JPH0349004A - Manufacture of multiple magnetic head and integral grinder used in manufacturing - Google Patents

Manufacture of multiple magnetic head and integral grinder used in manufacturing

Info

Publication number
JPH0349004A
JPH0349004A JP18266989A JP18266989A JPH0349004A JP H0349004 A JPH0349004 A JP H0349004A JP 18266989 A JP18266989 A JP 18266989A JP 18266989 A JP18266989 A JP 18266989A JP H0349004 A JPH0349004 A JP H0349004A
Authority
JP
Japan
Prior art keywords
polishing
chip
head
chips
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18266989A
Other languages
Japanese (ja)
Inventor
Kiyotaka Wasai
和才 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18266989A priority Critical patent/JPH0349004A/en
Publication of JPH0349004A publication Critical patent/JPH0349004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a multiple chip head with high yield by forming a pair by selecting a chip of prescribed shape and size out of plural chips, sticking it on the same base member as a multiple chip, and integrally grinding the tape sliding plane of the multiple chip. CONSTITUTION:Pairing that the chip of prescribed shape and size is selected and collected out of the plural chips is performed. Next, each paired chip is stuck on a common base member after paying consideration for integral grinding as a multiple chip. Then, it is confirmed to whether or not the prescribed shape and size are formed by performing inspection for sticking. The multiple chip head 1 is connected with a screw on a grinding drum 15. The tape sliding plane 21 of the grinding drum 15 is ground at this part. A coil is wound across each chip head after integral grinding is performed, and electrostatic characteristic inspection as the multiple magnetic head is performed. Then, RF envelop inspection whether or not a ratio of output to noise and the output are stabilized at every head is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、近年高精細化画像を記録再生するVTRにお
いて高密度記録再生を行う都合上、多用される傾向にあ
る多連磁気ヘッドの製造方法及びそこに用いる一体研磨
装置に関するものであり、更に詳しくは、多連磁気ヘッ
ドを構成する多連チップヘッド(同一のベース部材に貼
り付けられた複数個のヘッドチップ)のテープ摺動面を
一体研磨して仕上げる研磨仕上げに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to the manufacture of multiple magnetic heads, which have recently been frequently used for high-density recording and reproduction in VTRs that record and reproduce high-definition images. The present invention relates to a method and an integral polishing device used therein, and more specifically, it relates to a method for polishing a tape sliding surface of a multiple chip head (a plurality of head chips attached to the same base member) constituting a multiple magnetic head. This relates to a polishing finish that is finished by integral polishing.

〔従来の技術〕[Conventional technology]

従来のへラドチップのテープ摺動面の一般的な研磨仕上
に関しては、実開昭63−29213号公報に記載され
ているように、研磨用シリンダ内の回転板に取付けたシ
ングルヘッドのベースに貼り付けた単一のチップのテー
プ摺動面をラッピングテープで研磨する方法や、揺動治
具に取付けたシングルヘッドのチップを回転砥石に切込
み摺動面を研磨する方法、さらには研磨用回転ディスク
の外周に貼り付けたチップを回転砥石で切込み、摺動面
を研磨する方法及び装置などが提案されている。
Regarding the general polishing finish of the tape sliding surface of conventional Helad chips, as described in Japanese Utility Model Application No. 63-29213, the tape is pasted on the base of a single head attached to a rotating plate in a polishing cylinder. There is a method of polishing the tape sliding surface of a single tip with lapping tape, a method of polishing the sliding surface of a single head tip attached to a swinging jig by cutting it into a rotating grindstone, and a method of polishing the sliding surface of a single tip attached to a rotating jig. A method and apparatus have been proposed for polishing the sliding surface by cutting a chip attached to the outer periphery with a rotating grindstone.

尚、ラッピングテープを使って回転シリンダに取り付け
たビデオヘッドのテープ摺動面の目詰り改善を目的とし
てなされる微量研磨の方法については、家庭用VTR用
ヘッドクリーニング用カセットテープが市販されている
ので、これを用いる方法が知られている。
Regarding the method of slight polishing, which is used to improve the clogging of the tape sliding surface of a video head attached to a rotating cylinder using wrapping tape, there are commercially available cassette tapes for cleaning heads of home VTRs. , a method using this is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、シングル−・ソド組立途中のチップ、
又はチップ単品の研磨方法に関するものであり、複数個
のチップを互いに近接して1枚のベース上に貼り付けて
構成した多連へラドチップの一体研磨仕上に関するもの
ではない。多連ヘッドチップを組立てる場合、各ヘッド
ごとにチップを上記従来技術で単品として個別に研磨仕
上した物を使う事は容易に考えられる。
The above-mentioned conventional technology uses a single chip in the middle of assembly,
Alternatively, the present invention relates to a method of polishing a single chip, and does not relate to an integral polishing finish of a multiple Herad chip formed by pasting a plurality of chips close to each other on a single base. When assembling multiple head chips, it is easily possible to use chips for each head that have been individually polished using the prior art described above.

しかし多連チップヘッドにおいては、その研磨仕上げが
終了した段階では、該多連チップヘッドを構成する各ヘ
ッド毎にテープ摺動面の面形状が微妙に異なるわけであ
るが、その微妙に異なるはずの各チップヘッドを個別に
作り組み立てようとすると、各チップを個別に研磨治具
に貼り付けて研磨しその後研磨治具から剥がして4連共
通のベースに貼り付けるという作業を各チップヘッド毎
に繰り返す必要があり、加工組立工程やハンドリング、
それにヘッドとなるべきチップの複数個の中から所要の
形状、寸法を持つ所要個数のチップを選別して多連(ペ
ア)を組むペアリング工程などが煩雑となり、その結果
、組立途中でチップヘッドを破損したり、或いは共通の
ベースにチップヘッドを再貼り付けする際など、貼り付
け間違いを起こす確率も高くなる。このようなことが原
因で出来上がった多連チップヘッドにおいて1個のヘッ
ドでも不良が発生すると、その多連チップヘッドそのも
のが不良品となりt]害が大きい。
However, in a multi-chip head, when the polishing process is completed, the surface shape of the tape sliding surface is slightly different for each head that makes up the multi-chip head, and the shape should be slightly different. If you try to make and assemble each chip head individually, you will have to attach each chip individually to a polishing jig, polish it, then peel it off from the polishing jig and attach it to a common base for each chip head. It is necessary to repeat the processing assembly process and handling,
In addition, the pairing process of selecting the required number of chips with the desired shape and dimensions from among the multiple chips that are to become the head and assembling multiple chips (pairs) becomes complicated. There is also a high probability of making a mistake when attaching the chip head to a common base. If even one head in a multi-chip head produced by such a problem is defective, the multi-chip head itself becomes a defective product, which causes great damage.

また不良品とはならないまでも、個別に研磨して再貼付
して組立てた多連チップヘッドは、VTR回転ドラム実
装後、各々のヘッドとテープのコンタクトが正常になる
までに数時間にわたるならし運転なしには、多連チップ
ヘッドを構成する各ヘッドの出力が充分に出揃うように
することは難しく、その結果、チップ加工、ヘッド組立
、VTR回転ドラム実装などで良品を得る歩留まりが悪
(なり、信頼度の低い多連チップヘッドしか製造できな
いという問題があった。
Furthermore, although it is not a defective product, multiple chip heads that are individually polished and reattached and assembled require several hours of break-in before the contact between each head and the tape becomes normal after mounting on the VTR rotating drum. Without operation, it is difficult to ensure that each head that makes up the multi-chip head has sufficient output, and as a result, the yield of good products in chip processing, head assembly, VTR rotating drum mounting, etc. is poor. However, there was a problem in that only a multi-chip head with low reliability could be manufactured.

本発明の目的は、上述のような従来技術の問題点を解決
し、研磨仕上げ後、VTR回転ドラムに実装置後から(
つまり数十分のランニング走行程度で)各ヘッドの出力
が充分に出揃うような、換言すると摺動面仕上げに関す
るヘッド間の出力バラツキの少ない高品質の多連チップ
ヘッドを製造することが可能な如き多連磁気へ、ドの製
造方法及びそこに用いる一体研磨装置を提供することに
ある。
It is an object of the present invention to solve the problems of the prior art as described above, and to apply (
In other words, it is possible to manufacture a high-quality multi-chip head in which the output of each head is sufficiently uniform (within several tens of minutes of running), or in other words, there is little variation in the output between heads regarding the finishing of the sliding surface. An object of the present invention is to provide a method for manufacturing a multi-magnetic metal and an integrated polishing device used therein.

C課題を解決するための手段〕 上記目的達成のため本発明では次のようにする゛。Means to solve problem C] In order to achieve the above object, the present invention is carried out as follows.

まず多連チップヘッドのVTR実装後での各ヘッドの出
力等から、所望される各ヘッドのテープ摺動面形状寸法
を求める。
First, the desired shape and dimensions of the tape sliding surface of each head are determined from the output of each head after the multi-chip head is mounted on a VTR.

次に多連チップヘッドの一体研磨(各々のヘッドのテー
プ摺動面の同時仕上)を前提とした千ンブ加工、ペアリ
ング、貼付、研磨等の組立作業と検査を含めた多連ヘッ
ド組立の手順(フローチャート)を作る。そして一体研
磨による各ヘッドのテープ摺動面の仕上り形状寸法につ
いて所望の寸法精度が得られる様に工夫した研磨ドラム
と研磨前後それに途中の仕上状態が検査出来る一体研磨
装置を作る。
Next, we performed the assembly work of multiple chip heads, including assembly work such as machining, pairing, pasting, polishing, etc., and inspection on the premise of integral polishing of multiple chip heads (simultaneous finishing of the tape sliding surface of each head). Create a procedure (flowchart). Then, a polishing drum devised to obtain the desired dimensional accuracy of the finished shape and dimensions of the tape sliding surface of each head by integral polishing, and an integral polishing device capable of inspecting the finished state before, during and after polishing are manufactured.

さらに一体研磨を可能とするためのチップ選別(ペアリ
ング)、貼付の各寸法関係を明確にする。
Furthermore, we will clarify the relationship between dimensions for chip selection (pairing) and attachment to enable integrated polishing.

この様な組立手順と方法で完成した多連チップヘッドを
VTRに実装して各ヘッドの出力検査を行ないチップの
加工、ペアリング、貼付及び一体研磨の適性値を確認修
正する事で高品位の多連磁気ヘッドを格段に改善された
歩留まりで製造する事が出来る。
The multi-chip head completed using this assembly procedure and method is mounted on a VTR, and the output of each head is inspected to confirm and correct the appropriate values for chip processing, pairing, pasting, and integrated polishing, resulting in high quality. Multiple magnetic heads can be manufactured with significantly improved yield.

〔作用〕[Effect]

多連チップヘッドの各ヘッドについての所望されるテー
プ摺動面形状は、該多連チップヘッドがVTR回転ドラ
ムに実装されて磁気テープとタッチした場合に十分な出
力を出し得る形状であるが、かかる形状を出すためには
、研磨テープで全チップヘッドを一体研磨仕上する方が
単独に個別に各ヘッドを研磨仕上するより、互に近接し
て配置された各ヘッドごとに微妙に異なる実用的なテー
プ摺動面形状が得やすいという点で有利である。
The desired shape of the tape sliding surface for each head of the multi-chip head is such that it can produce sufficient output when the multi-chip head is mounted on a VTR rotating drum and touches the magnetic tape. In order to achieve such a shape, it is better to polish all the chip heads together with polishing tape than to polish each head individually. This is advantageous in that it is easy to obtain a tape sliding surface shape.

