JPH0357748A - Control circuit for safety device for vehicle - Google Patents

Control circuit for safety device for vehicle

Info

Publication number
JPH0357748A
JPH0357748A JP1191792A JP19179289A JPH0357748A JP H0357748 A JPH0357748 A JP H0357748A JP 1191792 A JP1191792 A JP 1191792A JP 19179289 A JP19179289 A JP 19179289A JP H0357748 A JPH0357748 A JP H0357748A
Authority
JP
Japan
Prior art keywords
circuit
ignition
current
control means
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191792A
Other languages
Japanese (ja)
Other versions
JP2678497B2 (en
Inventor
Masami Okano
正巳 岡野
Kunihiro Takeuchi
竹内 邦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP1191792A priority Critical patent/JP2678497B2/en
Publication of JPH0357748A publication Critical patent/JPH0357748A/en
Application granted granted Critical
Publication of JP2678497B2 publication Critical patent/JP2678497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Abstract

PURPOSE:To surely carry out control by installing an electric current control means for controlling the level of the electric current which flows in a series circuit when the corresponding electric conduction control means operates, onto each series circuit. CONSTITUTION:If an electric conduction control part 3 judges the collision of vehicles, a starting signal T1 is outputted into a circuit 10, and after the lapse of a prescribed time, a starting signal T2 is outputted into a circuit 20. An electric field effect transistor 11 (electric conduction control element) in the circuit 10 is put into ON-state from OFF state by the signal T1, and an ignition current flows into the circuit 10 from an electric power source part 4, and the level of the detection voltage generated in a detection resistor 12 rises with time, and a transistor 13 changes from an OFF state to an ON state, and the gate potential of the transistor 11 reduces, and the increase of the electric current of the circuit 10 is suppressed, and the ignition electric current at a proper level is supplied into an ignition skib 5. Therefore, even if the ignition skib 5 does not generate high resistance after ignition, an ignition electric current flows in the ignition skib in the circuit 20 having the same constitution to that of the circuit 10, in correspondence with the signal T2 by a back-up condenser 44.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単一のエネルギー源を用いて複数個の車輛用安
全装置を制御するようにし九車輛用安全装置の制御回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control circuit for nine vehicle safety devices, which uses a single energy source to control a plurality of vehicle safety devices.

(従来の技術) 近年、車輛の衝突時に生じるシ曹ツクから乗員を護るた
めに、エアバック,シートベルト拘束装置等の車輛用安
全装置が実用化されつつある。このような車輛用安全装
置を用いた安全システムにかいては.衝突時に生じる虞
れのあるパツテリの損壊又はパッテリのターミナルはず
れによシ,安全装置の起動不能状態が生じないようにす
るため、昇圧回路及び該昇圧回路からの出力電圧により
充電されるエネA/ギーリザーパーコンデンサが制御ユ
二ット内にパックアップ回路として設けられている。こ
のエネルギーリザーバーコンデ/サには、車輛用安全装
置、例えばエアパック、の点火スキプが点火用のスイッ
チ素子を介して負荷として接続されている。エアバック
が運転席側及び助手席側に夫々設けられているような場
合、点火スキブを点火するための回路がエネルギーリザ
ーパーコンデンサに対して複数個並列に接絖されること
になる.このような構成による場合、複数の点火スキプ
は時間遅延をもつて順次点火されるが、点火スキブが点
火したことによりその点火スキプが点火後高抵抗状態に
ならない状態が発生すると、残の点火スキプを点火する
ことができなくなる.この不具合を解決するため、特開
昭63−279947号公報には,点火スキプと直列に
コンデンサを挿入し、点火スキブが点火後に高抵抗状態
とならなくても他の点火スキブの点火動作を確実に行な
いうるようにした回路構成が提案されている.(発明が
解決しようとする課題) しかし、この提案された回路では,点火スキプに直列に
挿入するためのコンデンサとして損失の少ないコンデン
サが必要であυ、コストが高くなるほか,コンデンサに
よる微分電流を点火スキプに流して点火するので確実な
点火制御を行ないにくいという問題点を有している。
(Prior Art) In recent years, vehicle safety devices such as airbags and seatbelt restraint devices have been put into practical use in order to protect occupants from shocks that occur during vehicle collisions. Regarding safety systems using such vehicle safety devices. In order to prevent the battery from being damaged or the terminal of the battery from coming loose, which may occur in a collision, and the safety device not being able to start, the booster circuit and the energy A/V charged by the output voltage from the booster circuit are used. A ghee reservoir capacitor is provided as a back-up circuit within the control unit. An ignition skip for a vehicle safety device, such as an air pack, is connected to the energy reservoir capacitor as a load via an ignition switch element. If airbags are installed on the driver's and passenger's sides, multiple circuits for igniting the ignition squib will be connected in parallel to the energy reservoir capacitor. In such a configuration, multiple ignition skips are ignited sequentially with a time delay, but if an ignition skip is ignited and the ignition skip does not reach a high resistance state after ignition, the remaining ignition skips It becomes impossible to ignite. In order to solve this problem, Japanese Patent Application Laid-Open No. 63-279947 discloses that a capacitor is inserted in series with the ignition squib to ensure the ignition operation of other ignition squibs even if the ignition squib does not enter a high resistance state after ignition. A circuit configuration has been proposed that allows this to be carried out. (Problem to be solved by the invention) However, in this proposed circuit, a capacitor with low loss is required to be inserted in series with the ignition skip, which increases the cost and also reduces the differential current caused by the capacitor. Since the ignition skips the ignition, it is difficult to perform reliable ignition control.

