JPH0360153A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0360153A
JPH0360153A JP1196236A JP19623689A JPH0360153A JP H0360153 A JPH0360153 A JP H0360153A JP 1196236 A JP1196236 A JP 1196236A JP 19623689 A JP19623689 A JP 19623689A JP H0360153 A JPH0360153 A JP H0360153A
Authority
JP
Japan
Prior art keywords
film
insulating film
wiring layer
interlayer insulating
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1196236A
Other languages
Japanese (ja)
Inventor
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1196236A priority Critical patent/JPH0360153A/en
Publication of JPH0360153A publication Critical patent/JPH0360153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To avoid the connection deterioration between a semiconductor region and wiring layers and realize superior connection, by forming a protecting film for impurity diffusion on the surface of an interlayer insulating film containing impurity, and connecting a high melting point wiring layer with the semiconductor region, via a contact hole of the protecting film. CONSTITUTION:On a first conductivity type semiconductor region 3a or 16, an interlayer insulating film 33 containing second conductivity type impurity is formed, on the surface of which insulating film 33 protecting films 38a, 34 for impurity diffusion are formed, and a high melting point wiring layer 9 or 20 is connected with the first conductivity type semiconductor region 3a or 16, via a contact hole 35 or 36. A flow film is used as said interlayer insulating film 33. The high melting point wiring layer 9 or 20 is formed by using a conductive layer such as polycrystalline silicon and polycide. Since the protecting film 38a for impurity diffusion is formed on the surface of the interlayer insulating film 33, second conductivity type impurity contained in the interlayer insulating film 33 is prevented from diffusing into the first conductivity type semiconductor region 3a or 16 or the high melting point wiring layer 9 or 20, so that superior wiring connection is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置特に層間絶縁膜にAs5G。[Detailed description of the invention] [Industrial application field] The present invention uses As5G for a semiconductor device, particularly an interlayer insulating film.

BPSGなどの所謂フロー膜を用いてなる半導体装置に
関する。
The present invention relates to a semiconductor device using a so-called flow film such as BPSG.

〔発明の概要〕[Summary of the invention]

本発明は、眉間絶縁膜にAs5G、 BPSGなどのフ
ロー膜を用いてなる半導体装置において、コンタクトホ
ールを有する層間絶縁膜表面に不純物拡散防止膜を形成
し、このコンタクトホールを介して高融点配線層を半導
体領域に接続することにより、高融点配線層と半導体領
域との良好な接続を可能にしたものである。
The present invention relates to a semiconductor device using a flow film such as As5G or BPSG for the glabellar insulating film, in which an impurity diffusion prevention film is formed on the surface of the interlayer insulating film having a contact hole, and a high melting point wiring layer is formed through the contact hole. By connecting the high-melting point wiring layer to the semiconductor region, a good connection between the high melting point wiring layer and the semiconductor region is made possible.

〔従来の技術] 従来のスタックドキャパシタ型メモリセルを有するDR
AM (ダイナ5ツクRAM)の−例を第2図及び第3
図に示す。第1図のメモリセル部において、(1)はフ
ィールド絶縁N(2)が形成された例えばp形のシリコ
ン基板を示し、このシリコン基板(1)にスイッチング
トランジスタを構成する例えばn形のソース・ドレイン
領域(3a)及び(3b)が形成され、両領域(3a)
及び(3b)間上にゲート絶縁膜を介して例えば多結晶
シリコン膜(4)上に金属シリサイド膜(5)を積層し
たポリサイド膜からなるゲート電極即ちワード線(6)
が形成される。ソース・ドレイン領域のうち、一方のソ
ース・ドレイン領域(3a)には眉間絶縁膜(7)のコ
ンタクトホール(8)を介してビット線(9)が形成さ
れ、他方のソース・ドレイン領域(3b)には層間絶縁
膜(10)のコンタクトホール(11)を介してスタッ
クドキャパシタのキャパシタ下部電極(所謂記憶ノード
) (12)が接続される。
[Prior art] DR having conventional stacked capacitor type memory cells
Examples of AM (Dyna 5 RAM) are shown in Figures 2 and 3.
As shown in the figure. In the memory cell section of FIG. 1, (1) indicates a p-type silicon substrate, for example, on which a field insulation N (2) is formed, and on this silicon substrate (1), for example, an n-type source and Drain regions (3a) and (3b) are formed, both regions (3a)
and (3b), a gate electrode or word line (6) made of a polycide film, for example, a metal silicide film (5) laminated on a polycrystalline silicon film (4) via a gate insulating film.
is formed. Of the source/drain regions, a bit line (9) is formed in one source/drain region (3a) through a contact hole (8) in the glabella insulating film (7), and a bit line (9) is formed in one source/drain region (3a) through a contact hole (8) in the glabella insulating film (7). ) is connected to a capacitor lower electrode (so-called storage node) (12) of a stacked capacitor via a contact hole (11) in an interlayer insulating film (10).