又、一体研磨の条件をコントロールする事で、容易に微
妙に各ヘッド間で異なるテープ摺動面形状が得られる。
Furthermore, by controlling the conditions of integral polishing, it is possible to easily obtain slightly different tape sliding surface shapes between each head.

又組立手順としては、チップ単位では他の治具なしに追
加工や研磨は困難であり、単品ごとに研磨するより多連
に貼り付けたチップを同時研磨する方が研磨回数が少な
く、チップの貼りかえかないため破損や不良も少なく良
品を得やすい。
In addition, as for the assembly procedure, it is difficult to perform additional machining or polishing on a chip-by-chip basis without using other jigs, and polishing multiple chips at the same time requires fewer polishing times than polishing each chip individually. Since it does not need to be replaced, there is less damage and defects, making it easier to obtain good quality products.

一体研磨して実用可能な多連ヘッドが得られるならば、
チップ加工、ペアリング1共通ベース部材へのチップ貼
付、一体研磨とつながる組立手11INは合理的な工程
(手順)と言える。一体研磨を可能にするには所望され
る寸法精度が得られる工夫(例えば研磨ドラムの径をV
TR回転ドラムの径と同等以上の物を使ったり、さらに
は研磨ドラムにテープガイドや突起を付けたり、研磨用
テープも両性の低い物を使うなどの工夫)をした研磨作
業と研磨作業の前後とその途中の各部ヘッドのテープ摺
動面各部寸法の研磨状態の計測(顕微鏡カメラとモニタ
及びプリンタ)を可能とする多連チップヘッドの一体研
磨装置を作る事も必要になる。
If a practical multi-head can be obtained by integral polishing,
The assembly process 11IN, which involves chip processing, chip attachment to the pairing 1 common base member, and integral polishing, can be said to be a rational process (procedure). In order to make integrated polishing possible, measures can be taken to obtain the desired dimensional accuracy (for example, by changing the diameter of the polishing drum to V).
Before and after polishing work (such as using a material with a diameter equal to or larger than the TR rotating drum, adding tape guides or protrusions to the polishing drum, and using polishing tape with low amphoteric properties) It is also necessary to create an integrated polishing device for multiple chip heads that can measure (using a microscope camera, a monitor, and a printer) the polishing state of each part of the tape sliding surface of each part of the head along the way.

このような計測の結果、研磨前後のテープ摺動面の仕上
状況、チップの割れ、欠は等の不良があれば確認出来、
それにより対策を講じて加工の信鎖性を高める事が出来
る。
As a result of these measurements, you can check the finish condition of the tape sliding surface before and after polishing, and check if there are any defects such as chip cracks or chips.
By doing so, it is possible to take measures and improve the reliability of processing.

さらに、一体研磨が可能であるためチップのペアリング
や貼付時の各ヘッドごとの関連寸法は上記一体研磨装置
で試作する事で明確にする事が出来る。
Furthermore, since integral polishing is possible, the relevant dimensions for each head during chip pairing and attachment can be clarified by making a prototype using the above-mentioned integral polishing apparatus.

後工程で各ヘッドに巻線し静特性検査した多連チップヘ
ッドの完成品をVTRの回転ドラムに実装して出力検査
と摺動面形状変化の確認を行ない、チップのペアリング
や貼付及び一体研磨の適正値の確認修正(ヘッド評価)
を行なう事で高品位な多連磁気ヘッドを歩留まりが格段
に改善された状況で得る事が出来る。
In the post-process, the finished product of the multi-chip head, which has been wound around each head and tested for static characteristics, is mounted on the rotating drum of a VTR, and the output is inspected and changes in the shape of the sliding surface are confirmed, and the chips are paired, pasted, and integrated. Confirmation and correction of appropriate polishing values (head evaluation)
By doing so, it is possible to obtain high-quality multiple magnetic heads with significantly improved yield.

〔実施例] 次に図を参照して本発明の詳細な説明する。〔Example] The present invention will now be described in detail with reference to the drawings.

第2図は、4連チツプヘツドの正面図である。同図にお
いて、1は4連チツプヘツド、2はベース部材、2A〜
2Dはそれぞれベース部材2の指状部、3はへラドチッ
プ(a、b、c、dの4個が示されている)、4はへラ
ドチップ3をベース部材2の指状先端部に接着するため
の接着剤、である。
FIG. 2 is a front view of the quadruple chip head. In the same figure, 1 is a quadruple chip head, 2 is a base member, 2A~
2D is a finger-like part of the base member 2, 3 is a helad tip (four pieces a, b, c, and d are shown), and 4 is a helad tip 3 glued to the finger-like tip of the base member 2. adhesive, is.

第2A図は、第2図におけるベース部材2の指状部2A
の先端部に接着された一つのへラドチップ3の拡大正面
図である。第2A図において、5はへ7ドチツプ3のテ
ープ摺動面、6は磁気ヘッド用のギャップ、7は摺動面
5における頂点、8はギャップ線、である。
FIG. 2A shows the finger-shaped portion 2A of the base member 2 in FIG.
It is an enlarged front view of one Herad chip 3 adhered to the tip part of. In FIG. 2A, 5 is the tape sliding surface of the groove 3, 6 is the gap for the magnetic head, 7 is the apex of the sliding surface 5, and 8 is the gap line.

第2B図は、第2A図に示した一つのへラドチップ3の
側面図である。第2B図において、ヘッドチップ3がベ
ース部材2の指状部2Aの先端部に接着剤4で接着され
ていることが良く理解されるであろう。
FIG. 2B is a side view of one Herad tip 3 shown in FIG. 2A. In FIG. 2B, it will be well understood that the head chip 3 is bonded to the tip of the finger-shaped portion 2A of the base member 2 with an adhesive 4.

第2C図は、第2図における4個のへラドチップa、b
、c、dのテープ摺動面から見た正面図である。各ヘッ
ドチップa、b、c、dは、指状部2A〜2Dの先端部
にそれぞれ接着されているといっても、すべてが同じ高
さで揃って位置しているのではなく、互いに段差を伴っ
て配置され接着されているものであることが認められる
であろう。
Figure 2C shows the four Herad chips a and b in Figure 2.
, c and d are front views seen from the tape sliding surface. Although each of the head chips a, b, c, and d is bonded to the tips of the finger-like parts 2A to 2D, they are not all located at the same height, but are different from each other. It will be recognized that it is arranged and glued together with the

さて第2図、第2A図〜第2C図に見られる如き、・1
連チツプヘツド1は、ビデオヘッド製造の周知の手順に
従ってポンディングブロックから切り出された多数のヘ
ッド用チップの中から所要の寸法、形状を持つものを4
個選別して、ベース部材2の4本の指状部2A〜2Dの
先端部に接着剤4で接着しただけのもので、このままで
は4連磁気ヘンドとして使用することはできない。
Now, as seen in Figure 2, Figures 2A to 2C, ・1
The serial chip head 1 is made by selecting four head chips with desired dimensions and shapes from among a large number of head chips cut out from a pounding block according to well-known video head manufacturing procedures.
They are simply selected individually and adhered to the tips of the four finger-shaped parts 2A to 2D of the base member 2 with adhesive 4, and cannot be used as a four-wire magnetic hend as is.

つまり4個のへラドチップa、b、c、dのそれぞれの
テープ摺動面を予め良く研磨して、それぞれの摺動面が
磁気テープに良好にタッチするようにしないと、各ヘッ
ドチップに施す巻線から充分な出力が得られず、4連チ
ツプヘツド1は4連磁気ヘツドとして使い物にならない
In other words, unless the tape sliding surfaces of each of the four Herad chips a, b, c, and d are well polished in advance so that each sliding surface makes good contact with the magnetic tape, each head chip will not be polished. Since sufficient output cannot be obtained from the windings, the quadruple chip head 1 is useless as a quadruple magnetic head.

そこで研磨前の形状、寸法と研磨後の形状、寸法が存在
するわけであるが、これらの図において、サフィックス
としてOを付した記号は初期値(研磨前の寸法)を示し
、0を付さない記号は研磨後の寸法を示す。
Therefore, there are shapes and dimensions before polishing and shapes and dimensions after polishing. In these figures, the symbols with an O suffix indicate the initial values (dimensions before polishing), and the ones with 0 indicate the initial values (dimensions before polishing). Symbols without symbols indicate dimensions after polishing.

第2図において、基準半径をRとすると、XOは各ヘッ
ドチップ毎に与えられるもので、基準半径Rからの突き
出し段差の貼付後の初期値、Xは突き出し段差の研磨後
の値、YOは隣り合う各ヘッドチップのギャップ間距離
の貼付後の初期値、Yはその研磨後の値、である。
In Fig. 2, if the reference radius is R, XO is given for each head chip, and is the initial value of the protrusion step from the reference radius R after pasting, X is the value of the protrusion step after polishing, and YO is the value of the protrusion step after polishing. Y is the initial value of the gap distance between adjacent head chips after attachment, and Y is the value after polishing.

同様に第2A図において、RXOは、摺動面半径のチッ
プペアリング後の初期値、RXはその研磨後の値、であ
る、またGdOはギャップ深さのチップペアリング後の
初期値、Gdはその研磨後の値、である、α0は摺動面
5の頂点7の位置ずれ量の貼付後の初期値、αはその研
磨後の値、である、第2B図において、RYOは、側面
から見た摺動面半径のチップペアリング後の初期値、R
Yはその研磨後の値、である。
Similarly, in FIG. 2A, RXO is the initial value of the sliding surface radius after chip pairing, RX is its value after polishing, and GdO is the initial value of the gap depth after chip pairing, Gd is the value after polishing, α0 is the initial value of the displacement amount of the vertex 7 of the sliding surface 5 after pasting, and α is the value after polishing. In FIG. 2B, RYO is the side surface The initial value of the radius of the sliding surface after chip pairing, R
Y is the value after polishing.

第2C図において、G2はギャップ長(これは研磨前も
後も変わらない)、θOはアジマス角のチップペアリン
グ後の初期値、θはその貼付後の値、HOはトラック高
さのチップペアリング後の初期値、Hはその貼付後の値
、TWはトラ・ンク幅(これは研磨前も後も変わらない
)、である。
In Figure 2C, G2 is the gap length (this does not change before and after polishing), θO is the initial value of the azimuth angle after chip pairing, θ is its value after attachment, and HO is the track height of the chip pair. The initial value after the ring, H is the value after attachment, and TW is the trunk width (this does not change before and after polishing).

以上で4連チツプヘツドを例として多連チップヘッドの
形状、寸法関係、多連チ・ンプヘ・ンドがそのままでは
多連磁気ヘッドとならず、チ・ノブヘッドのテープ摺動
面の研磨仕上げが必要であること、などが理解されたで
あろう。
Using the four-chip head as an example, we have explained the shape and dimensions of the multi-chip head, and the multiple chip head cannot be made into a multi-chip magnetic head as it is, and the tape sliding surface of the chip head needs to be polished. You must have understood that there are certain things.

第1図は、本発明の一実施例としての、多連磁気へンド
の製造方法を示すフローチャートである。
FIG. 1 is a flowchart showing a method for manufacturing a multiple magnetic head as an embodiment of the present invention.

同図に見られるように、本発明の一実施例としての多連
磁気ヘッドの製造方法は、ステップS1〜S13から成
っている。以下、各ステップについて説明する。
As seen in the figure, the method for manufacturing a multiple magnetic head as an embodiment of the present invention consists of steps S1 to S13. Each step will be explained below.