本発明の目的は,従来技術にかける上述の問題点を解決
することができる,車輛用安全装置の制御回路を提供す
ることにある. (課題を解決するための手段) 上記課題を解決するための本発明の特徴は,複数の車輛
用安全装置の各起動手段に対応して設けられた通電制御
手段と、これらの通電制御手段を所定の順序で通電状態
とする通電制御部とを有し,上記起動手段に所定のエネ
ルギー源から時間をずらせて起動のための電流を順次供
給する車輛用安全装置の制御回路に釦いて,起動手段及
びそれに対応する通電制御手段が直列に接続されて成る
少なくとも2つの並列接続された直列回路を有し、各直
列回路には対応する通電制御手段が作動した場合にその
直列回路に流れる電流のレペ/I/t−制御するための
電流制御手段が設けられている点にある. (作用) 各起動手段がそれに対応する通電制御手段と直列に接続
されて成る直列回路が複数個形成されてシリ、これらの
直列回路は並列に接続されていて、車輌の衝突が検出さ
れた場合、各直列回路に組み込まれた通電制御手段が通
電制御部によって所定の順序で時間をずらして通電可能
状態とされる。
An object of the present invention is to provide a control circuit for a vehicle safety device that can solve the above-mentioned problems of the prior art. (Means for Solving the Problems) The features of the present invention for solving the above problems include energization control means provided corresponding to each activation means of a plurality of vehicle safety devices, and energization control means for these energization control means. and an energization control unit that turns on electricity in a predetermined order, and a control circuit of a vehicle safety device that sequentially supplies starting current from a predetermined energy source to the starting means at staggered times. The means and the corresponding energization control means are connected in series to form at least two parallel-connected series circuits, each series circuit having a current flowing through the series circuit when the corresponding energization control means is activated. The point is that a current control means for controlling the repe/I/t is provided. (Function) A plurality of series circuits are formed in which each starting means is connected in series with its corresponding energization control means, and these series circuits are connected in parallel, and when a vehicle collision is detected. The energization control means incorporated in each series circuit is brought into the energized state at different times in a predetermined order by the energization control section.