キャパシタ下部電極(12)は各メモリセル毎に形威さ
れ、この上に誘電体膜(13)を介してキャパシタ上部
電極(14)が形成され、これらキャパシタ下部電極(
12)、誘電体膜(13)及びキャパシタ上部電極(1
4)の積層構造によりキャパシタ(15)が構成される
A capacitor lower electrode (12) is formed for each memory cell, and a capacitor upper electrode (14) is formed on this via a dielectric film (13).
12), dielectric film (13) and capacitor upper electrode (1
A capacitor (15) is constructed by the laminated structure of 4).

又、DRAMの周辺回路では第2図に示すように、シリ
コン基板(1)にp影領域(16)、  n影領域(1
7)が形成され、ゲート電極(6)と同時形成の配線層
(18)が形威され、層間絶縁膜(7)を形威したのち
、コンタクトホール(19)を介してビット線(9)と
同時形成の配線層(20)がp影領域(16)及び配線
層(18)に接続される。さらに、層間絶縁膜(21)
のコンタクトホール(22)を介してAn配線(23)
が接続される。
In addition, in the peripheral circuit of a DRAM, as shown in Fig. 2, a p shadow region (16) and an n shadow region (1
7) is formed, a wiring layer (18) formed simultaneously with the gate electrode (6) is formed, an interlayer insulating film (7) is formed, and then a bit line (9) is formed through a contact hole (19). A wiring layer (20) formed at the same time is connected to the p shadow region (16) and the wiring layer (18). Furthermore, an interlayer insulating film (21)
An wiring (23) via the contact hole (22)
is connected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述の構成を採る4Mビット以上のスタック
ドキャパシタ型DRAMでは、ビット線(9)。
By the way, in a stacked capacitor type DRAM of 4M bits or more having the above-mentioned configuration, the bit line (9).

配線層(20)が多結晶シリコン膜(4)及び金属シリ
サイド膜(5)からなるポリサイド膜で形威される。な
おビット線(9)のポリサイド膜を構成する多結晶シリ
コン膜(4)にはn形不純物がドープされ、配線層(2
0)のポリサイド膜を構成する多結晶シリコン膜(4)
にはp形不純物がドープされる。ビット線(9)及び配
線N (20)をポリサイド膜で形威する理由は、ビッ
ト線(9)、配線層(20)として、11を用いた場合
、そのコンタクト部での/lカバレッジ、バッシシベー
ションカバレンジの劣化によるDRAMの信頼性の低下
を防ぐためである。しかしながら、スタックドキャパシ
タ型DRAMの場合、下地の段差が厳しいため、ポリサ
イド膜のビット線(9)、配線層(20)下の眉間絶縁
膜(7)に通常のSiO□膜(フロー膜でない)を用い
ると、ビット線(9)、配線層(20)等のパターニン
グの微細な加工が困難となる。
The wiring layer (20) is formed of a polycide film consisting of a polycrystalline silicon film (4) and a metal silicide film (5). Note that the polycrystalline silicon film (4) constituting the polycide film of the bit line (9) is doped with n-type impurities, and the wiring layer (2) is doped with n-type impurities.
Polycrystalline silicon film (4) constituting the polycide film of 0)
is doped with p-type impurities. The reason why the bit line (9) and the wiring N (20) are made of polycide film is that when 11 is used as the bit line (9) and the wiring layer (20), the /l coverage at the contact part and the This is to prevent the reliability of the DRAM from deteriorating due to deterioration of the scission coverage. However, in the case of a stacked capacitor type DRAM, because the level difference in the base is severe, the bit line (9) of the polycide film and the glabella insulating film (7) under the wiring layer (20) are covered with a normal SiO□ film (not a flow film). If this method is used, fine patterning of the bit line (9), wiring layer (20), etc. becomes difficult.