先ず4連磁気ヘツドを製造するものとすると、ステップ
Slにおいて、各ヘッドa、b、c、d毎に、テープ摺
動面の所望の仕上げ寸法その他を所要のヘッド性能に従
って決定する。テープ摺動面の所望の仕上げ寸法その他
とは、ギャップ長G2、トランク幅TW、アジマス角θ
、トラック高さH1摺動面半径RX、側面から見た摺動
面半径RY、ギャップ深さCd、突き出し段差X、閣り
合う各ヘッドチップのギャップ間距離Y・摺動面の頂点
の位置ずれ量α、などである。
First, assuming that a quadruple magnetic head is to be manufactured, in step S1, the desired finishing dimensions of the tape sliding surface and other details are determined for each head a, b, c, and d in accordance with the required head performance. The desired finishing dimensions of the tape sliding surface and other dimensions include gap length G2, trunk width TW, and azimuth angle θ.
, track height H1 sliding surface radius RX, sliding surface radius RY seen from the side, gap depth Cd, protrusion level difference quantity α, etc.

次にステップS2において、ヘッドチップを得るための
チップ加工を行う、つまりビデオヘッド製造の周知の手
順に従ってボンディングブロックを作り、該ブロックか
ら多数のヘッド用チップを切り出す。
Next, in step S2, chip processing is performed to obtain a head chip, that is, a bonding block is created according to a well-known procedure for manufacturing a video head, and a number of head chips are cut out from the block.

ステップS3において、ステップS2で切り出された多
数のヘッド用チップの中から、各ヘッド毎に、チップ自
身の寸法や、ベース部材への貼り付けとか研磨を考慮し
た条件に従って所要の寸法、形状をもつチップを選別す
る。この選別を行って所要の寸法、形状をもつチップを
集めることをペアリングという、ペアリングされた各チ
ップの持つ寸法がそのまま初期値(アジマス角θ0、ト
ラック高さHO、ギャップ深さGd01摺動面半径RX
O1側面から見た摺動面半径RYO)となる。
In step S3, from among the large number of head chips cut out in step S2, each head is selected to have the required dimensions and shape according to the dimensions of the chip itself, and conditions that take into consideration attachment to the base member and polishing. Sort the chips. The process of performing this sorting and collecting chips with the required dimensions and shape is called pairing.The dimensions of each paired chip remain at their initial values (azimuth angle θ0, track height HO, gap depth Gd01) Surface radius RX
The radius of the sliding surface viewed from the O1 side is RYO).

但しギャップ長GE、トラック幅TWは、摺動面の研磨
とは関係ないのでそれがそのまま研磨後の値にもなる。
However, since the gap length GE and track width TW are not related to the polishing of the sliding surface, they also become the values after polishing.

次にステップS4において、ペアリングされた各チップ
を一体研磨を考慮して共通のベース部材に多連チ・ンプ
として貼り付ける。その際、突き出し段差X、隣り合う
各ヘッドチップのギャップ間距離Y、摺動面の頂点の位
置ずれ量α、などが各チップを共通のベース部材に貼り
付けたときにその貼り付け位置によって狂い易いので、
@調を行いながら貼り付ける。貼り付け後、それぞれを
初期値XO1α0とするが、各ヘッドチップのギャップ
間距離は初期値YOがそのまま近似的な最終仕上げ寸法
(研磨後の値)Yとなる。
Next, in step S4, each of the paired chips is attached to a common base member as a multiple chip in consideration of integral polishing. At that time, the protrusion level difference X, the gap distance Y between adjacent head chips, the positional deviation amount α of the apex of the sliding surface, etc. will be distorted depending on the attachment position when each chip is attached to a common base member. Because it's easy,
Paste while doing the @ tone. After pasting, each head chip is set to an initial value XO1α0, and the initial value YO of the gap distance between each head chip becomes an approximate final finished dimension (value after polishing) Y.

単品のへラドチップそのものには、これらの量は存在し
ないので、多連チップを共通のベース部材に貼り付けて
始めてこれらの量が決まる。
Since these quantities do not exist in a single Herad chip itself, these quantities can only be determined by attaching multiple chips to a common base member.

次にステップS5に移行し、貼付検査を行う。Next, the process moves to step S5, and a pasting test is performed.

ここでアジマス角は、貼ったためにチップペアリング後
の初期値θ0がそのまま研磨後の近似的に最終値θにな
ってしまう、トラック高さも同様に、貼ったためにチッ
プペアリング後の初期値HOがそのまま研磨後の近似的
に最終値(最終仕上げ寸法)Hになってしまう。従って
貼り付けた段階で、Y、TW、  θ1 Hの多量が最
終仕上げ寸法になる。
Here, for the azimuth angle, the initial value θ0 after chip pairing becomes approximately the final value θ after polishing due to pasting.Similarly, the track height also changes to the initial value HO after chip pairing due to pasting. becomes approximately the final value (final finished dimension) H after polishing. Therefore, at the stage of pasting, the large amounts of Y, TW, and θ1 H become the final finished dimensions.

コノ段階テハ、初期値RXO、RYO、XO。Kono stage Teha, initial values RXO, RYO, XO.

α0及び最終仕上げ寸法となるY、 TW、  θ、H
の多量について測定し、所定の寸法範囲にあるか否かを
検査し、否ならばNG(ノーグツド)ということでステ
ップS2に戻る。ここの貼付検査には外観検査も含まれ
る。
α0 and final finished dimensions Y, TW, θ, H
It is checked whether the size is within a predetermined size range, and if not, the result is NG (No Good) and the process returns to step S2. This pasting inspection also includes an appearance inspection.

次にステップS6において、貼付検査後の多連チップヘ
ッドを研磨ドラムに取り付ける。この取り付け状況を示
したのが第3図である。
Next, in step S6, the multi-chip head after the pasting test is attached to the polishing drum. FIG. 3 shows this installation situation.

第3図は、多連チップヘッドlが、研磨ドラム15に、
図示せざる手段でネジ止めされている様子を示している
。21は研磨ドラム15の外周面であり、25は切り欠
き穴部である。ここでチップヘッドの摺動面5が研磨ド
ラム15の外周面21から外に突き出している突き出し
量AOを決定する。なお研磨ドラムを含む研磨装置につ
いては葎達する。
FIG. 3 shows that the multiple chip head l is mounted on the polishing drum 15.
It shows how they are screwed together by means not shown. 21 is the outer peripheral surface of the polishing drum 15, and 25 is a cutout hole. Here, the amount of protrusion AO by which the sliding surface 5 of the chip head protrudes outward from the outer peripheral surface 21 of the polishing drum 15 is determined. Please note that the polishing equipment including the polishing drum is described below.

第1図に戻り、次にステップS7に移行する。Returning to FIG. 1, the process moves to step S7.

ここで、研磨前の検査ということでAO,RXO。Here, AO and RXO are inspected before polishing.

RYO,αO2δ0(CdO)、XOを測定して検査す
る。ここでδOは所要研9N(初期値)であり、実際に
研磨が行われた場合、その研磨量δからその時点のギャ
ップ深さCdが逆算できる。
RYO, αO2δ0 (CdO), and XO are measured and inspected. Here, δO is the required polishing 9N (initial value), and when polishing is actually performed, the gap depth Cd at that time can be calculated backward from the polishing amount δ.

次にステップS8に移行し、多連チップの一体研磨を研
磨装置によって行う、その際、研磨前後、途中において
、RX、RY、  α、δ(Gd)、Xの諸量を測定、
検査しながら一体研磨を行う0次いでステップS9に移
行して研磨後の検査を行う。
Next, the process moves to step S8, in which the multiple chips are polished in one piece using a polishing device. At this time, various quantities of RX, RY, α, δ (Gd), and X are measured before, during, and after polishing.
Performing integral polishing while inspecting 0 Next, the process moves to step S9 and a post-polishing inspection is performed.

研摩結果が不十分であれば、ステップS8に戻って再研
磨を行い、研磨結果が明らかに不良であればその原因別
に元のステップS2.S3.S4等に戻る。
If the polishing result is insufficient, the process returns to step S8 and re-polishing is performed, and if the polishing result is obviously poor, the original step S2. S3. Return to S4 etc.

一体研磨終了後、ステップS10において、各チップヘ
ッドに巻線を施す、そしてステップS11に移行し、多
連磁気ヘッドとしての静特性検査(インダクタンスし、
抵抗R1インピーダンスZ1クォリティー・ファクター
Qの測定)を行い、これに合格するとステップ312に
移行してVTRの回転ドラムに実装される。
After the integral polishing is completed, in step S10, winding is applied to each chip head, and the process proceeds to step S11, where static characteristics testing (inductance,
Measurement of resistance R1 impedance Z1 quality factor Q) is performed, and if it passes, the process moves to step 312 and is mounted on the rotating drum of the VTR.

そしてステップ313において、各ヘッド毎に出力検査
、出力とノイズの比(C/N) 、出力が安定している
かどうかのRFエンベロープ検査カ行われる。その検査
結果は、ステップS3におけるチップのペアリングや、
ステップS4における貼り付け、ステップS8における
一体研磨の適正値などが、適当であったかどうかの確認
(ヘッド評価)に用いられ、次の製造の段階にフィード
バックされる。
Then, in step 313, an output test, an output-to-noise ratio (C/N), and an RF envelope test are performed for each head to determine whether the output is stable. The test results are used for chip pairing in step S3,
The appropriate values for pasting in step S4 and integral polishing in step S8 are used to confirm whether they were appropriate (head evaluation) and are fed back to the next manufacturing stage.

以上、説明したように、多連チップヘッドの一体研磨が
可能であれば、チップ加工、ペアリング。
As explained above, if integrated polishing of multiple chip heads is possible, chip processing and pairing are possible.

貼付、一体研磨ときわめて合理的な工程を組む事が出来
る。又、ヘッドの評価結果もチップの加工形状寸法を変
更する事なく、チップのペアリング修正や、各チップの
貼付位置の修正、それに研磨条件の修正を行なう事で、
テープ摺動面形状を容易に微妙に修正することが出来る
。このため多連チップヘッドであってもVTRドラム実
装置後よりならし運転なしで各ヘッドの出力は良好で、
ヘッド間のばらつきも少ない物が得られる。又、多連に
貼り付けるまでのチップ単位のハンドリング回数が少な
いため、チップの破tR事故も少ない。
It is possible to put together an extremely rational process of pasting and integral polishing. In addition, the head evaluation results can be adjusted by correcting the pairing of the chips, correcting the attachment position of each chip, and modifying the polishing conditions without changing the processed shape and dimensions of the chips.
The shape of the tape sliding surface can be easily and subtly modified. Therefore, even with multiple chip heads, the output of each head is good without the need for a break-in operation after the VTR drum is actually installed.
It is possible to obtain a product with little variation between heads. In addition, since the number of times each chip is handled before it is pasted multiple times is small, there are fewer chip breakage accidents.

この様に多連チップヘッド組立の途中で一体研磨が可能
であれば、チンブ加工、ペアリング、貼付、一体研磨と
つながる製造工程はきわめて合理的な組立工程であると
言える。一体研磨前後の寸法関係については後述する。
If integrated polishing is possible in the middle of assembling a multi-chip head in this way, it can be said that the manufacturing process connected to chimbling, pairing, pasting, and integrated polishing is an extremely rational assembly process. The dimensional relationship before and after integral polishing will be described later.

