部が、内外交互にオーバーラツプさせられている。
FIG. 1 shows the internal structure of the nozzle (16), which includes an annular front member (25) attached to the impeller case (15) and its front member (2).
5) and a rear member (27) attached to the rear side of the body via a pole (26), and the entire body has a conical shape that becomes smaller in diameter toward the rear. Front member (25
) is divided into three parts in the circumferential direction as shown in Fig. 2, and the blade (29) of the present invention (29) < 29)...
0), the tip on the rear side is pivotally mounted so that it can rotate in the radial direction. In this embodiment, the blades (29) (29>... are composed of three pieces, and these are arranged in the circumferential direction along the inner wall of the nozzle (16), and these three blades (29) (29
) are each bent in an arc shape in the circumferential direction to form a circular nozzle. Further, as shown in FIG. 2, the circumferential ends of the blades (29), (29), etc. are overlapped alternately inside and outside.

また、これらのブレード(29)  (29)・・・は
、前記ノズル(16)の円錐形状に略沿うように、その
後部先端側が小径となるような曲率半径をもって構成さ
れている。
Further, these blades (29) (29)... are configured to have a radius of curvature such that the rear tip side thereof has a smaller diameter so as to approximately follow the conical shape of the nozzle (16).

更に、各ブレード(29)  (29)・・・の外周に
は、第3図のようなワイヤーガイド(31)  (31
)・・・が適当な間隔を置いて取付けられ、第2図にお
いて上部側のブレード(29)の一端に取付けたワイヤ
(32)が、これらのワイヤーガイド(31〉へ挿通さ
れて、各ブレード(29)  (29)・・・の外周に
沿って巻回されるとともに、同じく最上部のブレード(
29)の中央に取付けたガイド(31)より、ノズル後
部部材(27)の挿通穴(33)を通って外側に引き出
されるとともに、後部部材(27〉の外周面に取付けた
連結レバー(34)へ連結されている。
Furthermore, wire guides (31) (31
)... are attached at appropriate intervals, and the wire (32) attached to one end of the upper blade (29) in Fig. 2 is inserted through these wire guides (31>) to connect each blade. (29) (29) ... is wound along the outer periphery of the blade (
The guide (31) attached to the center of the nozzle rear member (27) is pulled out through the insertion hole (33) of the nozzle rear member (27), and the connecting lever (34) attached to the outer peripheral surface of the rear member (27>) is connected to.

この連結レバー(34)の軸(35)には、連動レバ(
36)が取付けられ、この連動レバー(36)を第1図
の左右方向に回動させると、連結レバー(34〉がノズ
ル(16)の半径方向に回動して、例えば連結レバー(
34)が図の2点鎖線のように半径外方向に回動すると
、これによってワイヤー(32)が外方に引き出される
ので、各ブレード(29)の外周部分の長さが短くなる
ことから、それらブレード(29)  (29)・・・
がともに半径内方向へ回動して、噴口径が小径側に変更
される。またワイヤ(32)に対する引張り力を開放す
ると、各ブレード(29)  (29)・・・は、その
ブレード(29)の内側を流れる噴流によって半径外方
向に押されて回動し、これによって噴口径が大きくなる
よう変更される。前記連動レバー(36)は、遠隔操作
用のワイヤー(39)によって、船内の手multi作
レバー(40)や船体速度変更手段側に連動連結される
The shaft (35) of this connecting lever (34) has an interlocking lever (
36) is attached, and when this interlocking lever (36) is rotated in the left-right direction in FIG.
34) rotates in the radial outward direction as shown by the two-dot chain line in the figure, the wire (32) is pulled outward, and the length of the outer peripheral portion of each blade (29) becomes shorter. Those blades (29) (29)...
both rotate inward in the radial direction, and the nozzle diameter is changed to the smaller diameter side. Furthermore, when the tensile force on the wire (32) is released, each blade (29) (29)... is pushed radially outward by the jet flowing inside the blade (29) and rotates. Changed to make the caliber larger. The interlocking lever (36) is interlocked and connected to a manual multi-operation lever (40) inside the ship and a ship speed changing means through a remote control wire (39).

手動操作レバー(40)側に連結した場合には、操船者
が船体速度を感じながら操作し、他方船体速度を変更手
段側に連動連結した場合には、その船体速度の変更に応
じて自動的に噴口径が変わることになる。この実施例で
は、ブレード(29)を軸(30)を中心として回動さ
せるようにしているが、このような方法によらず、例え
ばブレード(29)(29)・・・をノズル(27)内
において半径方向に摺動するような移動構造として、同
様に前記のワイヤー(32〉によって噴口径を変更する
ようにすることも可能である。
When connected to the manual operation lever (40) side, the operator operates while sensing the ship's speed.On the other hand, when connected to the means for changing the ship's speed, it is automatically operated according to changes in the ship's speed. The nozzle diameter will change accordingly. In this embodiment, the blade (29) is rotated around the axis (30), but instead of using this method, for example, the blades (29) (29)... can be rotated around the nozzle (27). It is also possible to use a movable structure that slides in the radial direction within the nozzle and to change the nozzle diameter using the wire (32).