一方、加工を容易にするために、下地の層間絶縁膜の平
坦化を狙って眉間絶縁膜(7)としてBPSG(ボロン
リンシリケートガラス)やAs5G (ヒ素シリケート
ガラス)などの所謂フロー膜を用いると、これらのフロ
ー膜中に含まれる高濃度の不純物(例えばn形不純物)
が例えば周辺回路部における配線層(20)の多結晶シ
リコン膜(4)(或はp影領域(16) )中に拡散し
、p影領域(16)と配線層(20)との接続を劣化さ
せてしまう。また、メモリセル部においても、眉間絶縁
膜(7)としてのフロー膜中の不純物(例えばp形不純
物)がビット線(9)の多結晶シリコン膜(4)(或は
n形ソース・ドレイン領域(3a) )中に拡散し、同
じようにビット線(9)とソース・ドレイン領域(3a
)との接続が劣化する。
On the other hand, in order to facilitate processing, a so-called flow film such as BPSG (boron phosphorus silicate glass) or As5G (arsenic silicate glass) is used as the glabellar insulating film (7) with the aim of flattening the underlying interlayer insulating film. , high concentration of impurities (e.g. n-type impurities) contained in these flow membranes.
For example, it diffuses into the polycrystalline silicon film (4) (or p shadow region (16)) of the wiring layer (20) in the peripheral circuit area, and connects the p shadow region (16) and the wiring layer (20). It will cause it to deteriorate. In addition, in the memory cell part, impurities (for example, p-type impurities) in the flow film as the glabella insulating film (7) are removed from the polycrystalline silicon film (4) (or n-type source/drain region) of the bit line (9). (3a)), and similarly spreads into the bit line (9) and source/drain region (3a).
) connection deteriorates.

また、BPSGやAs5G等のフロー膜上に直接多結晶
シリコン膜を堆積すること自体、多結晶シリコンが異常
成長するため実用化が難しい等の問題点を有するもので
あった。
Further, directly depositing a polycrystalline silicon film on a flow film such as BPSG or As5G itself has problems such as abnormal growth of polycrystalline silicon, which makes it difficult to put into practical use.

尚、上述したフロー膜を眉間絶縁膜として用いてポリサ
イド配線を用いたときの問題点はDRAMに限らず、他
の半導体装置においても生ずるものである。
Incidentally, the problems when using the above-mentioned flow film as a glabellar insulating film and polycide wiring occur not only in DRAMs but also in other semiconductor devices.