第4図は、上述の多連磁気ヘッドの製造方法において用
いる多連チップヘッドの一体研磨装置の一実施例を示す
平面図、第5図は同側面図、である。
FIG. 4 is a plan view showing an embodiment of an integrated polishing apparatus for a multi-chip head used in the above-described method for manufacturing a multi-chip magnetic head, and FIG. 5 is a side view of the same.

これらの−において、10は一体研磨装置、11は枠、
12は上下スライダ、13は小型DCモータ、14は軸
、15は研磨ドラム、16はカム、17は小型DCモー
タ、18は研磨テープ、19は電磁ブレーキ、20は供
給リール、22はDCモータ、23は巻取リール、24
はガイドローラ、26はXYステージ、27はZステー
ジ、28は板、29は2光束対物レンズ、3oは顕微鏡
、31はカメラ、32はモニタ、33はプリンタ、34
はステー、35はリニアセンサー 36は取付台、37
はカウンタ、である。
In these -, 10 is an integrated polishing device, 11 is a frame,
12 is a vertical slider, 13 is a small DC motor, 14 is a shaft, 15 is a polishing drum, 16 is a cam, 17 is a small DC motor, 18 is a polishing tape, 19 is an electromagnetic brake, 20 is a supply reel, 22 is a DC motor, 23 is a take-up reel, 24
is a guide roller, 26 is an XY stage, 27 is a Z stage, 28 is a plate, 29 is a two-beam objective lens, 3o is a microscope, 31 is a camera, 32 is a monitor, 33 is a printer, 34
is a stay, 35 is a linear sensor, 36 is a mounting base, 37
is a counter.

先に説明した第3図は、第1図において、研磨ドラム1
5に多連チップヘッド1を取り付けた状況の詳細を示す
拡大図である。
The previously explained FIG. 3 shows the polishing drum 1 in FIG.
5 is an enlarged view showing details of the situation in which the multi-chip head 1 is attached to the multi-chip head 5. FIG.

第3図乃至第5図を改めて参照する。枠11に取付けた
上下スライダ12を介して正逆転と制動位置決めが可能
な小形DCモータ13の軸14に研磨ドラム15が取付
けられている。上下スライダ12はカム16の回転制動
位置決めが可能な小形DCモータ17によって上下運動
とその位置決めを行なっている。小形DCモータ17は
枠11に取付けられている。研磨テープ18は、枠11
の下部に取付けた電磁ブレーキ19に装着した供給リー
ル20より研磨ドラム15の外周面21を介して、枠1
1の下部に取付けたDCモータ22に装着した巻取り−
ル23に巻取られる。その間ガイドローラ24で研磨テ
ープ18の走行ガイドをしている。
Referring again to FIGS. 3 to 5. A polishing drum 15 is attached to the shaft 14 of a small DC motor 13 that can perform forward/reverse rotation and braking positioning via a vertical slider 12 attached to a frame 11. The vertical slider 12 is moved up and down and its position is determined by a small DC motor 17 capable of positioning by braking the rotation of the cam 16. A small DC motor 17 is attached to the frame 11. The polishing tape 18 is attached to the frame 11
A supply reel 20 attached to an electromagnetic brake 19 attached to the lower part of the frame 1
Winding device attached to the DC motor 22 attached to the bottom of 1.
23. During this time, the polishing tape 18 is guided by a guide roller 24.

研磨テープ18の送り速度及びテープ張力は、DCモー
タ22と電磁ブレーキ19の設定電圧できまる。又、研
磨ドラム15の摺動面RXの片べり防止用の正転、逆回
転や摺動面半径RYの片べり防止用の上下動とその位置
決めは回転制動位置決め可能なりCモータ13,17の
設定電圧できまる。これに全研磨時間、正転、逆転時間
、及び切替等のタイマ(図示せず)と研磨スタートと非
常停止ボタン(図示せず)、研磨ドラム15の正逆転と
上下動の各起動停止ボタン(図示ぜず)の湿作で研磨作
業と検査用位置出しく割出し)が可能となる。
The feeding speed and tape tension of the polishing tape 18 are determined by the set voltages of the DC motor 22 and the electromagnetic brake 19. In addition, the forward and reverse rotations of the sliding surface RX of the polishing drum 15 to prevent one-sided slipping and the vertical movement and positioning of the sliding surface radius RY to prevent one-sided slipping can be performed by rotational braking and positioning of the C motors 13 and 17. Determined by the set voltage. In addition, there are timers (not shown) for the total polishing time, forward rotation, reverse rotation time, switching, etc., polishing start and emergency stop buttons (not shown), and start/stop buttons for forward/reverse rotation and vertical movement of the polishing drum 15 ( Polishing work (not shown) and positioning for inspection (indexing) can be done by wet cultivation (not shown).

第3図には研磨ドラム15の拡大図を示す。研磨ドラム
15の切欠穴部25に4連チツプヘツド1のテープ摺動
面5を外周面21より寸法AOだけ突出させて取付ける
。その対象位置に同様に4速チツプヘツド1又はバラン
スウェイト(図示せず)を取付け、同時研磨あるいは研
磨ドラム15の回転動バランスをとる。
FIG. 3 shows an enlarged view of the polishing drum 15. The tape sliding surface 5 of the quadruple tip head 1 is attached to the cutout hole 25 of the polishing drum 15 so as to protrude from the outer peripheral surface 21 by a dimension AO. Similarly, a four-speed chip head 1 or a balance weight (not shown) is attached to the target position to perform simultaneous polishing or to balance the rotational movement of the polishing drum 15.

又、4連チツプヘツド1の各々ヘッド(a、  b。Also, each of the four chip heads 1 (a, b).

c、d)のテープ摺動面5の仕上形状検査用として枠1
1“上に取付けたXYステージ26とZステージ27上
に設けた板28に2光束対物レンズ29付の顕微鏡30
とカメラ31を取付ける。そしてカメラ31でとらえた
画像をテレビモニタ32に被写体とその凹凸状況を示す
干渉縞とが重なったものとして写す。さらにプリンタ3
3で画像を資料化する。
Frame 1 is used for inspecting the finished shape of the tape sliding surface 5 in c and d).
A microscope 30 with a two-beam objective lens 29 is mounted on a plate 28 mounted on an XY stage 26 and a Z stage 27 mounted on
and attach camera 31. The image captured by the camera 31 is then displayed on a television monitor 32 as a superimposed image of the object and interference fringes showing the unevenness of the object. Furthermore printer 3
3. Document the images.

又、枠11゛上に取付けたステー34に設けたX軸すニ
アセンサ35で顕微鏡30の取付台36のX軸方向の動
き量を検知しカウンタ37で表示する。
Further, the amount of movement of the mount 36 of the microscope 30 in the X-axis direction is detected by an X-axis near sensor 35 provided on a stay 34 mounted on the frame 11', and is displayed on a counter 37.

この様にして、4連チツプヘツド1の各ヘッド(a、 
 b、  c、  d、)の摺動面5はテレビモニタ3
2で、研磨量δはXYステージ26のX軸微動による2
光束対物レンズ29の焦点合せ(ピント合せ)でカウン
タ37の表示変化で確認する。XYステージ26のY軸
ステージで研磨ドラム15の法線と原点合せを行ない、
Zステージ27で、41連チップヘッド1の各ヘッド(
a、b、c、d)の各トラック高さHの寸法に合せて微
動出来る。
In this way, each head (a,
b, c, d,) sliding surface 5 is the TV monitor 3
2, the polishing amount δ is due to the X-axis fine movement of the XY stage 26.
This is confirmed by the display change on the counter 37 when the light beam objective lens 29 is focused. The normal line of the polishing drum 15 and the origin are aligned with the Y-axis stage of the XY stage 26,
On the Z stage 27, each head of the 41-series chip head 1 (
It can be slightly moved according to the dimensions of each track height H of a, b, c, and d).

むろん計測時は、研磨作業を一旦止めヘッドを対物レン
ズ29の前にテレビモニタ32を見ながら移動位置決め
をして、研磨テープ18を研磨ドラム15の外周面21
よりはずし、4連チツプヘツド1の各テープ摺動面5を
露出させる必要がある。
Of course, during measurement, the polishing operation is temporarily stopped, the head is moved and positioned in front of the objective lens 29 while watching the television monitor 32, and the polishing tape 18 is moved to the outer peripheral surface 21 of the polishing drum 15.
It is necessary to remove each tape sliding surface 5 of the quadruple tip head 1 to expose it.

一体研磨をする事で多連チップヘッド1の各ヘッドのテ
ープ摺動面5で大きく変化する寸法は第1図の組立フロ
ーチャートのステップS8に示した様にGd、X、  
α、RX、RYの諸量である。
The dimensions that change greatly on the tape sliding surface 5 of each head of the multi-chip head 1 due to integral polishing are Gd, X,
These are various quantities of α, RX, and RY.

以下、第1図のステップS3のチップペアリング時、ス
テップS4の貼付時、ステップS9の一体研磨後での寸
法関係を明確にする。
Hereinafter, the dimensional relationship during chip pairing in step S3 in FIG. 1, at the time of pasting in step S4, and after integral polishing in step S9 will be clarified.

第6図は研磨ドラム15に貼り付けた4連チ・ノブヘッ
ド研磨前後の寸法を示す説明図である。同図に見られる
ように、外周面21より寸法AOだけ突出して4連チツ
プへ・ンド1を取付け、それを一体研磨仕上をし、端部
aヘッドの研磨量をδa。
FIG. 6 is an explanatory diagram showing the dimensions of the four-channel knob head attached to the polishing drum 15 before and after polishing. As seen in the figure, the end 1 is attached to the quadruple chip so as to protrude from the outer circumferential surface 21 by a dimension AO, and it is finished by integral polishing, and the amount of polishing of the end a head is set to δa.

中央部bヘッドの研磨量をδbとすると、貼付時の初期
突出段差XOと研磨後の突出段差Xとの関係式は、下記
式で表わされる。
If the amount of polishing of the center b head is δb, the relational expression between the initial protruding step XO at the time of attachment and the protruding step X after polishing is expressed by the following equation.

XO−δb−δa + X         −−(1
)XO=Oのとき X=δa−δb    ・−・−(
2)となる。
XO−δb−δa + X −−(1
) When XO=O, X=δa−δb ・−・−(
2).

又、チップのaヘッドとbヘッドのそれぞれの初期ギャ
ップ深さGd0a、Gd0bと研磨後のギャップ深さG
da、Gdbの関係式は Gd0b=Gdb+δb       ・・・・・・(
3)GdOa−Gda+δa         −−(
4)又、(4) −(3)式は Gd0a−Gd0b+Gda−Gd b+δa−δb 
        ・・・・・・(5)となり、この(5
)式に(1)式を代入するとGd0a−Gd0b+Xd
 a−Gd b+X−Xo・・・・・・(6) 上記(6)式に於てチップ仕上げ後のギャップ深さG 
d a ’i G d bとすると、Gd0a!;Gd
0b+X−Xo      −−(6a)上記(6a)
式で初期突出し段差XO!=iOとすると、次の(6b
)式が得られる。
In addition, the initial gap depths Gd0a and Gd0b of the a-head and b-head of the chip, and the gap depth G after polishing.
The relational expression between da and Gdb is Gd0b=Gdb+δb (
3) GdOa-Gda+δa --(
4) Also, the formula (4) - (3) is Gd0a-Gd0b+Gda-Gd b+δa-δb
......(5), and this (5
) Substituting formula (1) into formula gives Gd0a-Gd0b+Xd
a-Gd b+X-Xo (6) In the above equation (6), the gap depth G after chip finishing
If d a 'i G d b, then Gd0a! ;Gd
0b+X−Xo --(6a) Above (6a)
Initial protrusion step XO with formula! = iO, then the following (6b
) formula is obtained.