発明の効果 以上のように、この発明によれば、ノズルに設けたブレ
ードの半径方向の回動若しくは移動によって噴口径を変
更するものであり、このようなブレードの回動若しくは
移動はワイヤー等によって容易に操作手段側等へ連結す
ることができるため、従来のように圧力流体を膨張室へ
供給するものと異なって高価な装置が不要でかつ構造も
簡単で、全体に低コストで実施できるとともに、ダイヤ
フラムのように振動することがなく、より安定的に噴口
径を調節できる。
Effects of the Invention As described above, according to the present invention, the nozzle diameter is changed by rotating or moving the blade provided in the nozzle in the radial direction, and such rotation or movement of the blade is controlled by a wire or the like. Since it can be easily connected to the operating means side, etc., unlike conventional systems that supply pressure fluid to the expansion chamber, there is no need for expensive equipment, the structure is simple, and it can be implemented at low cost overall. , it does not vibrate like a diaphragm, and the nozzle diameter can be adjusted more stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例を示すノズル部分の縦断面
図、第2図はノズル部分を横断して後方から見た時の断
面図、第3図はワイヤーガイドの取付は構造を示す要部
拡大横断面図、第4図はウォータジェット推進装置の縦
断側面図である。 (16)・・・ノズル、(19)・・・インペラ、(2
9)・・・ブレード、(40)・・・操作レバー第2図
Fig. 1 is a longitudinal cross-sectional view of a nozzle portion showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of the nozzle portion as seen from the rear, and Fig. 3 shows the structure of the wire guide installation. FIG. 4 is an enlarged cross-sectional view of the main part, and FIG. 4 is a longitudinal cross-sectional side view of the water jet propulsion device. (16)... Nozzle, (19)... Impeller, (2
9)...Blade, (40)...Control lever Fig. 2

Claims (1)

【特許請求の範囲】[Claims] ノズルの噴口部に複数のブレードを円周方向に配列する
とともに、機械的操作手段の操作によりこれらブレード
を半径方向に移動若しくは回動させて、噴口径を可変と
したことを特徴とするウォータージェット推進装置の可
変噴口ノズル。
A water jet characterized in that a plurality of blades are arranged circumferentially at the nozzle nozzle, and these blades are moved or rotated in the radial direction by the operation of a mechanical operating means to make the nozzle diameter variable. Variable orifice nozzle of propulsion device.
JP1201550A 1989-08-02 1989-08-02 Variable nozzle hole of water jet propulsion device Pending JPH0365491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201550A JPH0365491A (en) 1989-08-02 1989-08-02 Variable nozzle hole of water jet propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201550A JPH0365491A (en) 1989-08-02 1989-08-02 Variable nozzle hole of water jet propulsion device

Publications (1)

Publication Number Publication Date
JPH0365491A true JPH0365491A (en) 1991-03-20

Family

ID=16442911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201550A Pending JPH0365491A (en) 1989-08-02 1989-08-02 Variable nozzle hole of water jet propulsion device

Country Status (1)

Country Link
JP (1) JPH0365491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256090A (en) * 1992-12-21 1993-10-26 Woolley Russell C Variable-aperture jet nozzle for jet-propelled watercraft
WO1994008845A1 (en) * 1992-10-13 1994-04-28 Richard Gwyn Davies Water jet propulsion unit for use in a jet boat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001317A1 (en) * 1998-07-06 2000-01-13 Richard George Palmisano A mandibular advancement device
JP2004073473A (en) * 2002-08-19 2004-03-11 Yuichiro Kawahara Mouthpiece for improvement of apnea syndrome or snore
JP2009028084A (en) * 2007-07-24 2009-02-12 Nagasaki Univ Intraoral apparatus and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001317A1 (en) * 1998-07-06 2000-01-13 Richard George Palmisano A mandibular advancement device
JP2002519137A (en) * 1998-07-06 2002-07-02 リチャード・ジョージ・パルミサノ Mandible advancement device
JP2004073473A (en) * 2002-08-19 2004-03-11 Yuichiro Kawahara Mouthpiece for improvement of apnea syndrome or snore
JP2009028084A (en) * 2007-07-24 2009-02-12 Nagasaki Univ Intraoral apparatus and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008845A1 (en) * 1992-10-13 1994-04-28 Richard Gwyn Davies Water jet propulsion unit for use in a jet boat
US5634831A (en) * 1992-10-13 1997-06-03 Davies; Richard G. Water jet propulsion unit for use in a jet boat
US5256090A (en) * 1992-12-21 1993-10-26 Woolley Russell C Variable-aperture jet nozzle for jet-propelled watercraft

Similar Documents

Publication Publication Date Title
KR950700190A (en) MARINE TUNNEL PROPELLER JET PROPULSION UNIT
US4653275A (en) Exhaust gas turbocharger for an internal-combustion engine
CA2380623A1 (en) Ribbon drive propulsion system and method
US3279704A (en) Variable nozzle
CA2207469A1 (en) Variable venturi
US4902254A (en) Propulsion device with conditioned inertia
EP0371225A2 (en) Fuel system for gas turbine engines
US3972494A (en) Vehicle air screen apparatus
EP0564572B1 (en) Improved hollow jet propulsion device
CN108260502A (en) A kind of sprinkler with reel with rocker-arm single injector nozzle
SE500911C2 (en) Fan unit and method of producing guide rails for such a fan unit
US6293836B1 (en) Water jet propulsion unit with means for varying area of nozzle outlet
JPH06286693A (en) Water jet propulsion device
US5480330A (en) Marine propulsion pump with two counter rotating impellers
JPH0365491A (en) Variable nozzle hole of water jet propulsion device
US4869642A (en) Variable output vortex pump
US5049096A (en) Vaned diverter nozzle for jet boats
US6270385B1 (en) Pump jet rotor housing modification for noise signature spectral control
JP2001503708A (en) Water jet propulsion unit for surface ships
CN106965914B (en) High-speed rear injection and integrated rotation type marine propulsion device
US5266009A (en) Impeller structure for water jet propelled boat
US4446695A (en) Aircraft propulsion assembly
US5876257A (en) Stator of propelling system of small powerboat
US3249058A (en) Fluid and vehicle propelling device
US5766048A (en) Exhaust system for outboard drive