本発明は、上述の問題点を解決し信頼性を向上した半導
体装置を提供するものである。
The present invention solves the above-mentioned problems and provides a semiconductor device with improved reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、第1導電形半導体領域(3a)
 (又は(16) )上にコンタクトホール(35) 
(又は(36))を有する第2導電形不純物を含有した
眉間絶縁膜(33)を形威し、この層間絶縁膜表面に不
純物拡散防止膜(38a) 、 (34)を形威し、コ
ンタクトホール(35) (又は(36) )を介して
第1導電形半導体領域(3a) (又は(16) )に
高融点配線J!!(9)(又は(20) )を接続して
成るものである。
The semiconductor device of the present invention includes a first conductivity type semiconductor region (3a)
(or (16) ) Contact hole (35) on top
(or (36)), and form an impurity diffusion prevention film (38a) and (34) on the surface of this interlayer insulating film. The high melting point wiring J! is connected to the first conductivity type semiconductor region (3a) (or (16)) through the hole (35) (or (36)). ! (9) (or (20)) are connected.

眉間絶縁膜(33)としてはAs5GやBPSGなどの
フロー膜を用いる。また高融点配線J!(9)(又は(
20) )としては多結晶シリコンやポリサイド等の導
電層にて形成することができる。
As the glabella insulating film (33), a flow film such as As5G or BPSG is used. Also, high melting point wiring J! (9) (or (
20) ) can be formed from a conductive layer such as polycrystalline silicon or polycide.

〔作用〕[Effect]

本発明の構成によれば、層間絶縁膜(33)は所謂フロ
ー膜であるので、平坦化され、その上の配線JWr9)
(又は(20) )の微細パターニング加工ができると
共に、層間絶縁膜(33)上にさらに厚い絶縁膜の形成
が可能となるために所謂配線容量が低減される。
According to the configuration of the present invention, since the interlayer insulating film (33) is a so-called flow film, it is flattened and the wiring JWr9) thereon is flattened.
(or (20)) can be performed, and a thicker insulating film can be formed on the interlayer insulating film (33), so that the so-called wiring capacitance is reduced.

そして、特に、層間絶縁膜(33)の表面に不純物拡散
防止膜(38a)が形成されるので、層間絶縁膜(33
)に含有する第2導電形不純物が第1導電形半導体領域
(3a) (又は(16))或は高融点配線層(9)(
又は(20) )中に拡散することがなく、良好な配線
接続がなされる。
In particular, since the impurity diffusion prevention film (38a) is formed on the surface of the interlayer insulating film (33),
), the second conductivity type impurity contained in the first conductivity type semiconductor region (3a) (or (16)) or the high melting point wiring layer (9) (
or (20) ) Good wiring connections are made without diffusion into the interior.

また不純物を含有する眉間絶縁膜(33)の表面に不純
物拡散防止膜(34)が形成されることにより層間絶縁
膜(33)上に多結晶シリコンを有する高融点配線層(
9)(又は(20) )を形成するときには多結晶シリ
コンの異常成長はない。
Furthermore, by forming an impurity diffusion prevention film (34) on the surface of the glabella insulating film (33) containing impurities, a high melting point wiring layer (
9) (or (20)), there is no abnormal growth of polycrystalline silicon.

〔実施例〕〔Example〕

以下、第1図を参照して本発明による半導体装置の一例
をスタックドキャパシタ型DRAMに適用した場合につ
いて説明する。
Hereinafter, a case where an example of the semiconductor device according to the present invention is applied to a stacked capacitor type DRAM will be described with reference to FIG.