Gd0a=caob+x=cctob+δa−δb・・
・・・・(6b) すなわち、上記(1)式で示す様に貼付時の初期突出段
差XOは所望突出段差Xと一体研磨時の研19ffiδ
aとδbの差で求まり、上記(6a)式で示す様に所望
ギャップ深さ例えばG d a !=i G d bで
あれば、一方の初期ギャップ深さGdobを決めれば、
他方のそれGd0aが決まりチップの初期ギャップ深さ
GdOのペアリングと貼付時の初期突出段差XOの寸法
出しが可能となる。尚4連チツプヘツドであるためCヘ
ッドはbヘッドと、dヘッドはaヘッドとそれぞれ同一
寸法と考えて良い。
Gd0a=caob+x=cctob+δa-δb・・
...(6b) That is, as shown in the above equation (1), the initial protrusion step XO at the time of pasting is the desired protrusion step X and the grinding 19ffiδ at the time of integral polishing.
It is determined by the difference between a and δb, and as shown in equation (6a) above, the desired gap depth, for example, G d a ! If =i G d b, then if one initial gap depth Gdob is determined,
The other one, Gd0a, is determined, and it becomes possible to pair the initial gap depth GdO of the chip and to determine the size of the initial protruding step XO at the time of pasting. Since it is a quadruple chip head, the C head can be considered to have the same size as the B head, and the d head can be considered to have the same size as the A head.

第7図には一体研磨時の4連チツプヘツドの各ヘッドの
時間対研磨量特性を示す、すなわち貼付時の初期突出し
段差X0=Oとして貼り付けた4連チツプヘツド1を研
磨ドラム15の外周面21より寸法AO’だけ突出して
取りつけ、時間経過による各ヘッドa、b、c、dの研
IIの変化を求めた特性図である0時間経過と共に内側
に位置するヘッドb、cよりも、外側に位置するヘッド
a。
FIG. 7 shows the time vs. polishing amount characteristics of each head of the 4-chip head during integral polishing. In other words, the 4-chip head 1 attached with the initial protrusion level difference X0=O is applied to the outer circumferential surface 2 of the polishing drum 15. This is a characteristic diagram of the changes in grinding II of each head a, b, c, and d over time when the heads are mounted so as to protrude by the dimension AO'. Position head a.

dの方が多くけずれており研磨量(δaζδd)〉(δ
bζδC)となっていることが分かる。
The amount of polishing (δaζδd)〉(δ
bζδC).

内側に位置するヘッドと外側に位置するヘッドとの間で
の、単位研磨時間当りの研磨量の差が事前に判ればそれ
に応じたペアリングと貼付作業が上記(1)弐〜(6)
式で可能となる。すなわち、例えば貼付時X0≒0の多
連チップヘッドを一体研磨することで時間経過で研磨後
のヘッド間の突出段差Xが決まる。また突出しIAOが
大きいと、例として突出しIAO”の研磨後は突出し量
に比例してヘッド間の突出し段差Xが大きくなること(
第7図で云うなら、AO”に対するXの方がAO’に対
するXより大きくなること)が分かる。
If the difference in polishing amount per unit polishing time between the inner head and the outer head is known in advance, the pairing and pasting work can be carried out according to (1) 2 to (6) above.
This is possible with the formula That is, for example, by integrally polishing multiple chip heads in which X0≈0 at the time of attachment, the protrusion step X between the heads after polishing is determined over time. Furthermore, if the protruding IAO is large, for example, after polishing the protruding IAO, the protruding step X between the heads will increase in proportion to the protruding amount (
In FIG. 7, it can be seen that X for AO'' is larger than X for AO'.

この事はあるヘッド間突出し段差Xが許されるならば短
時間で仕上げたいときは突出ff1Aoを大きくして研
磨することが可能であることを示し、又突出し段差X又
は仕上ギャップGdを時間をかけて高精度に仕上げたい
のであれば突出し量AOを小さくして研磨する事が考え
られる。又、所望の突出し段差Xが大きいときは貼付時
の初期突出段差XOの大きい物を使えば研磨時間が短く
、研lff1δが少なくて所定の仕上が可能となる。こ
の事は上記(6a)弐でわかる様に初期突出段差XOを
可変する事でヘッドbの初期ギャップ深さG dobに
対するヘッドaの初期ギャップ深さGd0aの選択範囲
が広がり、ペアリング率も向上可能である。
This shows that if a certain protrusion step X between heads is allowed, it is possible to polish by increasing the protrusion ff1Ao when finishing in a short time, and it is also possible to increase the protrusion step X or finishing gap Gd over time. If you want to finish with high precision, you can consider polishing with a smaller protrusion amount AO. Further, when the desired protrusion level difference X is large, if a material with a large initial protrusion level difference XO at the time of attachment is used, the polishing time is short and the desired finish can be achieved with less polishing lff1δ. As can be seen in (6a) 2 above, by varying the initial protruding step XO, the selection range of the initial gap depth Gd0a of head a with respect to the initial gap depth Gdob of head b is expanded, and the pairing rate is also improved. It is possible.

次に一体研磨による各ヘッドの摺動面半径RX。Next, check the sliding surface radius RX of each head by integral polishing.

RYの仕上状況について述べる。RX、RYの形状は三
光束対物レンズによる干渉縞(干渉リング)で求められ
る。
The finishing status of RY will be described. The shapes of RX and RY are determined by interference fringes (interference rings) produced by a three-beam objective lens.

まず各ヘッドの摺動面半径RYはチップ加工切出し時の
初期摺動面半径は無加工のため平面(RYO″!=、 
oo )である。これを一体研暦仕上すると研磨テープ
のなじみ走行でRYが出来る。研磨条件としては研磨テ
ープ18として剛性の低い物(テープは1インチ幅で厚
さ16〜6μmのポリエステルフィルム)を使い、研磨
ドラム15の外周面21からの摺動面5の突出し量AO
はヘッド間突出し段差Xの許容条件の範囲(AO#50
〜500μm)内とし、突出し段差Xや摺動面半径RX
の許容条件の範囲内で研磨テープ18の張力は(50〜
300 g)の各条件の選択で摺動面半径RY#1.O
〜2.5mmの物が出来、ヘッドa、b、c。
First, the sliding surface radius RY of each head is a flat surface (RYO''!=,
oo). When this is finished with Ikkenreki, RY can be achieved by running the abrasive tape. As for the polishing conditions, a material with low rigidity is used as the polishing tape 18 (the tape is a polyester film with a width of 1 inch and a thickness of 16 to 6 μm), and the amount of protrusion of the sliding surface 5 from the outer peripheral surface 21 of the polishing drum 15 is AO.
is the range of allowable conditions for the protruding step X between heads (AO#50
~500μm), and the protrusion step X and sliding surface radius RX
The tension of the polishing tape 18 is within the range of allowable conditions (50~
By selecting each condition of 300g), the sliding surface radius RY#1. O
~2.5mm items were made, heads a, b, and c.

d間のバラツキも少ない。実用時の所望RYより少し小
さく作ればVTRドラム実装運転直後より磁気テープに
なじみ所望のRYが出来る。
There is also little variation between d. If the RY is made a little smaller than the desired RY in practical use, the desired RY can be obtained by adapting to the magnetic tape immediately after the VTR drum is mounted and operated.

摺動面RXの研磨条件としては、テープ剛性。The polishing conditions for the sliding surface RX include tape rigidity.

突出し量AOは摺動面RYと同じであるが、研磨テープ
の張力はトラック幅TWの中心とRYOの頂点ずれが許
容出来る範囲で低い方が良い。摺動面半径RXはこれら
研磨条件の選択とチップ加工時の初期摺動面半径RXO
で決まり、各ヘッドa。
The protrusion amount AO is the same as that of the sliding surface RY, but the tension of the polishing tape should be as low as possible within a range that allows for the deviation of the apex of RYO from the center of the track width TW. The sliding surface radius RX is determined by selecting these polishing conditions and the initial sliding surface radius RXO during chip processing.
Determined by , each head a.

b、  c、 d共RX’i1.5RXO〜3.5RX
Oの物を作る事が出来る。実用時の所望RX:=i2R
XO〜3RXOを目標に初期摺動面半径RX0≒(RX
/2)〜(RX/3)の範囲で選択し一定の半径でチッ
プ加工していればペアリング時各ヘッドごとにペアリン
グする必要はない。
b, c, d all RX'i1.5RXO~3.5RX
You can make things with O. Desired RX in practical use:=i2R
Initial sliding surface radius RX0≒(RX
/2) to (RX/3) and if the chip is processed at a constant radius, there is no need to pair each head separately.

最後に頂点ずれαの仕上状況と、多連チップヘッドの一
体研磨個有で最大の技術課題である頂点ずれαと、さき
に述べたヘッド間突出段差Xの小寸法化技法を述べる。
Finally, we will discuss the finishing status of the apex misalignment α, the apex misalignment α which is the biggest technical problem unique to the integrated polishing of multi-chip heads, and the technique for reducing the size of the protruding step X between the heads mentioned earlier.

すなわち第7図でわかる様に一体研摩時の研磨ドラム1
5の外周面21からの摺動面5の突出量AOはVTRの
回転ドラム取付時のそれに比べ約1.5倍程度以上突出
さないと、ヘッドの研磨時間が長くなり仕上形状も良く
ない。しかし突出IAOを大きくすると、必要以上に中
央ヘッド(b。
In other words, as shown in Fig. 7, the polishing drum 1 during integral polishing
Unless the amount of protrusion AO of the sliding surface 5 from the outer circumferential surface 21 of the head is about 1.5 times or more than that when the rotating drum of the VTR is attached, the polishing time of the head will be long and the finished shape will not be good. However, if the protruding IAO is made larger, the central head (b) becomes larger than necessary.

C)より両端ヘッド(a、d)の研111ffiが大き
くなり、Xが大きくなり、RXも形くずれを起こし、頂
点ずれαも合せにくい。
C) The grinding 111ffi of both ends of the head (a, d) becomes larger, X becomes larger, RX also becomes deformed, and it is difficult to match the apex deviation α.

これらを解決するためには研磨ドラムの径をVTR実装
ドラム径の0.8〜2.4倍にするとよい。
In order to solve these problems, the diameter of the polishing drum should be made 0.8 to 2.4 times the diameter of the VTR mounting drum.

第8図には研磨ドラム15の径をVTR実装ドラムの径
DIと等しくし、初期ヘッド間突き出し段差X0≒0で
作った多連チップヘッド1の研磨前後の外形の概略図を
示す。
FIG. 8 shows a schematic view of the external shape of the multi-chip head 1 before and after polishing, in which the diameter of the polishing drum 15 is made equal to the diameter DI of the VTR mounting drum, and the initial inter-head protrusion level difference X0≈0 is made.