この結果,各起動手段には起動のための電流がエネルギ
ー源から順次供給される。各直列回路には、通電制御手
段が電流の通電を許す状態となることによりそこに流れ
る電流のレベルを制御して適切な電流が流れるようにす
るための電流制御手段が設けられているので、このとき
各直列回路に流れる電流のレベルは目的に見合った適切
なレベル値とされ,エネルギー源からの電流エネ/L/
ギーを各直列回路に有効且つ適切に供給することが可能
となる. (実施例) 以下,図面を参照しながら本発明の一実施例について詳
細に説明する. 第1図は、本発明による車輛用安全装置制御回路の一実
施例を示し,第1図に示される制御回路1は、車輛(図
示せず)に生じる加速度を検出するためのセンサ2と,
該センサ2から出力され車輛に生じる加速度を示す加速
度信号KSに応答する通電制御部3とを備えている。通
電制御部3はマイクロコンピュータを用いて構或され、
加速度信号KSに対して所定の信号処理を行ない車輛が
衝突したか否かの判別を行なう機能と、車輛の衝突を判
別した場合に運転席側エアバック人と助手席側エアパッ
クBとの2つのエアパックを所定の時間差をもって順次
展開させるため.第1起動信号T1及びこれにつづく第
2起動信号で2′t−出力する機能を有している. 通電制御部3から出力される第1及び第2起動信号T,
, T2に応答して,電源部4から、運転席側エアバッ
ク人の起動素子である点火スキプ5及び助手席側エアパ
ックBの起動素子である点火スキプ6に夫々所要の起動
電流を供給するため,点火スキプ5を含んで成る第1回
路10と、点火スキプ6を含んで成る第2回路20とが
車速に応じて開閉される公知の安全スイッチ7を介して
電源部4に図示の如く接続されている. 第1回路10は、第1起動信号T,に応答してオン,オ
フ制御される通電制御素子として働く電界効果トランジ
スタ11と電流検出抵抗器12とが、点火スキプ5に対
して図示の如く直列に接続されて形成されている。電流
検出抵抗器120両端に生じる検出電圧v1はトランク
スタ13のペースーエミッタ間に印加されている。この
トランジスタのコレクタは電界効果トランジスタl1の
ダートに接続されて電流制御回路15が形成されている
。したがって、車速か所定値以上となって安全スイッチ
7が閉じられた状態にかいて、第1起動信号T1が出力
され,抵抗器14を介して電界効果トランジスタ11の
ダートに第1起動信号T,が印加されることによυ電界
効果トランジスタ1lがオン状態となったとき、この第
1回路10に電源部4から流入する電流のレベルは、上
述の如く形威された電流制御回路15によυ所定の値に
保たれる。
As a result, each starting means is sequentially supplied with starting current from the energy source. Each series circuit is provided with current control means for controlling the level of current flowing therein so that an appropriate current flows when the current flow control means enters a state where current is allowed to flow. At this time, the level of the current flowing through each series circuit is set to an appropriate level value corresponding to the purpose, and the current energy /L /
This makes it possible to effectively and appropriately supply energy to each series circuit. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of a vehicle safety device control circuit according to the present invention, and the control circuit 1 shown in FIG. 1 includes a sensor 2 for detecting acceleration generated in a vehicle (not shown),
The energization control section 3 is provided in response to an acceleration signal KS outputted from the sensor 2 and indicating the acceleration generated in the vehicle. The energization control section 3 is constructed using a microcomputer,
A function for performing predetermined signal processing on the acceleration signal KS to determine whether or not a vehicle has collided, and a function for distributing the driver's side air bag and the passenger's side air pack B when it is determined that a vehicle has collided. To deploy two air packs sequentially with a predetermined time difference. It has a function of outputting 2't- with the first starting signal T1 and the second starting signal following this. The first and second activation signals T output from the energization control section 3,
, T2, the power supply section 4 supplies the required starting current to the ignition skip 5, which is the starting element for the driver's side airbag person, and the ignition skip 6, which is the starting element for the passenger side airbag B, respectively. Therefore, a first circuit 10 including an ignition skip 5 and a second circuit 20 including an ignition skip 6 are connected to the power source 4 via a known safety switch 7 that is opened and closed depending on the vehicle speed, as shown in the figure. It is connected. The first circuit 10 includes a field effect transistor 11 that functions as an energization control element that is turned on and off in response to a first starting signal T, and a current detection resistor 12 connected in series with the ignition skip 5 as shown in the figure. is connected to and formed. A detection voltage v1 generated across the current detection resistor 120 is applied between the pace and the emitter of the trunk star 13. The collector of this transistor is connected to the dart of the field effect transistor l1 to form a current control circuit 15. Therefore, when the vehicle speed exceeds a predetermined value and the safety switch 7 is closed, the first activation signal T1 is output, and the first activation signal T, When the field effect transistor 1l is turned on by applying υ, the level of the current flowing into the first circuit 10 from the power supply section 4 is determined by the current control circuit 15 configured as described above. υ is kept at a predetermined value.