第1図において、(31)はメモリセル部、(32)は
周辺回路部を示す。メモリセル部(31)では前述した
ようにフィールド絶縁層(2)を形成した例えばp形の
シリコン基板(1)にスイッチングトランジスタを構成
する例えばLDD (低濃度ドレイン)構造のn形のソ
ース・ドレイン領域(3a)及び(3b)が形成され、
周領域(3a)及び(3b)間上にゲート絶縁膜を介し
て多結晶シリコン膜(4)上に金属シリサイド膜(5)
を積層したポリサイド膜からなるゲート電極即ちワード
線(6)が形成される。ソース・ドレイン領域(3a)
には眉間絶縁膜(10)のコンタクトホール(11)を
介してスタックドキャパシタのキャパシタ下部電極(記
憶ノード) (12)が接続され、その上に誘電体膜(
13)を介してキャパシタ上部電極(14)が形成され
てキャパシタ(15)が構成される。
In FIG. 1, (31) indicates a memory cell section, and (32) indicates a peripheral circuit section. In the memory cell section (31), as described above, a p-type silicon substrate (1) on which a field insulating layer (2) is formed is provided with, for example, an n-type source/drain having an LDD (low concentration drain) structure, which constitutes a switching transistor. regions (3a) and (3b) are formed;
A metal silicide film (5) is placed on the polycrystalline silicon film (4) via a gate insulating film between the peripheral regions (3a) and (3b).
A gate electrode, ie, a word line (6), is formed of a polycide film laminated with polycide. Source/drain region (3a)
The capacitor lower electrode (storage node) (12) of the stacked capacitor is connected through the contact hole (11) of the glabella insulating film (10), and the dielectric film (
A capacitor upper electrode (14) is formed via the capacitor (13) to constitute a capacitor (15).

周辺回路部(32)では、前述と同様にp形のシリコン
基板(1)にP影領域(16)及びn影領域(17)が
形成され、ゲート電極即ちワード線(6)と同時形成の
配線層(18〉が形成される。
In the peripheral circuit section (32), a P shadow region (16) and an N shadow region (17) are formed on the p-type silicon substrate (1) in the same manner as described above, and a gate electrode, that is, a word line (6), is formed at the same time. A wiring layer (18>) is formed.

しかして、本例においては、第1図Aに示すようにメモ
リセル部(31)及び周辺回路部(32)上にわたって
眉間絶縁膜となるBPSG又はAs5Gなどのフロー膜
(33)を例えば数1000人程度0膜厚をもって被着
形成し、800’C〜900℃のアニール処理して平坦
化する。次いでフロー11g(33)上に厚さ1000
〜2000人程度のノンドープのSiO2膜(34)を
被着形成する。
In this example, as shown in FIG. 1A, a flow film (33) made of BPSG or As5G, which will serve as an insulating film between the eyebrows, is spread over the memory cell section (31) and the peripheral circuit section (32), for example, by several thousand layers. The film is deposited to a film thickness of about 0.000 C and then annealed at 800'C to 900C to planarize it. Then the thickness 1000 on the flow 11g (33)
A non-doped SiO2 film (34) of about 2,000 layers is deposited.

次に、第1図Bに示すようにメモリセル部(31)では
ソース・ドレイン領域(3a)上にコンタクトホール(
35)を開口し、周辺回路部(32)ではp影領域(1
6)上及び配線層(18)上にコンタクトホール(36
)及び(37)を開口した後、コンタクトホール(35
)。
Next, as shown in FIG. 1B, in the memory cell section (31), contact holes (
35), and the peripheral circuit section (32) has a p shadow area (1
6) Contact hole (36) on top and wiring layer (18)
) and (37), contact holes (35
).

(36) 、 (37)を含む全面に例えば厚さ数10
00人程度0膜ンドープの540g膜(38)に被着形
成する。
For example, the entire surface including (36) and (37) has a thickness of several tens of
The film was deposited on a 540g film (38) of about 0.000 and 0.000 g.

次に、第1図Cに示すようにSiO□膜(38)を異方
的にエッチバックしてコンタクトホール(35) 、 
(36) 。
Next, as shown in FIG. 1C, the SiO□ film (38) is anisotropically etched back to form contact holes (35),
(36).