多連の各チップ3はギャップ線7がほぼ研磨ドラム15
の中心点Pに向いて貼付している(正確には後述する)
、従ってVTR実装ドラムの径D1と同径の研磨ドラム
15に、初期ヘッド間突出し段差X0≒0の多連チップ
ヘッド1を外周面21より寸法AOだけ突出し取付ける
と、端部のヘッドaと中央部のヘッドbのテープ摺動面
5の各々の頂点7a、7bは、同一半径Rで接し、それ
は約研磨ドラム径D1の半分であり研磨ドラム15の中
心Pで交わっている。
The gap line 7 of each chip 3 in the series is approximately the same as the polishing drum 15.
It is attached facing the center point P (exact details will be explained later)
Therefore, if multiple chip heads 1 with an initial head-to-head protrusion level difference X0≈0 are attached to the polishing drum 15 having the same diameter as the diameter D1 of the VTR mounting drum, protruding from the outer peripheral surface 21 by the dimension AO, the end head a and the center The vertices 7a and 7b of the tape sliding surface 5 of the head b of the section touch at the same radius R, which is approximately half the diameter D1 of the polishing drum, and intersect at the center P of the polishing drum 15.

この状態で一体研磨すると破線で示す様に中央部のへラ
ドbの研磨量δbに対し端部のヘッドaの研磨量δaが
大きく、その突出し段差Xは上記(2)式で示した様に
なる。又研磨の前後の研磨テープ18の軌跡も急変する
When polishing is carried out in one piece in this state, as shown by the broken line, the polishing amount δa of the end head a is larger than the polishing amount δb of the head b in the center, and the protruding step X is as shown in equation (2) above. Become. Furthermore, the trajectory of the polishing tape 18 before and after polishing also changes suddenly.

ヘッドbのチップ3で研磨量δbを大きく必要とするペ
アリングでは第7図で示した様にますますヘッドaのチ
ップ3が削れる事になる。このためVTRの実装ドラム
に多連ヘッドを実装するとヘッドaは磁気テープとのタ
ッチ不良を起こしやすい、従って研磨ドラム径D1をV
TR実装ドラム径と同等にした場合には所望の突出し段
差Xζ0.5〜1μmである場合、中央部のヘッドbの
研磨量δbがδb−0,5〜2μm範囲に限定したチッ
プペアリング時にのみ有効となる。
In a pairing that requires a large amount of polishing δb on the tip 3 of head b, the tip 3 of head a will be further removed as shown in FIG. For this reason, when multiple heads are mounted on the mounting drum of a VTR, head a tends to have poor contact with the magnetic tape.
If the desired protrusion step Xζ is 0.5 to 1 μm when the diameter is the same as the TR mounting drum diameter, only when chip pairing is limited to the polishing amount δb of the central head b within the range of δb - 0.5 to 2 μm. It becomes effective.

第9図には研磨ドラム径D2をVTR実装ドラム径の約
2倍にした場合の多連チップヘッド1の研磨前後の外形
の概略図を示す。多連ヘッド貼付の条件は第8図に示し
たものと同一である。
FIG. 9 shows a schematic diagram of the external shape of the multi-chip head 1 before and after polishing when the polishing drum diameter D2 is approximately twice the VTR mounting drum diameter. The conditions for attaching multiple heads are the same as those shown in FIG.

多連チップヘッド1の初期突出し段差X0≒0とし各ヘ
ッドa、b等の摺動面5の各々の頂点7a、7bは同一
半径Rで交り研磨ドラム15の外周21より寸法AOだ
け突き出して取付けて一体研磨した前後では第8図のそ
れと比べ中央部のへラドbの研磨量δbを同一とすると
端部のヘッドaの研磨量δaが少なく、その突出し段差
Xも小さい。又、研磨の前後の研磨テープ18の軌跡の
変化も少ない。
The initial protrusion level difference X0 of the multi-chip head 1 is approximately 0, and the vertices 7a and 7b of the sliding surfaces 5 of each head a, b, etc. intersect at the same radius R and protrude from the outer periphery 21 of the polishing drum 15 by a dimension AO. If the polishing amount δb of the head b in the center is the same, the polishing amount δa of the end head a is smaller than that shown in FIG. 8 before and after installation and integral polishing, and the protruding step X thereof is also small. Further, there is little change in the locus of the polishing tape 18 before and after polishing.

この事はドラム径を大きくすれば、外周面21よりの突
出し1iAOを大きくしても突出し段差Xと摺動面半径
RYが小さく出来、さらにヘッド5部の研磨量δbの大
きなチップのペアリングが可能となる事を意味している
This means that by increasing the drum diameter, even if the protrusion 1iAO from the outer circumferential surface 21 is increased, the protrusion step X and the sliding surface radius RY can be made smaller, and the pairing of chips with a large polishing amount δb of the head 5 can be made smaller. It means that it is possible.

さらに研階ドラム径りを大きくすると、端部ヘッドaの
摺動面半径RXの形くずれ防止と研磨直後と実用時の頂
点ずれαを小さく出来る。
Furthermore, by increasing the diameter of the grinding drum, it is possible to prevent the sliding surface radius RX of the end head a from deforming and to reduce the apex deviation α immediately after grinding and during practical use.

以下説明する。第10A図、第10B図には、頂点ずれ
と、摺動面半径RXの形くずれの激しい端へラドaの一
体研磨前後のチップ平面と摺動面を示す。
This will be explained below. FIGS. 10A and 10B show the chip plane and sliding surface before and after integral polishing of Radar a to the end where the apex shift and the sliding surface radius RX are severely deformed.

第10A図は多連チップヘッドの端ヘッドaのチップ3
のギャップ線8は、VTRTR回転ドラム中心性線方向
に貼って、第8図に示す小径の研磨ドラムに突出し量A
Oで取付けて研磨した前後の外形を示す、破線は研磨後
を示す、研磨後では摺動面のRXの41と42側では4
1側が大きく削られている。又、摺動面5でも貼付時頂
点ずれα0≒Oで作った物でも研磨後では頂点が摺動面
5゛に見られるように移動し、ギャップ6との摺動面の
RXの頂点のずれがαだけずれて出来る。
FIG. 10A shows chip 3 of end head a of a multi-chip head.
The gap line 8 is pasted in the direction of the center line of the VTRTR rotating drum, and the protrusion amount A is applied to the small-diameter polishing drum shown in FIG.
The outlines before and after mounting and polishing are shown with O.The broken line shows the shape after polishing.After polishing, the 41 and 42 side of RX on the sliding surface is 4
One side is heavily cut. Also, even if the sliding surface 5 is made with apex deviation α0≒O when pasted, the apex will move as seen on the sliding surface 5' after polishing, and the deviation of the apex of RX of the sliding surface with the gap 6 will occur. can be shifted by α.

従って第10B図に示す様にチップ3の姿勢をβlだけ
ギャップ線8をずらし、初期頂点ずれα0をずらして貼
り付け一体研磨後の頂点ずれαがα!=ioとなる様に
仕上る事が出来る。しかし、研磨の条件は第10A図の
それと同一の小径研磨ドラムであるため研磨後の摺動面
のRXの41が42側より大きく削られている。研磨ド
ラム径を大径にすればこの現象を救済する事が出来る。
Therefore, as shown in FIG. 10B, the gap line 8 is shifted by βl in the attitude of the chip 3, the initial apex deviation α0 is shifted, and the apex deviation α after bonding and integral polishing is α! = io. However, since the polishing conditions are the same as those shown in FIG. 10A using a small-diameter polishing drum, 41 on the RX of the sliding surface after polishing is shaved more than the 42 side. This phenomenon can be alleviated by increasing the diameter of the polishing drum.

すなわち第9図の様に大径(約2倍)にすればよい。That is, the diameter may be increased (approximately twice) as shown in FIG.

第11図には、このような場合の、研磨後に頂点ずれα
と摺動面の半径RXの形くずれの激しい端へラドaの一
体研磨前後のチップ平面と摺動面を示す。破線は研磨後
を示す。
Figure 11 shows the apex deviation α after polishing in such a case.
The chip plane and sliding surface before and after integral polishing of RAD a are shown to the end where the radius RX of the sliding surface is severely deformed. The broken line indicates after polishing.

第11図に見られるように、研磨ドラムの径を大径にす
ると一体研磨後での摺動面のRXの41側と42側の削
れ量の差が少なくなり、41例の形くずれも少ないため
貼付時のチップ3の姿勢β2も第10B図のそれβ1に
比べ小さく出来、貼付時の初期頂点ずれαOの設定も小
さくなり研磨後の摺動面のRXの41側の片削れを少な
くして容易に研磨後の頂点ずれはαζ0のものを作りう
る。
As seen in Figure 11, when the diameter of the polishing drum is increased, the difference in the amount of wear between the 41 side and 42 side of the sliding surface RX after integral polishing becomes smaller, and the deformation of the 41 case is also reduced. Therefore, the attitude β2 of the chip 3 at the time of attachment can be made smaller than that β1 in Fig. 10B, and the setting of the initial apex deviation αO at the time of attachment is also small, reducing the chipping on the 41 side of RX of the sliding surface after polishing. The apex deviation after polishing can easily be αζ0.

この様にして多連ヘッドの端部ヘッドのRXO形くずれ
を防ぎ所望の頂点ずれαを作り出す事が出来る。
In this way, it is possible to prevent the RXO shape of the end heads of the multiple heads from collapsing and create a desired apex deviation α.

第12図は研磨ドラム径の大径時と小径時について、4
連チツプヘツドの端ヘッド(a、d)の研F!j量δと
頂点ずれαの関係を示す、研磨ドラム径を大径にすると
、先に述べた様に研磨量δの割に頂点ずれαが約半分小
さくなっている事がわかる。この様に研磨ドラム径をV
TR実装ドラム径の(0,8〜2.4倍)にする事で、
一体研磨時の両端ヘッドa、dのRXO形くずれを小さ
く出来るため、初期突出量AOが大きく出来、さらに中
央部ヘッド(b、c)の研磨量δを大きくしても、RY
とX値の小さな多連チップヘッドを作る事が出来る。
Figure 12 shows the results for large and small polishing drum diameters.
Grinding of the end heads (a, d) of the continuous tip head F! It can be seen that when the diameter of the polishing drum, which shows the relationship between the j amount δ and the apex deviation α, is increased, the apex deviation α becomes smaller by about half compared to the polishing amount δ, as described above. In this way, the diameter of the polishing drum is set to V
By making it (0.8 to 2.4 times) the diameter of the TR mounting drum,
Since the RXO shape deformation of both end heads a and d during integral polishing can be reduced, the initial protrusion amount AO can be increased, and even if the polishing amount δ of the center head (b, c) is increased, the RY
It is possible to create a multi-chip head with a small X value.

尚、多連ヘッドの一体研磨仕上による両端ヘッドの摺動
面RXの片削れ防止策として第13図、第14図に示す
案も考えられる。本案は、第8図の改良案として第9図
の様にドラム径を大きくするかわりに、他の障害物をわ
ざと設けることによリテーブを持ち上げるものである。
In addition, as a measure to prevent the sliding surfaces RX of the heads at both ends from being chipped due to integral polishing of the multiple heads, the plan shown in FIGS. 13 and 14 can also be considered. In this proposal, instead of increasing the drum diameter as shown in FIG. 9 as an improvement on FIG. 8, another obstacle is intentionally provided to lift the retainer.

第13図は研磨ドラム15に取付けた4連チツプヘンド
1の両端にテープガイド45.46を取付け、一体研廖
時のヘッドa、dの摺動面のRXの片削れを防ぐもので
ある。第13A図は第13図における要部の下面図であ
る。
In FIG. 13, tape guides 45 and 46 are attached to both ends of the quadruple tip hand 1 attached to the polishing drum 15 to prevent one side of the RX of the sliding surfaces of heads a and d from being scraped during integral polishing. FIG. 13A is a bottom view of the main part in FIG. 13.