電界効果トランジスタ11がオン状態となったときに点
火スキプ5に必要且つ充分なレベルの点火電流が供給さ
れるように,電流制御回路150回路定数が適宜に設定
されて>B、これにより過度のレベルの点火電流が第1
回路10に流れることはなく,且つ点火に充分なレベル
の電流が点火スキブ5に所要のタイミングで供給される
In order to supply a necessary and sufficient level of ignition current to the ignition skip 5 when the field effect transistor 11 is turned on, the circuit constant of the current control circuit 150 is appropriately set>B, thereby preventing excessive level ignition current is the first
No current flows through the circuit 10, and a current sufficient for ignition is supplied to the ignition squib 5 at the required timing.

以上第1回路10について説明したが,点火スキブ6t
−含んで或る第2回路20も第1回路10と同様に構成
されている。すなわち、第2回路20にかいて、第2起
動信号T2が抵抗器24を介して電界効果トランジスタ
21のダートに与えられると,電界効果トランジスタ1
1がオン状態となり、電流検出抵抗器22とトランジス
タ23とから構成される電流制御回路25によb,点火
スキブ6を点火するのに必要且つ充分な適切なレベルの
点火電流が、電源部4から第2回路20に流入すること
になる。
Although the first circuit 10 has been explained above, the ignition squib 6t
- The second circuit 20 including the second circuit 20 is also constructed in the same way as the first circuit 10. That is, when the second activation signal T2 is applied to the field effect transistor 21 via the resistor 24 in the second circuit 20, the field effect transistor 1
1 is turned on, and the current control circuit 25 composed of the current detection resistor 22 and the transistor 23 supplies an ignition current of an appropriate level necessary and sufficient to ignite the ignition squib 6 to the power supply section 4. It flows into the second circuit 20 from there.

なか、電流検出抵抗器12,22は点火スキブ5,6と
直列に挿入されているので、電流検出抵抗器における損
失が大きくならないよう,これらの抵抗値は極めて小さ
な値に適宜設定されるのが望ましい. 電源部4は、パッテリ41と、昇圧回路42及び該昇圧
回路42からの高圧出力がダイオード43t−介して充
電電圧として与えられている大容量のコンデ/サ44か
ら或るパックアップ用回路45とを有している.負極が
アースされているパッテリ41の正極はダイオード46
を介して安全スイッチ7に接続され,パックアッデ用回
路45のコンデンサ44の一方の端子は安全スイッチ7
に直接接続されている。
Since the current detection resistors 12 and 22 are inserted in series with the ignition squibs 5 and 6, it is recommended that these resistance values be appropriately set to extremely small values so that the loss in the current detection resistors does not become large. desirable. The power supply section 4 includes a battery 41, a booster circuit 42, and a large-capacity capacitor 44 to which the high voltage output from the booster circuit 42 is applied as a charging voltage via a diode 43t to a certain backup circuit 45. have. The positive electrode of the battery 41 whose negative electrode is grounded is a diode 46.
One terminal of the capacitor 44 of the pack add circuit 45 is connected to the safety switch 7 through the safety switch 7.
connected directly to.

したがって、通常では、バッテリ41及びコンデンサ4
4の双方から点火電流を点火スキプ5,6に供給でき,
車輛の衝突によるパッテリターミナルはずれ等の障害が
生じた場合にはコンデンサ44に蓄えられている電気エ
ネルギーにより各点火スキプに点火電流を供給すること
ができる。
Therefore, normally, the battery 41 and the capacitor 4
Ignition current can be supplied from both of 4 to ignition skips 5 and 6,
In the event of a failure such as dislodgement of the battery terminal due to a vehicle collision, ignition current can be supplied to each ignition skip using the electrical energy stored in the capacitor 44.