(37)の側壁にのみら540g膜を残す。即ち、コン
タクトホール(35) 、 (36) 、 (37)の
側壁をSiO□側壁部(38a)で覆うようにする。し
かる後、例えば多結晶シリコン膜(4)及び金属シリサ
イド膜(5)を積層したポリサイド膜からなるビット線
(9)及び配線層(20)を同時に形成し、ビット線(
9)をコンタクトホール(35)を通してソース・ドレ
イン領域(3a)に接続し、配線層(20)をコンタク
トホール(36) (37)を通してp影領域(16)
及び配線層(18)に接続する。ここで、ビット線(9
)の多結晶シリコン膜(4)にはn形不純物がドープさ
れ、配線! (20)の多結晶シリコン膜(4)にはp
形不純物がドープされる。周辺回路部(32)では配線
層(20)を形成した後、さらにAs5GやBPSGな
どのフロー膜(39)を介してAj2配線(33)を形
成するようになす。
(37) Leave 540 g of film on the side wall. That is, the side walls of the contact holes (35), (36), and (37) are covered with the SiO□ side wall portion (38a). Thereafter, for example, a bit line (9) and a wiring layer (20) made of a polycide film in which a polycrystalline silicon film (4) and a metal silicide film (5) are laminated are simultaneously formed, and the bit line (
9) to the source/drain region (3a) through the contact hole (35), and connect the wiring layer (20) to the p shadow region (16) through the contact hole (36) (37).
and connected to the wiring layer (18). Here, the bit line (9
) The polycrystalline silicon film (4) is doped with n-type impurities, and the wiring! The polycrystalline silicon film (4) of (20) has p
doped with shape impurities. In the peripheral circuit section (32), after forming the wiring layer (20), Aj2 wiring (33) is further formed via a flow film (39) such as As5G or BPSG.

上述の構成によれば、コンタクトホール(35)。According to the above configuration, the contact hole (35).

(36) 、 (37)を含んでフロー膜(33)の表
面がノンドープの5in2膜(34)及びSin□側壁
部(38a)で完全に覆われているため、後工程の熱処
理でフロー膜(33)中に含まれる不純物がビット線(
9)或は配線層(20)中、またソース・ドレイン領域
(3a)或はp影領域(16)に拡散することなく、従
って、ピッH,m(9)とソース・ドレイン領域(3a
)、又は配線層(20)とP影領域(16)との接続を
劣化させることがない。
(36) and (37), the surface of the flow membrane (33) is completely covered with the non-doped 5in2 film (34) and the Sin□ sidewall (38a), so the flow membrane ( 33) The impurities contained in the bit line (
9) or without diffusing into the wiring layer (20) or into the source/drain region (3a) or the p shadow region (16), therefore, the pitch H,m (9) and the source/drain region (3a)
) or the connection between the wiring layer (20) and the P shadow area (16).

又、眉間絶縁膜と5てフロー膜(33)を用いるので平
坦化され、従ってその上のSiO□膜(34)を厚く形
成することが可能となり、配線容量をより低減すること
ができる。またフロー膜(33)によって平坦な層間絶
縁膜が形威されるので、その上に形成するビット線(9
)、配線層(20)の微細な加工即ちパターニングが容
易となる。
Further, since the flow film (33) is used as the glabellar insulating film, the film is flattened, and therefore the SiO□ film (34) thereon can be formed thickly, thereby further reducing the wiring capacitance. In addition, since a flat interlayer insulating film is formed by the flow film (33), the bit line (9) formed on it is
), the fine processing, that is, patterning, of the wiring layer (20) becomes easy.

また、メモリセル部(31)ではコンタクトホール(3
5)にSiO□側壁部(38a)を形成することによっ
て実質的にコンタクト部を小さくすることができ、従っ
てビット線とコンタクト部間の距離即ちフロー膜(33
)の距離dを小さくすることが可能となり、スタックド
キャパシタ型DRAMのメモリセルを小さくすることが
できる。
Further, in the memory cell part (31), a contact hole (3
By forming the SiO□ sidewall portion (38a) in 5), the contact portion can be made substantially smaller, and therefore the distance between the bit line and the contact portion, that is, the flow film (33
) can be made smaller, and the memory cell of the stacked capacitor type DRAM can be made smaller.