又、第14図は研磨ドラム15に4連チンブヘツド1を
取付け、欠切穴部25の両側に突起47を設け、一体研
磨時のヘッドa、dの摺動面のRXの片削れを防ぐよう
にしたものである。第14A図は第14図における要部
の下面図である。
In addition, in FIG. 14, a four-chip head 1 is attached to a polishing drum 15, and protrusions 47 are provided on both sides of the notched hole portion 25 to prevent one side of the RX of the sliding surfaces of heads a and d from being scraped during integral polishing. This is what I did. FIG. 14A is a bottom view of the main part in FIG. 14.

本実施例によれば、多連チップヘッドの組立で研磨テー
プによる一体研磨仕上げをする事で各ヘッドごとに微妙
に異なる実用的なテープ摺動面形状が得られる。複数の
チップを同時研磨する事で、研磨回数の削減とチップ単
品のハンドリングを行うことによるダメージや破損事故
の減少が期待できる。又チップの摺動面の初期RXOの
加工を各ヘッドごとに作る必要がなく、チップペアリン
グを容易にし、各ヘッドごとに作る場合の誤貼付も起き
ない。
According to this embodiment, a practical tape sliding surface shape slightly different for each head can be obtained by integrally polishing the multiple chip heads with an abrasive tape during assembly. By polishing multiple chips at the same time, you can expect to reduce the number of polishing times and reduce damage and breakage accidents by handling individual chips. In addition, there is no need to process the initial RXO on the sliding surface of the chip for each head, which facilitates chip pairing and prevents erroneous pasting when it is created for each head.

研磨ドラム径を大きくしたり、テープガイドを付けたり
、研磨ドラムに突起をっけたりして多連チップヘッド両
端のヘッドのテープ摺動面のRXの片削れを防止出来る
。又、研磨条件がコントロール出来る一体研磨作業とそ
の途中の各ヘッドの摺動面形状の検査が出来る一体研磨
装置を作る事で研磨途中の寸法検査を行ない、良否の判
定とチップペアリング、貼付時の条件と一体研磨結果と
の関係寸法を明確にする事で、各ヘッドのテープ摺動面
の仕上り寸法が改良出来る。
By enlarging the diameter of the polishing drum, attaching a tape guide, or providing a protrusion on the polishing drum, it is possible to prevent one side of the RX on the tape sliding surfaces of the heads at both ends of the multi-chip head from being scraped. In addition, by creating an integrated polishing device that can control the polishing conditions and inspect the shape of the sliding surface of each head during the polishing process, we can perform dimension inspections during polishing, judge pass/fail, chip pairing, and attach. By clarifying the relationship between the conditions and the integral polishing results, the finished dimensions of the tape sliding surface of each head can be improved.

このためVTRドラムに実装置後より各ヘッドの出力が
良好で、摺動面仕上に関するヘッド間の出力のばらつき
の少ない、高品位で歩留まりの高い多連チップヘッドを
得る事が出来る。
Therefore, it is possible to obtain a high-quality, high-yield multi-chip head in which the output of each head is better than that of an actual device on a VTR drum, and there is little variation in the output between heads regarding the sliding surface finish.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、 ■多連チップヘッドの組立時において、研磨テープによ
る一体研磨仕上をする事で各ヘッドごとに微妙に異なる
実用的なテープ摺動面形状が得られる。
According to the present invention, (1) When assembling a multi-chip head, by performing an integral polishing finish using an abrasive tape, it is possible to obtain a practical tape sliding surface shape that is slightly different for each head.

■各チップを同時に研磨する事で、研磨回数の削減とチ
ップハンドリング回数をチップ単品でハンドリングする
場合に比較して削減する事で、チップへのダメージや破
損事故が減少出来る。
■By polishing each chip at the same time, the number of times of polishing and chip handling can be reduced compared to handling each chip individually, thereby reducing damage to and breakage of the chips.

■各チップの摺動面の初期RXOの加工を個別に作る必
要がなく、チップのペアリングを容易にし、また個別に
作る場合の誤貼付が起きない。
■There is no need to individually process the initial RXO on the sliding surface of each chip, making it easy to pair the chips, and preventing erroneous pasting when making them individually.

■研磨ドラム径を大きくする事で多連チップヘッドの両
端ヘッドの摺動面のRXの片削れを少なく出来る。この
ことは、ドラムにテープガイドや突起を追加する事でも
可能となる。
■By increasing the diameter of the polishing drum, it is possible to reduce one-sided scraping of the RX on the sliding surfaces of the heads at both ends of the multi-chip head. This can also be done by adding tape guides or protrusions to the drum.

■−一体研磨時チップペアリングや貼付時の関係寸法(
α、X、RX、RY、Cd、)を明確にする事で、合理
的な多連チップヘッド組立システムを構築することがで
きる。
■-Dimensions related to chip pairing and attachment during integral polishing (
By clarifying α, X, RX, RY, Cd, it is possible to construct a rational multiple chip head assembly system.

■上記■〜■の利点を可能にするための研磨条件調整可
能な研磨作業と研磨途中の検査手段をそなえた一体研磨
装置により、チップのペアリング可能範囲を広くし、摺
動面仕上り形状も安定したものが得られ、その研磨結果
データのフィードバックが容易におこなえるため、高品
位で歩留まりが格段に改善された状況で多連チップヘッ
ドを製造する事ができる。
■In order to achieve the advantages of ■~■ above, an integrated polishing device equipped with adjustable polishing conditions and inspection means during polishing expands the range in which chips can be paired and improves the finished shape of the sliding surface. Since a stable product can be obtained and the polishing result data can be easily fed back, multi-chip heads can be manufactured with high quality and significantly improved yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多連磁気ヘッドの製造方法の一実施例
を示すフローチャート、第2図は4連チツプヘツドの正
面図、第2A図は第2図における要部の拡大正面図、第
2B図は同側面図、第2C図は第2図における他の要部
の拡大正面図、第3図は研磨ドラムの要部の拡大図、第
4図は本発明の一体研磨装置の一実施例を示す平面図、
第5図は同側面図、第6図は多連チップヘッドの研磨前
後の寸法関係説明図、第7図は一体研磨時の各チップヘ
ッドの時間対研磨量特性を示す特性図、第8図、第9図
はそれぞれ研磨ドラムにおける一体研磨の前後における
チップヘッドの外形の概略図、第10A図、第10B図
はそれぞれ一体研磨前後のチップの平面及び摺動面を示
す説明図、第11図は同様に一体研磨前後のチップの平
面及び摺動面を示す説明図、第12図は研磨量と頂点す
れとの関係を示す特性図、第13図は本発明の一体研磨
装置の他の実施例を示す平面図、第13A図はその要部
の拡大下面図、第14図は本発明の一体研磨装置の別の
実施例を示す平面図、第14A図はその要部の拡大下面
図、である。 符号の説明
FIG. 1 is a flowchart showing an embodiment of the method for manufacturing a multiple magnetic head of the present invention, FIG. 2 is a front view of a four-chip head, FIG. 2A is an enlarged front view of the main parts in FIG. 2, and FIG. 2B 2C is an enlarged front view of other important parts in FIG. 2, FIG. 3 is an enlarged view of important parts of the polishing drum, and FIG. 4 is an embodiment of the integrated polishing apparatus of the present invention. A plan view showing
Fig. 5 is a side view of the same, Fig. 6 is an explanatory diagram of the dimensional relationship before and after polishing of the multiple chip head, Fig. 7 is a characteristic diagram showing the time vs. polishing amount characteristics of each chip head during integral polishing, and Fig. 8 , FIG. 9 is a schematic diagram of the external shape of the chip head before and after integral polishing in the polishing drum, FIGS. 10A and 10B are explanatory diagrams showing the plane and sliding surface of the chip before and after integral polishing, respectively, and FIG. 11 12 is an explanatory diagram showing the plane and sliding surface of the chip before and after integral polishing, FIG. 12 is a characteristic diagram showing the relationship between polishing amount and apex slippage, and FIG. 13 is another embodiment of the integral polishing apparatus of the present invention. A plan view showing an example, FIG. 13A is an enlarged bottom view of the main parts thereof, FIG. 14 is a plan view showing another embodiment of the integrated polishing apparatus of the present invention, FIG. 14A is an enlarged bottom view of the main parts, It is. Explanation of symbols

Claims (1)