次に、第l図に示した制御回路1の動作について説明す
る. 車輛の走行速度が所定ItLヲ越えると安全スイッチ7
が閉じられ,電源部4の負荷として第1及び第2回路1
0.20が電源部4の出力側に並列に接続される。もし
車輛の衝突が通電制御部3にかいて判別されると,先ず
第1起m信号T,が出力され、次いで所定の時間遅れを
もって第2起動信号T2が出力される. 第1起動信号T,の印加によb第1回路10の電界効果
トランジスタ11がオフ状態からオン状態となυ,電源
部4から第1回路10に点火電流が流入する.この電流
は検出抵抗器12にも流れ、ここに生じた検出電圧v8
のレベルが時間の経過と共に上昇し,トランジスタ13
がオフ状態からオン状態へと変化する。これによりトラ
ンジスタ13のコレクタ電位、すなわち電界効果トラン
ジスタ11のr−}電位が低下し、第1回路10の電流
の増加が抑えられる。この結果,第1起動信号T,の印
加に応答して第1回路10に点火スキブ5を点火させる
ための電流が一瞬大レベルになろうとするが、上述の電
流制御動作によυこれが抑えられ、点火スキブ5、すな
わち第1回路10には点火に必要な適切なレベルの電流
が供給され、電源部4から第1回路10に過大レベルの
電流が流れることはない. 上述の如くして点火スキプ5が点火して運転席側エアパ
ックAが展開した後、第2起動信号T2が出力される.
第2回路20は、第2起動信号T2に貯答し,第1回路
10の場合と同様にして点火スキプ6に適切なレベルの
点火電流が供給される。
Next, the operation of the control circuit 1 shown in FIG. 1 will be explained. When the traveling speed of the vehicle exceeds the predetermined ItL, the safety switch 7
is closed, and the first and second circuits 1 serve as loads for the power supply section 4.
0.20 is connected in parallel to the output side of the power supply section 4. If a vehicle collision is determined by the energization control section 3, first the first activation signal T is output, and then the second activation signal T2 is output after a predetermined time delay. By applying the first starting signal T, the field effect transistor 11 of the first circuit 10 is turned from the off state to the on state, and an ignition current flows into the first circuit 10 from the power supply section 4. This current also flows through the detection resistor 12, and the detection voltage v8 generated there
As time passes, the level of transistor 13 increases.
changes from off state to on state. This lowers the collector potential of the transistor 13, that is, the r-} potential of the field effect transistor 11, and suppresses an increase in the current in the first circuit 10. As a result, the current for causing the first circuit 10 to ignite the ignition squib 5 momentarily rises to a large level in response to the application of the first starting signal T, but this is suppressed by the above-mentioned current control operation. An appropriate level of current necessary for ignition is supplied to the ignition squib 5, that is, the first circuit 10, and an excessive level of current does not flow from the power supply section 4 to the first circuit 10. After the ignition skip 5 is ignited and the driver's seat side air pack A is deployed as described above, the second activation signal T2 is output.
The second circuit 20 stores the second activation signal T2 and supplies the ignition skip 6 with an appropriate level of ignition current in the same manner as the first circuit 10.

このような構成によると、各点火スキブに供給される電
流は定電流値となっているので、例えば点火スキプ5が
点火後に高抵抗とならず、シ口ート状態となってしまっ
たとしても,第1回路10に流入する電流がこれによシ
過大となることはない。したがって,第2起動信号T2
に応答して点火スキブ6に点火電流を流す場合、第1回
路10に流れる過大電流のために点火スキブ60点火電
流レベルが低下し,その点火が不可能となってし1う不
具合を有効に防止することができる。このことは%特に
、コ/デンサ44に蓄えられた電気エネルギーによって
のみ点火スキプの点火動作を行なわせるパックアップ制
御時に有効である。
According to such a configuration, the current supplied to each ignition squib is a constant current value, so even if, for example, the ignition skip 5 does not have high resistance after ignition and enters the seat state, , the current flowing into the first circuit 10 does not become excessive. Therefore, the second activation signal T2
When the ignition current is applied to the ignition squib 6 in response to the ignition squib 6, the ignition current level of the ignition squib 60 decreases due to the excessive current flowing in the first circuit 10, making it impossible to ignite. It can be prevented. This is particularly effective during backup control in which the ignition skip ignition operation is performed only by the electrical energy stored in the co/capacitor 44.