さらに、フロー膜(33)上にはノンドープの5tO2
膜(34)が形威されるので多結晶シリコン膜(4)を
形成する際に異常成長はなく良好なポリサイド膜が形成
できる。
Furthermore, non-doped 5tO2 is placed on the flow membrane (33).
Since the film (34) is formed, there is no abnormal growth when forming the polycrystalline silicon film (4), and a good polycide film can be formed.

尚、上側においては、スタックドキャパシタ型DRAM
に適用したが、その他層間絶縁膜としてAs5G。
In addition, on the upper side, a stacked capacitor type DRAM
In addition, As5G was used as an interlayer insulating film.

BPSG等のフロー膜を用いそのコンタクトホールを介
して多結晶シリコン或はポリサイドなどからなる配線層
(電極を含む)を接続するようにした半導体装置にも適
用できること勿論である。
Of course, the present invention can also be applied to a semiconductor device in which a flow film such as BPSG is used and a wiring layer (including electrodes) made of polycrystalline silicon or polycide is connected through the contact hole.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、不純物含有の層間絶縁膜表面に不純物
拡散防止膜を形威し、そのコンタクトホールを介して半
導体領域に高融点配線層を接続するようにしたので、半
導体領域及び配線層間の接続劣化を回避することができ
、良好な接続が得られる。そして、不純物含有の層間絶
縁膜は所謂フロー膜であるので平坦化された層間絶縁膜
が得られ、その上に微細パターンの配線層を形成するこ
とができると共に、フロー膜上に更に絶縁膜を厚く形成
することが可能となるので下層との間での配線容量を低
減することができる。
According to the present invention, an impurity diffusion prevention film is formed on the surface of the impurity-containing interlayer insulating film, and the high melting point wiring layer is connected to the semiconductor region through the contact hole. Connection deterioration can be avoided and a good connection can be obtained. Since the impurity-containing interlayer insulating film is a so-called flow film, a flattened interlayer insulating film can be obtained, and a wiring layer with a fine pattern can be formed on it, and an insulating film can be further formed on the flow film. Since it is possible to form a thick layer, the wiring capacitance between the layer and the lower layer can be reduced.

従って、信頼性の高い高密度の半導体装置を提供するこ
とができる。
Therefore, a highly reliable and high-density semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Cは本発明に係る半導体装置の一例を示す工
程順の断面図、第2図及び第3図は従来例に係る半導体
装置の断面図である。 (1)はシリコン基板、(3a) (3b)はソース・
ドレイン領域、(4)は多結晶シリコン膜、(5)は金
属シリサイド膜、(6)はワード線、(16)はP影領
域、(33)はAs5G、 BPSG等の層間絶縁膜、
(34)はSi0g膜、(38a)はSiO□側壁部、
(9)はビット線、(20)は配線層である。 代 理 人 松 隈 秀 盛 従来イブ1のII/r市図 第2図 1−−−−−−シリコ)暮秋 2−−−−−− フィールド胞爲A 3a、3b−−−−ソース ドレイン牟負月灸4・−−
−−−;り#Sbシリコ)月賽5−−−−−金屓シリブ
イド腰 6−−−−−7−ド緯(グ;ト嘔り本&)7、10−−
−−一層間絶殊膿 8−一−−−−コシ9クト爪−ル 9−−−−一に!γト摩自 12−−−−一午ヤIでシy下郁1槌 従来イ9′1のVr面図 第3図 13−−−−一誘亀林瑛 14−−一−−午ヤにシタ上*tS 15−−−−−キャlマシタ 16−−−−−ρ形I?a戚 17−−−−−rl形預を或 18−−−−一配a、1 20−−−−−a!線層 21−−−−−・贋藺紀に膜 23−−−−−At轟乙系車
FIGS. 1A-1C are cross-sectional views showing an example of a semiconductor device according to the present invention in the order of steps, and FIGS. 2 and 3 are cross-sectional views of a conventional semiconductor device. (1) is the silicon substrate, (3a) (3b) is the source
Drain region, (4) is a polycrystalline silicon film, (5) is a metal silicide film, (6) is a word line, (16) is a P shadow region, (33) is an interlayer insulating film such as As5G, BPSG, etc.
(34) is Si0g film, (38a) is SiO□ side wall part,
(9) is a bit line, and (20) is a wiring layer. Agent Hidemori Matsukuma Conventional Eve 1 II/r city map Figure 2 1 ------- Silico) Late autumn 2 ------- Field test A 3a, 3b ---- Source Drain moxa 4・---
---;ri #Sb silico) Monthly sale 5-----Kin 屓 silibid waist 6----7-de latitude (G;Toori book &) 7, 10--
--One layer of absolute pus 8-1--Koshi 9 nails 9----1! γ Tomasu 12----Ichigoya I Nishita upper*tS 15-----Calmashita 16-----ρ form I? a relative 17---rl form deposit a certain 18---one distribution a, 1 20------a! Line layer 21----・Membrane 23---At Todorotsu series car