【特許請求の範囲】 1、ヘッドとなるべきチップの複数個の中から所要の形
状、寸法を持つ所要個数のチップを選別してペアを組む
ペアリング工程と、ペアを組んだ所要個数のチップを多
連チップとして同一ベース部材に貼り付ける多連チップ
貼り付け工程と、その後、同一部材に貼り付けられた多
連チップのテープ摺動面を一体研磨する一体研磨工程と
、を含んで成ることを特徴とする多連磁気ヘッドの製造
方法。 2、同一ベース部材にチップを貼り付けてなるチップヘ
ッドを研磨ドラムに取付け、供給リールから繰り出した
研磨テープを前記研磨ドラムを介して巻取リールに巻き
取ることにより、前記研磨ドラムに取付けたチップヘッ
ドを研磨する研磨装置において、 前記研磨ドラムの近傍に顕微鏡を配置すると共に、該顕
微鏡により得られる画像を撮影するカメラと該カメラ出
力のモニタ手段とを具備し、研磨途中における前記チッ
プヘッドの各ヘッドの研磨状況を観察可能にしたことを
特徴とする研磨装置。 3、同一ベース部材に多連チップを貼り付けてなる多連
チップヘッドを研磨ドラムに取付け、供給リールから繰
り出した研磨テープを前記研磨ドラムを介して巻取リー
ルに巻き取ることにより、前記研磨ドラムに取付けた多
連チップヘッドを一体研磨する一体研磨装置において、
前記研磨ドラムの径寸法を、研磨後の該多連チップヘッ
ドを実装するVTR実装ドラムの径寸法と同等又はそれ
以上としたことを特徴とする一体研磨装置。 4、同一ベース部材に多連チップを貼り付けてなる多連
チップヘッドを研磨ドラムに取付け、供給リールから繰
り出した研磨テープを前記研磨ドラムを介して巻取リー
ルに巻き取ることにより、前記研磨ドラムに取付けた多
連チップヘッドを一体研磨する一体研磨装置において、
走行する前記研磨テープを、研磨対象である前記多連チ
ップヘッドへの入側と出側において、それぞれ持ち上げ
て該多連チップヘッドに対する研磨を行わせるための走
行テープガイド手段を前記研磨ドラムに取付けたことを
特徴とする一体研磨装置。 5、請求項1に記載の多連磁気ヘッドの製造方法におい
て、前記ペアリング工程において、多連チップを構成す
る中央側のチップの初期ギャップ深さをGd0b、端側
のチップの初期ギャップ深さをCd0a、一体研磨した
仕上げ後のそれらをGdb、Gdaとするとき、Gd0
aとGd0bの何れか一方の値を予め決めたら他方を Gd0a≒Gd0b+Gda−Gdb+X−X0(但し
、Xは突き出し段差、X0はその初期値)なる関係式に
従って決めることを特徴とする多連磁気ヘッドの製造方
法。 6、請求項5に記載の多連磁気ヘッドの製造方法におい
て、前記多連チップの一体研磨後の中央側のチップの研
磨量をδb、端側のチップの研磨量をδaとするとき、
δa及びδbの値を予め求めておいて、 X0≒δb−δa+X なる関係式に従って、所望の突き出し段差Xからその初
期値X0を求めることを特徴とする多連磁気ヘッドの製
造方法。 7、請求項5に記載の多連磁気ヘッドの製造方法におい
て、一体研磨に用いる研磨ドラムの外周面からの多連チ
ップのヘッド摺動面の初期突き出し量A0を50μm〜
500μmの範囲で可変選択すると共に、研磨所要時間
を可変し、かつヘッドの突き出し段差の初期値X0を可
変とすることにより、所望の突き出し段差Xを一定とし
つつ、チップの初期ギャップ深さGd0についてのペア
リング範囲の拡大を図ったことを特徴とする多連磁気ヘ
ッドの製造方法。 8、請求項1に記載の多連磁気ヘッドの製造方法におい
て、前記ペアリング工程において互いにペアを組む対象
としての複数個のチップで、チップ加工時におけるチッ
プの初期摺動面半径をRX0とし、一体研磨後のそれを
RXとするとき、 RX0≒(RX/2)〜(RX/3) の範囲に収まるようにチップの初期摺動面半径RX0を
加工しておき、多連チップを構成する各チップについて
の互いにペアを組む対象としての複数個のチップを共通
化することを特徴とする多連磁気ヘッドの製造方法。 9、請求項1に記載の多連磁気ヘッドの製造方法におい
て、前記一体研磨工程において、チップの初期摺動面の
半径RY0が無加工で平面(RY0≒∞)であっても、
研磨テープとして1インチ幅で厚さ16〜6μmのポリ
エステルフィルムの如き剛性の低いものを用い、かつ一
体研磨時の初期突き出し量A0(50〜500μm)に
反比例して前記研磨テープの張力を増減(300〜50
g)することにより、多連チップを構成する各チップの
ヘッド共、摺動面半径RY0≒1.0〜2.5mmの仕
上げを可能にしたことを特徴とする多連磁気ヘッドの製
造方法。 10、請求項1に記載の多連磁気ヘッドの製造方法にお
いて、前記貼り付け工程において、チップの姿勢(ギャ
ップ線)を予めβだけずらし、その摺動面の初期頂点ず
れをα0だけ予めずらして貼り付け、一体研磨後の頂点
ずれαがα≒0となるように仕上げることを可能に したことを特徴とする多連磁気ヘッドの製造方法。
[Claims] 1. A pairing process in which a required number of chips having a desired shape and dimensions are selected from among a plurality of chips to become a head, and the required number of chips are formed into pairs; and a required number of chips formed in pairs. A multiple chip attaching process in which multiple chips are attached to the same base member, and an integral polishing process in which the tape sliding surfaces of the multiple chips attached to the same member are then integrally polished. A method for manufacturing a multiple magnetic head characterized by: 2. A chip head, which is made by pasting chips on the same base member, is attached to the polishing drum, and the polishing tape fed out from the supply reel is wound onto a take-up reel via the polishing drum, thereby making the chips attached to the polishing drum. A polishing device for polishing a head, which includes a microscope disposed near the polishing drum, a camera for taking an image obtained by the microscope, and means for monitoring the output of the camera, and a microscope for monitoring each of the chip heads during polishing. A polishing device characterized in that the polishing status of a head can be observed. 3. A multi-chip head made up of multiple chips attached to the same base member is attached to the polishing drum, and the polishing tape fed out from the supply reel is wound onto a take-up reel via the polishing drum. In an integrated polishing device that integrally polishes multiple chip heads attached to
An integrated polishing apparatus characterized in that the diameter of the polishing drum is equal to or larger than the diameter of a VTR mounting drum on which the multi-chip head is mounted after polishing. 4. A multi-chip head made up of multiple chips attached to the same base member is attached to the polishing drum, and the polishing tape fed from the supply reel is wound onto a take-up reel via the polishing drum. In an integrated polishing device that integrally polishes multiple chip heads attached to
A traveling tape guide means is attached to the polishing drum for lifting the traveling polishing tape at the entrance and exit sides of the multiple chip head to be polished and polishing the multiple chip head. An integrated polishing device characterized by: 5. In the method for manufacturing a multi-magnetic head according to claim 1, in the pairing step, the initial gap depth of the central chip constituting the multi-chip is Gd0b, and the initial gap depth of the end-side chips is Gd0b. is Cd0a, and when they are Gdb and Gda after integral polishing, Gd0
A multi-magnetic head characterized in that when the value of either a or Gd0b is determined in advance, the other is determined according to the relational expression: Gd0a≒Gd0b+Gda-Gdb+X-X0 (where, X is the protruding step and X0 is its initial value). manufacturing method. 6. In the method for manufacturing a multi-magnetic head according to claim 5, when the amount of polishing of the central chip after integral polishing of the multiple chips is δb, and the amount of polishing of the end-side chips is δa,
A method for manufacturing a multi-magnetic head, characterized in that the values of δa and δb are determined in advance, and the initial value X0 is determined from a desired protrusion step X according to the relational expression: X0≈δb−δa+X. 7. In the method for manufacturing a multi-magnetic head according to claim 5, the initial protrusion amount A0 of the head sliding surface of the multi-chip from the outer peripheral surface of the polishing drum used for integral polishing is 50 μm or more.
By making a variable selection in the range of 500 μm, varying the polishing time, and making the initial value X0 of the head protrusion step variable, the initial chip gap depth Gd0 can be adjusted while keeping the desired protrusion step X constant. A method for manufacturing a multiple magnetic head, characterized in that the pairing range is expanded. 8. The method for manufacturing a multi-magnetic head according to claim 1, in which the plurality of chips are to be paired with each other in the pairing step, and the initial sliding surface radius of the chips during chip processing is set to RX0; When it is designated as RX after integral polishing, the initial sliding surface radius RX0 of the chip is processed so that it falls within the range of RX0≒(RX/2) to (RX/3), and a multi-chip is constructed. 1. A method of manufacturing a multiple magnetic head, characterized in that a plurality of chips are shared as objects to be paired with each other for each chip. 9. In the method for manufacturing a multi-magnetic head according to claim 1, in the integral polishing step, even if the radius RY0 of the initial sliding surface of the chip is unprocessed and flat (RY0≒∞),
As the polishing tape, a material with low rigidity such as a polyester film having a width of 1 inch and a thickness of 16 to 6 μm is used, and the tension of the polishing tape is increased or decreased in inverse proportion to the initial protrusion amount A0 (50 to 500 μm) during integral polishing. 300-50
g) A method for manufacturing a multi-magnetic head, characterized in that by doing so, it is possible to finish the heads of each chip constituting the multi-chip so that the sliding surface radius RY0≈1.0 to 2.5 mm. 10. In the method for manufacturing a multi-magnetic head according to claim 1, in the pasting step, the attitude (gap line) of the chip is shifted by β in advance, and the initial apex deviation of the sliding surface is shifted by α0 in advance. A method for manufacturing a multiple magnetic head, characterized in that it is possible to finish the apex deviation α after bonding and integral polishing so that α≈0.
JP18266989A 1989-07-17 1989-07-17 Manufacture of multiple magnetic head and integral grinder used in manufacturing Pending JPH0349004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18266989A JPH0349004A (en) 1989-07-17 1989-07-17 Manufacture of multiple magnetic head and integral grinder used in manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18266989A JPH0349004A (en) 1989-07-17 1989-07-17 Manufacture of multiple magnetic head and integral grinder used in manufacturing

Publications (1)

Publication Number Publication Date
JPH0349004A true JPH0349004A (en) 1991-03-01

Family

ID=16122365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18266989A Pending JPH0349004A (en) 1989-07-17 1989-07-17 Manufacture of multiple magnetic head and integral grinder used in manufacturing

Country Status (1)

Country Link
JP (1) JPH0349004A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039181A1 (en) * 1999-11-24 2001-05-31 Matsushita Electric Industrial Co., Ltd. Method of manufacturing magnetic head, and magnetic recording and reproducing apparatus
KR100341411B1 (en) * 1997-03-05 2002-09-18 마쯔시다덴기산교 가부시키가이샤 Rotary head device and magnetic head device and its manufacturing method
US6640418B2 (en) 1999-12-03 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a head unit
US7108578B2 (en) 2004-11-12 2006-09-19 Hitachi Global Storage Technologies Netherlands B.V. System and method for manufacturing magnetic heads
US7914362B2 (en) 2005-11-30 2011-03-29 Hitachi Global Storage Technologies, Netherlands B.V. Method of evaluating the quality of a lapping plate
US8047894B2 (en) 2005-11-30 2011-11-01 Hitachi Global Storage Technologies, Netherlands, B.V. Apparatus for evaluating the quality of a lapping plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341411B1 (en) * 1997-03-05 2002-09-18 마쯔시다덴기산교 가부시키가이샤 Rotary head device and magnetic head device and its manufacturing method
WO2001039181A1 (en) * 1999-11-24 2001-05-31 Matsushita Electric Industrial Co., Ltd. Method of manufacturing magnetic head, and magnetic recording and reproducing apparatus
US6783435B1 (en) 1999-11-24 2004-08-31 Matsushita Electric Industrial Co., Ltd. Method of manufacturing magnetic head, and magnetic recording and reproducing apparatus
US6640418B2 (en) 1999-12-03 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a head unit
US7108578B2 (en) 2004-11-12 2006-09-19 Hitachi Global Storage Technologies Netherlands B.V. System and method for manufacturing magnetic heads
US7914362B2 (en) 2005-11-30 2011-03-29 Hitachi Global Storage Technologies, Netherlands B.V. Method of evaluating the quality of a lapping plate
US8047894B2 (en) 2005-11-30 2011-11-01 Hitachi Global Storage Technologies, Netherlands, B.V. Apparatus for evaluating the quality of a lapping plate

Similar Documents

Publication Publication Date Title
US7640788B2 (en) Wear gauge and method of use
US7268976B2 (en) Magnetic head and method of manufacturing the same
US5735036A (en) Lapping process for minimizing shorts and element recession at magnetic head air bearing surface
US20070062028A1 (en) Method for producing and inspecting tape head air-skiving edges
JP2000067408A (en) Manufacture of magnetic head
US7245459B2 (en) Critically exposed lapping of magnetic sensors for target signal output
JPH0349004A (en) Manufacture of multiple magnetic head and integral grinder used in manufacturing
US7244169B2 (en) In-line contiguous resistive lapping guide for magnetic sensors
JPH1142525A (en) Machining jig
US7147539B1 (en) Head performance based nano-machining process control for stripe forming of advanced sliders
JPH0253217A (en) Smoothing of active surface of magnetic head
US5880840A (en) Alumina recession determination using a flying height tester
JPH0947950A (en) Prism polishing jig
KR900006052Y1 (en) Floating magnetic head
JPH02310805A (en) Quality deciding method for head chip
JPH0281307A (en) Magnetic head
JPS623412A (en) Lapping device
KR100427972B1 (en) Production method of head unit
US6783435B1 (en) Method of manufacturing magnetic head, and magnetic recording and reproducing apparatus
JPH07176013A (en) Production of magnetic head
JPH06301916A (en) Multihead front-polishing method and multihead
JPH03219412A (en) Magnetic head
JP2002066896A (en) Polishing device for medium slide surface of magnetic head
JPH07147004A (en) Method for measuring grinding end face position relative to reference mark
JPH04195779A (en) Manufacture of magnetic head slider