さらに、点火スキプへの点火電流を定電流制御すること
によク,クイヤーハーネス,接触抵抗などの回路抵抗が
あってもそれによう点火電流のレベルが大きく変化する
のを防止できるほか、電流制御素子として使用する電界
効果トランジスタ又はその他の適宜の素子に釦いて、最
大定格のよう小さなものを使用できるのでコストの低減
が期待できる。
Furthermore, by controlling the ignition current to the ignition skip with a constant current, it is possible to prevent the level of the ignition current from changing significantly even if there is circuit resistance such as a wire harness, contact resistance, etc. Since the field effect transistor or other appropriate element used as the element can be small, such as the maximum rating, a reduction in cost can be expected.

また、1回路当bの所要点火電流エネルギーが容易に計
算できるので、エアバックの個数が3つ以上となっても
、各回路において必要な電気エネルギーの計算が容易で
あシ,回路設計が極めて簡単となる。筺た、パックアッ
プ用電源のためのコンデンサ容量も従来に比べて小さく
て済み、コストの低減に役立つものである。
In addition, since the required fire current energy per circuit can be easily calculated, even if there are three or more airbags, it is easy to calculate the electrical energy required for each circuit, making circuit design extremely easy. It becomes easy. In addition, the capacitor capacity for the backup power supply is also smaller than in the past, which helps reduce costs.

また,トランジスタ23がオーf/となる故障が生じて
もスキブの点火を行なうことは可能である。一方,ト2
冫ジスタ23がシl一ト状態となった場合、電界効果ト
ランジスタ21のチェックの際に,そのドレイン電圧の
レベルから−、それ金検出することができる。
Furthermore, even if a failure occurs in which the transistor 23 becomes OFF, it is possible to ignite the squib. On the other hand, G2
If the transistor 23 goes into a shut-down state, it can be detected from the level of its drain voltage when checking the field effect transistor 21.

上記実施例では、エアパックを2個制御する場合につい
て説明したが、エアパックを3個以上制御する場合にも
,第3,第4,・・・の回路を並列に接続することによ
り本発明を同様にして適用することができる. 1た、点火電流を定電流制御するため、上記実施例では
,通電制御用の電界効果トランジスタの導過度を検出抵
抗器に生じる電圧に応じて制御することによう実現した
一例を示したが、本発明の構或はこの一実施例の構成に
限定されるものではなく,他の手段によって点火スキプ
の点火電流を定電流制御するようにしてもよい. (発明の効果) 本発明によれば、上述の如く、安全装置を起動するため
の起動電流を定電流制御としたので、エネ/L/ギーの
浪費が抑制され,複数の安全装置を確実に起動させるこ
とができる。また,回路設計が容易になる上に,配線抵
抗,接触抵抗の影響を受けに<<、信頼性が向上し,コ
ストダウンも期待できる.
In the above embodiment, the case where two air packs are controlled has been explained, but the present invention can also be applied when controlling three or more air packs by connecting the third, fourth, etc. circuits in parallel. can be applied in the same way. 1. In order to control the ignition current at a constant current, in the above embodiment, an example was shown in which the conductivity of the field effect transistor for energization control was controlled in accordance with the voltage generated in the detection resistor. The structure of the present invention is not limited to the structure of this embodiment, and the ignition current for ignition skip may be controlled at constant current by other means. (Effects of the Invention) According to the present invention, as described above, since the starting current for starting the safety devices is controlled by constant current, wastage of energy/L/Gy is suppressed and multiple safety devices can be operated reliably. It can be activated. In addition, not only will circuit design become easier, reliability will be improved due to the effects of wiring resistance and contact resistance, and cost reductions can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の−実施例を示す回路図である.1・・
・制御回路、3・・・通電制御部,4・・・電源部,5
.6・・・点火スキブ.10・・・第1回路、11.2
1・・・電界効果トランジスタ.15.25・・・定電
流制御回路,20・・・第2回路,A・・・運転席側エ
アバック,B・・・助手席側エアバック、T,・・・第
1起動信号、T2−・・第2起動信号。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. 1...
・Control circuit, 3... Energization control section, 4... Power supply section, 5
.. 6...Ignition squib. 10...first circuit, 11.2
1... Field effect transistor. 15.25... Constant current control circuit, 20... Second circuit, A... Driver's seat side air bag, B... Passenger seat side air bag, T,... First activation signal, T2 ---Second activation signal.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の車輛用安全装置の各起動手段に対応して設け
られた通電制御手段と、これらの通電制御手段を所定の
順序で通電状態とする通電制御部とを有し、前記起動手
段に所定のエネルギー源から時間をずらせて起動のため
の電気エネルギーを順次供給する車輛用安全装置の制御
回路において、起動手段及びそれに対応する通電制御手
段が直列に接続されて成る少なくとも2つの並列接続さ
れた直列回路を有し、各直列回路には対応する通電制御
手段が作動した場合にその直列回路に流れる電流のレベ
ルを制御するための電流制御手段が設けられていること
を特徴とする車輛用安全装置の制御回路。
1. It has an energization control means provided corresponding to each activation means of a plurality of vehicle safety devices, and an energization control section that energizes these energization control means in a predetermined order; In a control circuit for a vehicle safety device that sequentially supplies electrical energy for starting from a predetermined energy source at staggered times, at least two parallel-connected starting means and corresponding energization control means are connected in series. A vehicle comprising a series circuit, each series circuit being provided with current control means for controlling the level of current flowing through the series circuit when the corresponding energization control means is activated. Safety device control circuit.
JP1191792A 1989-07-25 1989-07-25 Control circuit for vehicle safety device Expired - Fee Related JP2678497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191792A JP2678497B2 (en) 1989-07-25 1989-07-25 Control circuit for vehicle safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191792A JP2678497B2 (en) 1989-07-25 1989-07-25 Control circuit for vehicle safety device