Claims (1)

【特許請求の範囲】 第1導電形半導体領域上にコンタクトホールを有する第
2導電形不純物を含有した層間絶縁膜が形成され、 該層間絶縁膜表面に不純物拡散防止膜が形成され、 前記コンタクトホールを介して前記第1導電形半導体領
域に高融点配線層が接続されて成る半導体装置。
[Scope of Claims] An interlayer insulating film containing a second conductivity type impurity having a contact hole on the first conductivity type semiconductor region is formed, an impurity diffusion prevention film is formed on the surface of the interlayer insulating film, and the contact hole A semiconductor device comprising a high melting point wiring layer connected to the first conductivity type semiconductor region via.
JP1196236A 1989-07-28 1989-07-28 Semiconductor device Pending JPH0360153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196236A JPH0360153A (en) 1989-07-28 1989-07-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196236A JPH0360153A (en) 1989-07-28 1989-07-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0360153A true JPH0360153A (en) 1991-03-15

Family

ID=16354466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196236A Pending JPH0360153A (en) 1989-07-28 1989-07-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0360153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241750A (en) * 2002-03-26 2004-08-26 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US8368071B2 (en) 2002-03-26 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a thin film transistor and capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241750A (en) * 2002-03-26 2004-08-26 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US8368071B2 (en) 2002-03-26 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a thin film transistor and capacitor
US9070773B2 (en) 2002-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a thin film transistor and a capacitor

Similar Documents

Publication Publication Date Title
TW521427B (en) Semiconductor memory device for increasing access speed thereof
JPH0294471A (en) Semiconductor storage device and manufacture thereof
JPH10178162A (en) Soi embedded plate trench capacitor
JPH0982920A (en) Preparation of high accumulation dram cell
JP2741672B2 (en) Method of manufacturing capacitor for stacked DRAM cell
JPH11214660A (en) Manufacture of dram device
US5501999A (en) Process for formation of capacitor for DRAM cell
JP2850833B2 (en) Method for manufacturing semiconductor device
US6140174A (en) Methods of forming wiring layers on integrated circuits including regions of high and low topography
JP5417596B2 (en) Memory circuit
JPH0279462A (en) Semiconductor memory
JPH0321062A (en) Semiconductor storage device
JP3202501B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0360153A (en) Semiconductor device
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
JPH10200065A (en) Semiconductor device and its manufacturing method
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JPH0382155A (en) Semiconductor memory cell and manufacture thereof
JP3082691B2 (en) Semiconductor device and manufacturing method thereof
JP2892443B2 (en) Method for manufacturing semiconductor device
JP2950550B2 (en) Method for manufacturing semiconductor memory device
US20020006691A1 (en) Method for forming a lower electrode for use in a semiconductor device
JPH0417373A (en) Manufacture of nonvolatile semiconductor memory
JPH11307743A (en) Semiconductor memory and manufacture thereof
JPH10173151A (en) Semiconductor integrated circuit device and manufacturing method thereof