Publications (2)

Publication Number Publication Date
JPH0357748A true JPH0357748A (en) 1991-03-13
JP2678497B2 JP2678497B2 (en) 1997-11-17

Family

ID=16280615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191792A Expired - Fee Related JP2678497B2 (en) 1989-07-25 1989-07-25 Control circuit for vehicle safety device

Country Status (1)

Country Link
JP (1) JP2678497B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042544A (en) * 1990-04-18 1992-01-07 Nippondenso Co Ltd Air bag actuating device
JPH04321454A (en) * 1991-04-19 1992-11-11 Nippondenso Co Ltd Air bag device for vehicle
DE19526735A1 (en) * 1994-07-21 1996-01-25 Airbag Systems Co Ltd Motor vehicle safety system e.g. for dual air-bags
US5596497A (en) * 1994-02-17 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Control circuit for vehicle safety device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042544A (en) * 1990-04-18 1992-01-07 Nippondenso Co Ltd Air bag actuating device
JPH04321454A (en) * 1991-04-19 1992-11-11 Nippondenso Co Ltd Air bag device for vehicle
US5596497A (en) * 1994-02-17 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Control circuit for vehicle safety device
DE19526735A1 (en) * 1994-07-21 1996-01-25 Airbag Systems Co Ltd Motor vehicle safety system e.g. for dual air-bags
US5806008A (en) * 1994-07-21 1998-09-08 Airbag Systems Company Ltd. Safety system for vehicles

Also Published As

Publication number Publication date
JP2678497B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5365114A (en) Vehicle passenger restraint device for use in automotive vehicle or the like
US5204547A (en) Air bag system for protection of the occupants of motor vehicles
JPS5823263B2 (en) Air bag device activation device
JPS6157219B2 (en)
JPH0345884Y2 (en)
JP2652816B2 (en) Trigger Circuit of Crash Sensor Control Type Protection System for Vehicle
JPH07228215A (en) Control circuit for vehicular safety device
US5859583A (en) Occupant protection system for automotive vehicle
JPS6243877Y2 (en)
JPS5823264B2 (en) air bag device
JPS6251176B2 (en)
US6037674A (en) Circuit and method of current limiting a half-bridge driver
EP0941181B1 (en) Improvements in or relating to an electronic control circuit for a vehicle safety device
JPH0669788B2 (en) Vehicle safety device
JPH0357748A (en) Control circuit for safety device for vehicle
EP0339967A1 (en) Improvements relating to firing circuits for restraints in vehicles
JP3582822B2 (en) Vehicle occupant protection device and control method thereof
JPH0638771Y2 (en) Airbag control device
JPS6350203Y2 (en)
JP2694651B2 (en) Vehicle occupant protection system
JP2889725B2 (en) Vehicle airbag device
JP2546194Y2 (en) Air bag device
JPH088918Y2 (en) Airbag device for vehicle
JPH0373506B2 (en)
JP3001872U (en) Occupant protection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees